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The horizontal stirring properties of the flow in a region of the East Australian Current are
calculated. A surface velocity field derived from remotely sensed data, using the maximum cross
correlation method, is integrated to derive the distribution of the finite-time Lyapunov exponents.
For the region studied !between latitudes 36°S and 41°S and longitudes 150°E and 156°E" the mean
Lyapunov exponent during 1997 is estimated to be #$!4"10#7 s#1. This is in close agreement
with the few other measurements of stirring rates in the surface ocean which are available. Recent
theoretical results on the multifractal spectra of advected reactive tracers are applied to an analysis
of a sea-surface temperature image of the study region. The spatial pattern seen in the image
compares well with the pattern seen in an advected tracer with a first-order response to changes in
surface forcing. The response timescale is estimated to be 20 days. © 2002 American Institute of
Physics. %DOI: 10.1063/1.1481615&

Satellite imagery of the ocean surface shows that sea-
surface temperature and chlorophyll have complex distri-
butions. The filaments and whorls characteristic of trac-
ers in stirred fluids are often clearly evident. Despite the
importance of stirring to a range of problems, such as
plankton ecology, larval transport or predicting the fate
of pollutants, it has not been well described. Here we
analyze the stirring properties of a velocity dataset ob-
tained from the interpretation of sequential satellite im-
ages. The finite-time Lyapunov exponents of the flow are
determined. Using these results, we show that the pat-
terns seen in a sea-surface temperature image are consis-
tent with those formed from the advection of a reactive
tracer. This suggests that an understanding of the distri-
bution of tracers such as temperature and chlorophyll in
the surface ocean must include a representation of both
the chaotic advection by the flow and the dynamics of the
tracers themselves. If the advection can be characterized,
as we have been able to do here, then it may be possible
to use the information contained in sea-surface imagery
to infer the time-scales of the tracer dynamics.

I. INTRODUCTION

One of the simplest measures of the distribution of a
tracer is its power-spectrum, which quantifies the variability
in the distribution at each spatial scale. Between inverse
wavenumbers of 1 and 100 km the spectra of sea-surface
temperature and chlorophyll are usually found to have a
power-law form, F(k)'k#(. The exponent, ( , is typically

in the range 1.5$($2.5.1–6 Where both sea-surface tem-
perature and chlorophyll are measured at the same time their
spectra often have similar slopes. Ocean currents are turbu-
lent within the mesoscale wavenumber range, 1 km
$k#1$100 km, and their energy falls off rapidly at higher
wavenumber.7 The flow within this range is approximately
two dimensional, and it is appropriate to consider the advec-
tion of a passive tracer in the surface ocean as a stirring
process.8,9 Stirring acts to stretch and fold patches of tracer,
distorting them into long tendrils and filaments. In spectral
terms, variance that is input at low wavenumber is trans-
ferred by stirring towards higher wavenumbers, where it is
dissipated by diffusion. The spectrum of a stirred tracer,
which has a source at low wavenumber but is otherwise con-
served, is expected to be power-law with an exponent (
!1.10 Batchelor law spectra with this form are sometimes
seen in laboratory experiments of stirring by two-
dimensional flows,11 but (!1 is outside the range usually
measured for sea-surface temperature and chlorophyll, as has
been noted by several authors.1,2 It is clear, however, that
neither sea-surface temperature or chlorophyll are conserved
quantities. For a non-conserved tracer which satisfies a first-
order equation, any spectral exponent (%1 can be obtained,
depending on the relation between the reaction-rate and the
typical stirring-rate of the flow.12 This suggests that the pat-
terns seen in the surface ocean may reflect both the stirring
by the flow and the tracers’ non-conservation. Recently, re-
sults have been derived which give the multifractal structure
of an advected reactive tracer in terms of the distribution of
finite-time Lyapunov exponents, which characterize the stir-
ring by the flow.13 The theoretical results were derived in the
context of Lagrangian chaotic flows. Applying the theory to
the surface ocean is hampered by the lack of data on stirring
by ocean currents. The few measurements which have been
made depend on following the stretching of a tracer patch for
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an extended period of time.14–16 This technique gives little
information on the distribution of stirring rates, each obser-
vation of a tracer patch typically returning only a single es-
timate of the stirring. Given the lack of direct measurements,
an indirect approach must be taken. In this paper, surface
velocity data, inferred from satellite observations, are used to
calculate stirring rates. The analysis is focused on the East
Australian region, where there is strong mesoscale eddy ac-
tivity and where a suitable dataset is available. The derived
distribution of stirring rates, more formally finite-time
Lyapunov exponents, is applied to an analysis of the distri-
bution of sea-surface temperature.

II. SURFACE VELOCITY DATA

It is possible to estimate sea-surface velocity from a
comparison between sequential satellite images of sea-
surface temperature.17–19 This maximum cross-correlation
!MCC" method has recently been applied to 7 years of sat-
ellite data from 1993 to 1999,20 covering the region where
the East Australian Current !EAC" separates from the coast
and heads across the Tasman Sea. The MCC data have a high
spatial and temporal resolution, but because no sea-surface
temperature imagery can be obtained through cloud, there
are extensive data dropouts. This problem has previously
limited the application of the MCC method to sequences of a
few exceptional cloud free images. In the dataset used here,
the MCC velocities have been blended with lower resolution
data derived from an analysis of satellite-altimeter measured
sea-surface height.21 The resulting optimally interpolated
!OI" surface velocity field has a uniform spatial and temporal
resolution of 100 km and 10 days, sufficient to resolve me-
soscale features. While both the satellite altimeter and tem-
perature data are globally available, they have only been
combined to derive surface velocities in the region that is
studied here. In this paper the stirring properties of the OI
flow are characterized.

The EAC current is an intense western boundary current
which flows south, close to the Australian coastline, until it
reaches the latitude of Sydney. Here the current turns, form-
ing large loops that pinch off to form eddies. The eddies
continue moving south while the main current turns to flow
east. The separation region is seen as a peak in the eddy
kinetic energy of the flow !Fig. 1". Analysis is restricted to a
smaller region to the south of the main separation zone, be-
tween latitudes 36°S and 41°S, and between longitudes
150°E and 156°E. The mean currents in this region are rela-
tively weak, so trajectories remain in the area where the OI
velocities are defined for long enough to allow the stirring to
be determined.

In the following two sections, results on stirring in two-
dimensional flows are briefly reviewed.

III. FINITE-TIME LYAPUNOV EXPONENTS

In a two-dimensional divergence-free flow, with velocity
v!(u ,v), the change in the separation between the trajecto-
ries of two infinitesimally separated points x(t) and x(t)
&)x(t) is

)̇x!S! t ")x, !1"

where the matrix S(t) is the Jacobian,

S! t "!! *xu *yu
*xv *yv

" , !2"

and is evaluated along the trajectory x(t).22 The Jacobian
may be resolved into symmetric and antisymmetric parts.
The antisymmetric part is a pure rotation. The symmetric
part is the strain tensor,

E! t "!! *xu !*yu&*xv "/2
!*yu&*xv "/2 #*xu

" , !3"

which acts to stretch a small patch of tracer without changing
its area. The strain tensor has the eigenvalues +'

!'!*xu2&(*yu&*xv)2/4, with the corresponding eigen-
vectors !' . In a pure-strain flow with velocity v!(+x ,
#+y) the strain tensor is diagonal, and the solution to Eq.
!1" is )x!()x(0)e+t,)y(0)e#+t). There is an exponential
growth in the component of the separation which is aligned
with the positive eigenvector, and an exponential decay of
the other component. In this flow field a small initially cir-
cular patch of tracer is stretched into an ellipse, with the rate
of growth of the major axis being given by the strain-rate, + .

In a general time-dependent flow infinitesimal separa-
tions between particles will still grow exponentially with

FIG. 1. The study region in the south-west Tasman Sea, showing the region
over which the satellite derived velocity data are available. The contours
show the average eddy kinetic energy !half the velocity variance, cm2 s#2"
from the 1997 data. The small box marks the area over which stirring rates
are derived.
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time, but the growth is no longer a simple function of the
strain.23 It may be characterized by the finite-time Lyapunov
exponents, defined by

#!x! t ",t "!
1
t log! #)x! t "#

#)x!0 "# " , !4"

where the orientation of the initial separation, )x(0), is cho-
sen so that # is maximal. At large times, # may be approxi-
mated by using Eqs. !1" and !4" with a randomly chosen
initial orientation of )x, as the stretching by the flow aligns
most initial vectors with the direction of maximal stretching.
We refer to the Lyapunov exponents approximated in this
way as #̃ . To calculate the Lyapunov exponents at small
times more care must be taken. An infinitesimal circle is
deformed by the flow into an ellipse. The integrated defor-
mation along a trajectory, M(t), may be obtained by solving

Ṁ!SM, !5"

where M(0) is the identity matrix. The semi-major and
semi-minor axes of the ellipse are the eigenvectors of the
matrix MTM, with their squared lengths being the corre-
sponding eigenvalues !denoted m& and m# , with m& refer-
ring to the larger value". The finite-time Lyapunov exponent
along a trajectory is then given by

#!x! t ",t "!
1
2tlog!m&". !6"

In a closed ergodic flow the Lyapunov exponents con-
verge with time towards a single value, limt→$#(t)!#$ . If
the flow is chaotic then #$%0. At times t(1/#$ the aver-
aged finite-time Lyapunov exponent has the form

,#-'A/t&B/!t&#$ , !7"

where A and B are two constants.24 This relation has previ-
ously been used to estimate #$ where the integration time
was too short to allow convergence of the finite-time expo-
nents to be achieved.25 The long-time behavior of the stan-
dard deviation of the finite time Lyapunov exponents, .# , is
given by

.#'!//t , !8"

where / is a third constant.24 The probability distribution of
finite-time Lyapunov exponents has the time-asymptotic
form

P!#! t ",t "'t1/2e#G(#)t, !9"

where G(#)%0 and G(#$)!G!(#$)!0.23,26 If P(# ,t) is
Gaussian then G(#) is a parabola,

G!#"!
!###$"2

2/
. !10"

IV. THE DISTRIBUTION OF ADVECTED TRACERS

As a simple approximation, sea-surface temperature may
be regarded as dynamically passive, with horizontal tempera-
ture gradients not affecting the flow. This view is supported
by observations which show that, away from major fronts,
horizontal temperature variations within the surface layer are

matched by salinity variations in such a way that there are
only weak horizontal density gradients.27–29 As a parcel of
surface water is advected by the flow it exchanges heat with
the atmosphere and with the underlying water. An initial ex-
ploration of the dynamics of sea-surface temperature may be
made by assuming that the changes in temperature are first-
order. Consider a tracer C(x(t),t) which satisfies the La-
grangian equation

dC
dt !0!C0#C ", !11"

where 0 is a relaxation rate. The source, C0(x,t), is assumed
to only vary over large scales, i.e., there is a wavenumber k0
such that the Fourier power spectrum, #Ĉ0(k)#2, is zero for
k%k0 . If the tracer is advected by a flow which has #(t)
!#$ and which has a horizontal diffusivity D, then for
wavenumbers between k0 and the diffusive cut-off, kD
!!#$ /D , the power spectrum has a power-law form,12

#Ĉ!k "2#'k#(. !12"

The power-law exponent is

(!1&
20

#$

. !13"

For tracers with a rapid relaxation time there is less transfer
of variance toward higher wavenumber and the power-
spectrum is steep, whereas for tracers with a slow relaxation
rate the spectrum approaches that of a forced conserved
tracer with Batchelor law scaling, (!1.10

For more general flows with a distribution of finite-time
Lyapunov exponents %Eq. !9"& the tracer distribution is mul-
tifractal, with the scaling exponents being related to the func-
tion G(#). Multifractal analysis has previously been carried
out on small-scale temperature and phytoplankton data !e.g.,
Refs. 30 and 31". Here theoretical results obtained by Neu-
feld et al.13 are presented. The qth order structure function is
defined as

Sq!)r "!,#C!x&)x,t "#C!x,t "#q-, !14"

where )r!#)x# and the angle brackets indicate averaging
over spatial locations and separations )x. For a scale-free
distribution, the structure functions have a power-law form
in the limit )r→0,

Sq!)r "')r1q. !15"

For an advected first-order tracer %Eq. !11"& the scaling ex-
ponents are given by

1q!min$ q , q0&G!#"

#
% , !16"

where the minimum is taken over all values of #%0. The
power-spectral exponent is related to the structure functions
by the relation

(!12&1. !17"

In cases where the function G(#) may be approximated by a
parabola %Eq. !10"& the scaling exponents have the form
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1q!min$ q , #$

/
!!1&2q0//#$

2#1 "% . !18"

In the limit /→0, P(#) becomes a delta function, )(#
##$), and the tracer distribution is monofractal with the
scaling exponents

1q!q0/#$ !for 0$#$". !19"

When q!2 the equation for the power-spectral exponent,
Eq. !13", is recovered using Eq. !17". The scaling exponents
have the same form %Eq. !19"& in the q→0 limit. This may
be used to estimate 0/#$ even if the function G(#) is un-
known.

V. FINITE-TIME LYAPUNOV EXPONENTS OF THE OI
DATA

The finite-time Lyapunov exponents are calculated for
the study region using the 1997 OI velocity data. A fourth-
order Runge-Kutta integration with a daily time-step is used
to calculate the trajectories of a regular grid of points. The OI
velocities are objectively mapped onto a regular grid with a
20 km by 20 km by 5 day spacing, and the data are linearly
interpolated in time and space to estimate the velocity along
the trajectories. The Jacobian is integrated following Eq. !5"
to obtain the matrix MTM, and the Lyapunov exponents are
then calculated from the eigenvalues m& %Eq. !6"&. There are
two components to the OI velocity field, the mean flow and
the velocity anomaly. The optimal interpolation ensures that
the anomaly is divergence free, but the mean flow is derived
directly from the MCC data and does not have this con-
straint. While the full velocity field is used to derive the
trajectories, only the traceless component of the Jacobian is

integrated to obtainM. As an example of the results, the flow
is shown on the 22 November 1997 in Fig. 2, along with the
Lyapunov exponents for three different times t. In this figure
a regular grid of points, with a spacing of 2.2 km, was inte-
grated backwards in time. Trajectories that left the region
within which the OI velocities were defined are shown in
black. The Jacobian was then integrated forwards along the
trajectories to obtain the Lyapunov exponents at a regular
grid of points. The streamfunction on 22 November 1997 is
dominated by an anti-cyclonic eddy with a diameter of ap-
proximately 200 km, centered on 38°S 152°E. The ten day
Lyapunov exponents show that the eddy center is an area of
relatively low stretching, with the highest stretching rates
being in arms around the eddy. For larger times t the
Lyapunov exponent develops a filamentary structure, with
the width of the filaments narrowing with time.

The probability distribution P(# ,t) is shown in Fig. 3
for various times t. This was calculated from sets of forward
trajectories initialized on a 61"51 regular grid. Each set of
trajectories began 10 days apart, between 1 January and 12
October 1997. As expected, the distribution of the exponents
narrows with time as each trajectory experiences a range of
flow conditions. The integration is not continued beyond 80
days as by that time over a third of the trajectories have left
the region where the OI velocities are available. The strain of
the OI flow in the study region has the mean and standard
deviation ,+&-!2.5"10#6 s#1 and .+&

!1.6"10#6 s#1.
The initial stretching is at the rate given by the strain, but the
average Lyapunov exponent decreases with time !Fig. 4".
The mean Lyapunov exponent is still decreasing at the end of
the 80 day integration so the form of G(#) cannot be deter-
mined. The Lyapunov exponent #$ can only be estimated by

FIG. 2. The streamfunction and the
finite-time Lyapunov exponents within
the study region on 22 November
1997. !a" The streamfunction, 2
("104 m2 s#1", !b" #(t), t!10 days,
!c" #(t), t!20 days, and !d" #(t), t
!40 days.

376 Chaos, Vol. 12, No. 2, 2002 E. R. Abraham and M. M. Bowen

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
139.80.2.185 On: Fri, 24 Jul 2015 20:05:59



fitting the relation for the expected time-dependence, Eq. !7",
to the data. The least-squares fitted curve to the mean
Lyapunov exponent between 15 and 80 days is ,#-
'0.371/t&4.17"10#4/!t&3.84"10#7, where the time, t,
is in seconds. This gives the estimate #$!4"10#7 s#1 !or
#$!0.035 day#1". A similar fit of Eq. !8" to the standard
deviation of the Lyapunov exponents gives /!5"10#7 s#1.
We have not attempted to quantify the uncertainties of these
estimates, but, because of the slow convergence, the uncer-
tainties will be relatively large. It could be expected that
P(# ,t) would become Gaussian when .#)#$ , or when t
(//#$

2 . For the OI flow this will occur when t(40 days, so
it is clear that the integration is too short to allow the
asymptotic form of P(# ,t) to emerge.

The mean value of the Lyapunov exponents approxi-
mated from the stretching of an initially randomly aligned
vector, #̃ , is shown in Fig. 4 for comparison. Because of the
random alignment of the initial vector relative to the strain-
ing of the flow, the initial stretching is zero. It grows rapidly,

and then slowly converges toward the actual value, ,#-. A
least squares fit of Eq. !7" to the data between 15 and 80 days
gives ,#-'0.0428/t&1.59"10#4/!t&4.33"10#7. This is
consistent with the estimate of #$!4"10#7 s#1.

VI. SEA-SURFACE TEMPERATURE

In this section the formalism developed by Neufeld
et al.13 and presented in Sec. IV is applied to a satellite im-
age of sea-surface temperature !SST" to test the applicability
of the theory in this context. In Fig. 5 an SST image from 22
November 1997 is compared with images produced by the
advection of a first-order tracer by the OI flow. The OI
streamfunction for this day is shown in Fig. 2, with the domi-
nant feature being an anti-cyclonic eddy. The equation for
the tracer %Eq. !11"& is integrated along the trajectories,
which were calculated backwards from a regular grid with a
2.2 km spacing. The integration is only for 40 days as for
longer times too many trajectories leave the area in which
the OI velocities are defined. The function C0 is taken to be
a linear gradient given by the latitude of the trajectory. The
tracer field along each trajectory is initialized at its starting
latitude. With a relaxation time of 1/0!20 days %Fig. 5!b"&
the broad structures of the modeled SST compare well with
what is seen in the satellite image taken on that day %Fig.
5!a"&. The anti-cyclonic eddy appears as an area of low gra-
dient, with the northern boundary being marked by a line of
strong gradient at 37°S. A tongue of warmer northern water
comes down the western side of the eddy, and there is a
meandering front between latitudes 39°S and 40°S. Given
the extreme simplicity of the sea-surface temperature model
the agreement between these images is striking. There are,
however, many smaller features which are not resolved in the
OI velocity field and so the contours of the modeled SST are
smoother than the contours of the actual SST image. If the
relaxation rate is set to 0!0, and the latitude is advected as
a conserved tracer, then the same broad patterns are seen
%Fig. 5!c"&, but the tracer structure becomes more striated
than the observed sea-surface temperature. The highest tracer
gradients are in the regions of greatest stretching, and the
filaments of the t!40 day Lyapunov exponents !Fig. 2" are
aligned with the contours of the tracer %Fig. 5!c"&.

The spatial patterns in these images may be quantita-
tively compared through their power-spectra, Fig. 6. The
spectra were taken from the 250 km long constant-latitude
sections through the image which only contained valid data.
The spectra shown are the averaged cyclic power-spectra,
with the sections being detrended and multiplied by a Hann
filter before calculating the periodogram. The averaged
power-spectra have been given an arbitrary normalization to
allow them to be readily compared. Between inverse wave-
numbers of 10 and 100 km the power spectra have a power-
law form, with there being a progressive steepening of the
spectra as 0 increases. This has previously been seen in
simulations of a first-order tracer in a model flow intended to
represent mesoscale turbulence,32 and is as expected from
theory %Eq. !13"&. The power-law exponents of the spectra in
Fig. 6 are (!2.44'0.04 !actual SST"; (!2.12'0.03 !con-
served tracer"; (!2.28'0.03 (1/0!40 days"; (!2.46

FIG. 3. The probability distribution of the finite-time Lyapunov exponents.
As expected the distribution narrows with time, but even after 80 days the
distribution has not converged.

FIG. 4. The variation with time of the mean !circles" and standard deviation
!squares" of the distribution of finite-time Lyapunov exponents. The open
symbols are from the distribution of the maximum Lyapunov exponents, # .
The solid symbols are from the approximation to the Lyapunov exponents,
#̃ , calculated from the stretching of randomly aligned initial vectors using
Eq. !4". The solid lines show the least-squares fit to the data between 15 and
80 days, using Eqs. !7" and !8". The horizontal dashed line marks the
asymptotic value of the Lyapunov exponent, #$!3.84"10#7 s#1.
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'0.04 (1/0!20 days"; (!2.77'0.09 (1/0!10 days"; and
(!3.47'0.14 (1/0!5 days". The spectral exponent of the
actual SST data is not significantly different from the expo-
nent of the modeled data with 1/0!20 days, suggesting that
the SST is responding to changes in forcing with a timescale
of around 20 days.

The spectrum of the conserved tracer is flatter than the

tracer with 1/0!40 days but, because of the short integration
time, the spectrum is still steeper than the k#1 form expected
for a forced conserved tracer. The 40 day period over which
the trajectories are defined is too short to allow a full transfer
of variance from low to high wavenumbers. The timescale
expected for the transfer between two lengthscales Lmax and
Lmin is TL!log(Lmax /Lmin)/#$ . For the OI flow 1/#$!29
days, so with Lmax /Lmin!10 the timescale for variance trans-
fer through the mesoscale is TL!70 days. An integration of
at least this length would be needed to allow a spectrum with
a slope close to k#1 to be established. The 40 day trajectory
length is too short to allow the relation between spectral-
exponent and the relaxation-rate, given in Eq. !13", to be
tested.

The multifractal scaling of a tracer may be calculated
using the equation for the structure function %Eq. !14"&. The
structure functions of the SST image shown in Fig. 5!a" and
of simulated SST were calculated for )r$50 km, and with q
between 0.2 and 3 !Fig. 7". The modeled data were calcu-
lated as for Figs. 5!b" and 5!c", but with an 80 day integra-
tion time and with a range of relaxation rates 0. The longer
trajectory lengths meant that 25% of the trajectories went
outside the area where the velocities were defined. Despite
the presence of the invalid data, it was still possible to cal-
culate the structure functions as the averaging is only taken
over pairs of valid points. The data were detrended before
the calculation was made. The resulting scaling exponents,
obtained from a least squares regression of log(Sq()r))
against log()r), are shown in Fig. 8. The structure functions
of the SST image lie close to the curve derived from the
simulated SST with 1/0!20 days, in agreement with the
estimate of 0 obtained by comparing power-spectra. A least-

FIG. 5. A satellite sea-surface temperature image from 22 November 1997
!a" is compared with SST modeled using the OI velocity field and a first-
order equation for a reactive tracer, Eq. !11". The two modeled SST images
were generated with the relaxation rates !b" 0!0.05 day#1 and !c" 0!0. In
!a" black marks either cloud or invalid data, and in !b" and !c" black marks
trajectories which went outside the area in which the OI velocities are de-
fined. The SST image has 1 km pixels, and the modeled data have a 2.2 km
resolution.

FIG. 6. Power spectra of the actual and modeled SST data shown in Fig. 5.
The spectra are the mean of the 1-D power spectra taken along 250 km long
sections of constant latitude which contain no invalid data. The normaliza-
tion is arbitrary, having been chosen to aid comparison of the spectra. The
spectrum of the actual SST data is shown by the line with circles. The other
lines correspond to the modeled SST, with the following values of 0 !day#1"
from the steepest to the flattest: 0.2, 0.1, 0.05, 0.025 and 0.
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squares fit of the relation given by Eq. !18" closely follows
the SST data, with the best fit dimensionless parameters be-
ing 0/#$!0.90 and //#$!1.12. With the value estimated
for the OI flow of #$!4"10#7 s#1 this results in 0
!0.031 day#1, or 1/0!32 days, and /!4.5"10#7 s#1.
There is a long chain of assumptions required to allow this
estimate to be made, but it does not require an explicit mod-
eling of the flow or, indeed, any knowledge of the flow be-
yond #$ . Although it is perhaps coincidental, it is pleasing
that the value of / is close to that found from an analysis of
the finite-time Lyapunov exponents. This suggests that the

spatial structure seen in the satellite image is consistent with
the representation of SST as an advected first-order tracer.
The other dotted lines in Fig. 8 result from fitting the expres-
sion for 1(q) to estimates made from the simulated SST. The
values of 1/0 !days" predicted from the best-fit curves are 21
!5"; 24 !10"; 29 !20" and 50 !40", where the actual value is
shown in brackets. The curve fitting over-estimates the relax-
ation timescale, particularly when the relaxation is rapid.
This is likely to be because the derivation of the expression
for the fitted curve %Eq. !18"& assumes that P(# ,t) is Gauss-
ian. This is a poor approximation at small times.

Is a 20 day response time for sea-surface temperature
reasonable? A one-dimensional turbulence closure model
was recently used to simulate seasonal variability of SST in
the eastern Tasman Sea, at a similar latitude to the data ana-
lyzed here, but close to New Zealand.33 The model used heat
and wind forcing derived from meteorological observations.
It was found that a perturbation of the atmospheric forcing,
applied so that the perturbation was removed at the end of
November, had an effect which decayed with a timescale of
one to two months. The response was more complex than a
simple first-order relation, but nevertheless the response-time
inferred from the water column model was of a similar order
to that found here. It would be interesting to combine the
Lagrangian advection with a water-column model that in-
cluded realistic heat and wind forcing.

A similar set of assumptions about the dynamics of sea-
surface temperature has been used in mesoscale simulations
of SST variability by Klein and Hua.34 The focus of these
simulations was on the response of SST to episodic bursts of
wind. When the mixed-layer is deepened by a wind event the
surface temperature is imprinted with a signal from the sub-
surface ocean. The mesoscale dynamics below the ther-
mocline may be represented by quasi-geostrophic turbulence.
In the ocean interior, temperature is not passive and is dy-
namically constrained, with a predicted spectral exponent of
(!3 in the sub-mesoscale range. So, when the mixed-layer
deepens the sea-surface temperature spectra steepen towards
this value. During subsequent stirring of the mixed-layer it
was found that temperature variance was transferred towards
higher wave-number, resulting in the spectral exponent be-
coming smaller with time. From this point of view, the pro-
cesses determining sea-surface temperature spectra are a
steepening through episodic wind-mixing and a flattening
through horizontal stirring. Following this argument, sea-
surface temperature spectra with exponents less than one
should be possible during periods of time when the mixed-
layer is not deepening for many months, such as over sum-
mer. Such flat spectra are not usually observed. An analysis
of the spatial pattern in a time-series of SST imagery would
allow the relative importance of continuous relaxation and
episodic wind-mixing to be resolved.

VII. DISCUSSION

Estimates or descriptions of stirring in the surface ocean
are rare. In this paper, a spatially and temporally complete
velocity dataset was used to calculate the Lyapunov expo-
nents of the flow in a region of the East Australian current.

FIG. 7. Structure functions, Sq()r), calculated using Eq. !14" from the 22
November 1997 SST image %Fig. 5!a"&. The scaling exponents, 1(q), are
calculated from a least-squares fit to the structure functions within the range
5 to 30 km, shown by vertical dotted lines. The structure functions are
approximately power-law over this range, but roll off toward larger separa-
tions, )r .

FIG. 8. Multifractal scaling exponents of sea-surface temperature. The solid
stars (!) are the exponents calculated from the SST data shown in Fig. 5!a".
The solid line is a least-squares fit of Eq. !18" to the exponents. The other
symbols and the dotted lines mark the scaling exponents calculated from the
modeled data and the associated best-fit curve, with the following values of
0 !day#1": 0.2 !!", 0.1 !"", 0.05 !"", 0.025 !#", 0 !&".
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The mean stirring rate was found to be #$!4"10#7 s#1,
corresponding to a timescale of 1/#$!29 days. The velocity
field used is derived using relatively indirect techniques, and
only resolves the largest mesoscale features. The question
then arises, how reliable is the estimate of the stirring? The
observation that tracers advected in ocean flows are filamen-
tal suggests that there is a separation between the diffusive
length scale and the scale which is controlling the stirring. If,
indeed, the larger mesoscale features are dominating the
shear then the analysis will be appropriate. This will not be
the case in shallow waters, where the eddy length scale is too
small to be resolved using the remote methods that are relied
on here. There have been beautiful observations made of
sub-mesoscale stirring, seen in photographs taken from space
of sun-glitter on the sea-surface.35,36 These show small ed-
dies, with diameters of only tens of kilometers, organizing
surface flotsam into filamental slicks. It appears from these
photographs that sub-mesoscale eddies may at times domi-
nate the stirring of tracers. In this case, the methods used
here would underestimate stirring rates.

From the distribution of the Lyapunov exponents it is
clear there is a very wide range in the stretching rates which
could be experienced by a patch of tracer in the ocean. More-
over, it would be difficult to predict the stretching of a patch
from an Eulerian snapshot of the flow. While the analysis
used here is based on a velocity field which could, in prin-
ciple, be obtained in near real time, predicting the dispersal
of either a pollutant or a deliberately released tracer is un-
likely to be possible. Small errors in the velocity will lead to
a rapid divergence of trajectories. Despite the spread of the
probability distribution of Lyapunov exponents it is intrigu-
ing to note that the only previous estimate of stirring in the
surface ocean, obtained from a satellite image of a deliber-
ately induced phytoplankton bloom,16 found a value for the
stretching of # !42 days)!6"10#7 s#1. Other estimates of
mesoscale stirring from a numerical model %5.8"10#7 s#1
!Ref. 37"& and from a deep tracer release %3'0.5"10#7 s#1
!Refs. 14 and 15"& are all of a similar order. The agreement
of the values obtained, using very different methods, sug-
gests that the estimate for #$ found by analyzing the OI
velocity field is a reasonable one, with the advantage over
the tracer-releases that the required data are readily available.

There has been much work recently on the stirring of
reactive tracers, particularly phytoplankton, in the surface
ocean.32,38–45 This research has generally relied on simple
models of the ocean flow. The study of Lagrangian chaotic
flows, in particular, has allowed the problem to be broken
into its simplest components and understanding of the pat-
terns seen in advected tracers has been advanced consider-
ably. The application of this theoretical work has been some-
what hampered by the lack of appropriate oceanic data. The
analysis presented here is intended to help alleviate that
problem, but is presented as a simple case study only. There
are many further directions in which it may be taken. It
would be interesting to test the application of the theoretical
relationships in a model of ocean turbulence which was not
disadvantaged by the short integration times that we were
restricted to here. As far as sea-surface temperature is con-
cerned, it would be interesting to carry out a systematic

analysis of the whole East Australian optimally interpolated
dataset. There may be seasonal variations in the estimated
value of the response time, 0 , and if these reflect real ocean
processes then they will contain information on mixed-layer
depth. Since mixed-layer depth is a crucial factor controlling
primary production in the ocean, a method for deriving it
from remotely sensed data would have great value. As more
satellite data become available, and as techniques for extract-
ing sea-surface velocities from the temperature data are im-
proved, it is hoped that well resolved surface velocity fields
will become widely available. Analysis of these will trans-
form our understanding of dispersal processes in the surface
ocean.
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13Z. Neufeld, C. López, E. Hernández-Garcia, and T. Tél, ‘‘The multifractal
structure of chaotically advected chemical fields,’’ Phys. Rev. E 61, 3857–
3866 !2000".

14 J. R. Ledwell, A. J. Watson, and C. S. Law, ‘‘Evidence for slow mixing
across the pycnocline from an open-ocean tracer-release experiment,’’ Na-
ture !London" 364, 701–703 !1993".

15 J. R. Ledwell, A. J. Watson, and C. S. Law, ‘‘Mixing of a tracer in the
pycnocline,’’ J. Geophys. Res. 103, 21499–21529 !1998".

16E. R. Abraham, C. S. Law, P. W. Boyd, S. J. Lavender, M. T. Maldonado,
and A. R. Bowie, ‘‘Importance of stirring in the development of an iron-
fertilized phytoplankton bloom,’’ Nature !London" 407, 727–730 !2000".

17W. J. Emery, A. C. Thomas, M. J. Collins, W. R. Crawford, and D. L.
Mackas, ‘‘An objective method for computing advective surface velocities

380 Chaos, Vol. 12, No. 2, 2002 E. R. Abraham and M. M. Bowen

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
139.80.2.185 On: Fri, 24 Jul 2015 20:05:59



from sequential infrared satellite images,’’ J. Geophys. Res. 91, 12865–
12878 !1986".

18 J. Schmetz and M. Nuret, ‘‘Automatic tracking of high-level clouds in
Metosat infrared images with a radiance windowing technique,’’ Eur.
Space Agency J. 11, 275–286 !1987".

19K. Kelly and P. T. Strub, ‘‘Comparison of velocity estimates from ad-
vanced very high resolution radiometer in the coastal transition zone,’’ J.
Geophys. Res. 97, 9653–9668 !1992".

20M. M. Bowen, W. J. Emery, J. W. Wilkin, P. C. Tildesley, I. J. Barton, and
R. Knewston, ‘‘Extracting multi-year surface currents from sequential
thermal imagery using the Maximum Cross Correlation technique,’’ J.
Atmos. Ocean Tech. !to be published".

21 J. L. Wilkin, M. M. Bowen, and W. J. Emery, ‘‘Mapping mesoscale cur-
rents by optimal interpolation of satellite radiometer and altimeter data,’’
Ocean Dyn. 52, 95–103 !2002".

22 J. Ottino, The Kinematics of Mixing: Stretching, Chaos, and Transport
!Cambridge University Press, Cambridge, 1989".

23E. Ott, Chaos in Dynamical Systems !Cambridge University Press, Cam-
bridge, 1993".

24X. Z. Tang and A. H. Boozer, ‘‘Finite time Lyapunov exponent and
advection-diffusion equation,’’ Physica D 95, 283–305 !1996".

25 J.-L. Thiffeault and P. J. Morrison, ‘‘The twisted top,’’ Phys. Lett. A 283,
335–341 !2001".

26T. Bohr, M. Jensen, G. Paladin, and A. Vulpiani, Dynamical Systems Ap-
proach to Turbulence !Cambridge University Press, Cambridge, 1998".

27L. Chen and W. R. Young, ‘‘Density compensated thermohaline gradients
and diapycnal fluxes in the mixed-layer,’’ J. Phys. Oceanogr. 25, 3064–
3075 !1995".

28D. Rudnick and R. Ferrari, ‘‘Compensation of horizontal temperature and
salinity gradients in the ocean mixed-layer,’’ Science 283, 526–529
!1999".

29R. Ferrari, F. Paparella, D. L. Rudnick, and W. R. Young, ‘‘The
temperature-salinity relationship of the mixed layer,’’ in From Stirring to
Mixing in a Stratified Ocean, edited by P. Müller and D. Henderson,
Proceedings of the 12th ‘Aha Huliko’a Hawaiian Winter Workshop, pp.
95–104 !Department of Oceanography, University of Hawaii, 2001".

30L. Seuront, F. Schmitt, Y. Lagadeuc, D. Schertzer, S. Lovejoy, and S.
Frontier, ‘‘Multifractal structure of phytoplankton biomass and tempera-
ture in the ocean,’’ Geophys. Res. Lett. 23, 3591–3594 !1996".

31S. Lovejoy, W. J. S. Currie, Y. Tessier, M. R. Claereboudt, E. Bourget, J.
C. Roff, and D. Schertzer, ‘‘Universal multifractals and ocean patchiness:
Phytoplankton, physical fields and coastal heterogeneity,’’ J. Plankton Res.
23, 117–141 !2001".

32E. R. Abraham, ‘‘The generation of plankton patchiness by turbulent stir-
ring,’’ Nature !London" 391, 577–580 !1998".

33M. G. Hadfield, ‘‘Atmospheric effects on upper ocean temperature in the
south-east Tasman Sea,’’ J. Phys. Oceanogr. 30, 3239–3248 !2000".

34P. Klein and B. L. Hua, ‘‘The mesoscale variability of the sea-surface
temperature: An analytical and numerical model,’’ J. Mar. Res. 48, 729–
763 !1990".

35W. Munk, L. Armi, K. Fischer, and F. Zachariasen, ‘‘Spirals on the sea,’’
Proc. R. Soc. London, Ser. A 456, 1217–1280 !2000".

36W. Munk and L. Armi, ‘‘Spirals on the sea: A manifestation of upper-
ocean stirring,’’ Ref. 29, pp. 81–86.

37D. B. Haidvogel and T. Keffer, ‘‘Tracer dispersal by mid-ocean mesoscale
eddies. Part I. Ensemble statistics,’’ Dyn. Atmos. Oceans 8, 1–40 !1984".

38P. J. S. Franks, ‘‘Spatial patterns in dense algal blooms,’’ Limnol. Ocean-
ogr. 42, 1297–1305 !1997".

39A. Bracco, A. Provenzale, and I. Scheuring, ‘‘Mesoscale vortices and the
paradox of the plankton,’’ Proc. R. Soc. London, Ser. B 267, 1795–1800
!2000".

40A. P. Martin, ‘‘On filament width in oceanic plankton populations,’’ J.
Plankton Res. 22, 597–602 !2000".
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