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Summary

1. Landscape connectivity, the ability of species to move between different elements of a landscape,

has been evaluated mainly by expert opinion, proxy data or homing experiments, all of which have

major limitations. Cost distance modelling can overcome these limitations, but the resistance values

of different landscape elements are difficult to estimate.

2. Here, we present a novel method combining step selection functions with cost distancemodelling

to assess functional landscape connectivity. Instead of relying on movement metrics, the method

uses a case-control design to assess whether the chosen steps differ from a random sample of alterna-

tives of similar lengths. Alternative models of landscape connectivity and dispersal behaviour are

represented asmaps of resistance values, and compared using an information-theoretic approach to

select those hypotheses that maximize the discrepancy between chosen steps and random alterna-

tives.

3. Weapplied thismethod to daily locations recorded along the dispersal paths of 38 juvenileNorth

Island robins Petroica longipes in a fragmented pastoral landscape in New Zealand. We compared

models with different resistance values for four recognized vegetation types in the landscape and

assessed gap-crossing behaviour by changing the resistance value of pasture as a function of dis-

tance to the closest woody vegetation.

4. Model comparison showed that juvenile robins move in decreasing order of preference through

native forest, plantations and shrubland, and showed a marked reluctance for flying over pasture.

Under the best model, the largest gap crossedwas 110 m.

5. Synthesis and applications. In combination with data on the total cost distances travelled by

dispersers, cost distance models of landscape connectivity can be used to predict distributions of

dispersal distances in any landscape with similar vegetation types. They can therefore predict

responses of species to landscape management or predict spatial dynamics of populations following

reintroduction. Our method is potentially applicable to any dispersal data, even with a relatively

small number of locations recorded in complex landscapes, meaning models can be fitted to data

that cannot be analysed using previous method. Tools are freely available for download to allow

researchers and wildlifemanagers to apply ourmethods to their own data.

Key-words: choice analysis, conditional logit model, connectivity, cost distance, dispersal,

gap crossing, GIS, least-cost path, Petroica longipes, resistance

Introduction

Many studies have shown that dispersal can be critical to the

distribution and persistence of species in fragmented land-

scapes (Hanski & Simberloff 1997; Ims & Yoccoz 1997; Wiens

2001). It is now well established that individual movements

between habitat patches are often dependent on the features of

the matrix (Ricketts 2001), and the term landscape connectiv-

ity is used to indicate ‘the degree to which the landscape facili-

tates or impedes movement among resource patches’ (Taylor

et al. 1993). Connectivity has often been defined based on the

spatial structure of a landscape, that is, ‘structural connectiv-

ity’. However, our perception of landscape structure might be

quite different from that of the species of interest; hence, struc-

tural connectivity might be of little use in explaining how the*Correspondence author. E-mail: y.richard@massey.ac.nz
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landscape influences species movements, that is, ‘functional

connectivity’ (Brooks 2003). For instance, the conservation or

establishment of corridors is often recommended for mitigat-

ing the negative effects of habitat fragmentation (Beier &Noss

1998). However, the effect of corridors on connectivity is usu-

ally assessed subjectively rather than based on data on species

movements (Beier,Majka& Spencer 2008).

Recent developments such as state-space modelling allow

the identification of the factors driving animal movements,

even when the data are measured inaccurately or when organ-

isms switch between multiple behavioural states (Patterson

et al. 2008; review in Schick et al. 2008). However, these meth-

ods rely onmovementmetrics, usually step length and ⁄or turn-
ing angle, to assess the effect of landscape features on

movements. Such methods require many steps (each pair of

consecutive recorded dispersal locations) for each individual;

so, they cannot be used if locations cannot be recorded fre-

quently. Moreover, movement metrics do not necessarily indi-

cate the ease of movement in a specific environment, as short

steps with large turning angles might result from an explor-

atory behaviour in a suitable habitat, or alternatively from the

inability to find a route out of an inhospitable environment.

Alternatively, many studies have tried to characterize land-

scape connectivity using cost distance modelling (Beier et al.

2008), by representing more biologically relevant movements

that take into account the interaction between landscape and

movements. Cost distance modelling estimates the difficulty

of moving between two locations by assigning each pixel of a

rasterized map with a resistance value, also called cost or fric-

tion (Adriaensen et al. 2003). This value denotes the difficulty

for an organism or its reluctance to cross the map cell, and it is

generally determined based on the substrate type it represents.

The cost distance of a destination from a source is the accumu-

lated cost of travelling the easiest path between the two loca-

tions, and can be calculated in most geographical information

system (GIS) packages. Cost distance is often a more realistic

measure than Euclidean distance as it takes into account the

landscape configuration and structure from a species’ point of

view, and can readily replace Euclidean distances in patch iso-

lation metrics already used (e.g. Moilanen & Nieminen 2002;

Castellón & Sieving 2006b; Yamanaka et al. 2009). However,

to be acceptable, any model of landscape connectivity should

be corroborated by actual dispersal data. Individuals’ move-

ments should correspond to the hypothetical resistance values

assigned to the various landscape elements, that is, bemore fre-

quent through cells of low resistance and rare through those of

high resistance. In other words, cost distance can only repre-

sent connectivity if it is correlated with the probability of indi-

vidualmovements.

Unfortunately, resistance values are often decided based on

expert judgement (Beier et al. 2008), based on proxy data such

as the time spent in different habitat types by dispersing

animals (e.g. Graham 2001) or by assuming that dispersal

habitat is similar to breeding or foraging habitat (Chetkiewicz,

Cassady St. Clair & Boyce 2006; e.g. LaRue & Nielsen 2008).

Proper estimation of the resistance to movements of landscape

elements is difficult and generally requires extensive data (Ims

& Yoccoz 1997) based on capture–recapture (Lebreton et al.

2003; Mennechez, Schtickzelle & Baguette 2003; Schtickzelle

et al. 2005), or on the direct observation of movements across

specific barriers (Sieving, Willson & Santo 1996; Grubb &

Doherty 1999).

Another problem with cost distance modelling is that it has

ignored the spatial organization of costs along a particular

path. For example, some forest birds and mammals seem to

use stepping stones such as isolated trees when crossing clear-

ings but do not cross large gaps (Brooker, Brooker & Cale

1999; Bakker & Van Vuren 2004). Without considering gap-

crossing ability, the accumulated cost of a path with many

small gaps is assumed to be equal to the cost of crossing a single

large gap of the same total distance. However, quantifying

gap-crossing ability is difficult. Several authors have attempted

to quantify the gap-crossing ability of species using transloca-

tions and homing experiments (Pither & Taylor 1998; Bélisle &

Cassady St. Clair 2001; Boscolo et al. 2008), or playback

experiments (Desrochers & Hannon 1997; Bélisle & Desro-

chers 2002; Desrochers, Bélisle & Bourque 2002; Tremblay &

Cassady St. Clair 2009). However, these animals may not

behave in the same way in these situations as they do when dis-

persing, and the experiments typically use adults although

most natural dispersal may be undertaken by juveniles (Sinsch

1992; Paradis et al. 1998; Vos&Chardon 1998).

In this article, we present a novel approach combining cost

distance modelling and step selection functions that makes it

possible to test objectively for the influence of landscape fea-

tures on animal movements and estimate the associated resis-

tance values using dispersal data. We show that cost distance

modelling can also be extended to consider species dispersal

behaviour such as gap-crossing ability, which can be quantified

using our approach. Our method aims to answer the following

question. Given the fact that an individual moved a certain dis-

tance, what factors, if any, led this individual to choose the

observed destination compared with other available alterna-

tives of similar distance? By not modelling distance directly,

our approach does not necessitate a rigorous design for record-

ing dispersal locations and can be applied to any dispersal

data. If the starting and final locations are known, the distribu-

tion of total cost distances achieved by dispersers can be readily

combined with cost distance modelling to make predictions.

The results may be extrapolated to other landscapes and be

used directly formanagement recommendations.We apply the

method to radio-tracking data of dispersing juveniles of North

Island robins Petroica longipes (Fleming 1950), a small passer-

ine endemic to New Zealand, inhabiting forest patches created

by land conversion to pasture in the central North Island.

Materials and methods

MODEL SPECIES AND STUDY AREA

TheNorth Island robinP. longipes is a small (30 g) passerine endemic

to New Zealand. It is found predominantly in mature native broad-

leaf-podocarp forests and feeds mainly on invertebrates from the leaf

litter. It is very territorial and non-migratory, and its detectability is
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particularly high owing to its inquisitiveness and strong response to

territorial lure calls. After fledging, juveniles are fed by their parents

for up to five subsequent weeks (Armstrong et al. 2000) and then

undergo a dispersal phase until they successfully establish a territory

or die. Juvenile dispersal is therefore responsible for most of inter-

patch movements and colonization events (Richard 2007). North

Island robins have declined greatly in range since human colonization

(Bell 1986), although they can still be locally abundant (Robertson

et al. 2007).

The study took place in an area of about 15 000 ha in the central

North Island of New Zealand between the township of Benneydale

(175�22¢E, 38�32¢S) and Pureora Forest Park. The landscape (Fig. 1)

is mainly composed of privately owned pastoral land used for cattle

and sheep farming, with remnants of native broadleaf-podocarp for-

est and some areas of scrubland and exotic pine Pinus radiata planta-

tions.

RADIO-TRACKING OF DISPERSING JUVENILES

In 13 of the native forest patches of the landscape (Fig. 1), 71 different

breeding pairs of adult robins were monitored intensively over three

breeding seasons (29 in 2002–2003, 36 in 2003–2004 and 34 in 2004–

2005). Juveniles from the successful nests were caught 4–5 weeks after

fledging. A total of 53 juveniles (18 in 2002–2003, 18 in 2003–2004

and 17 in 2004–2005), were fitted with a 1Æ05-g BD-2 transmitter

(Holohil Systems Ltd., Ontario, Canada), attached using a Rappole

harness around the legs (Rappole & Tipton 1991). We selected juve-

niles to maximize the number of forest patches they originated from

and also to minimize the use of siblings (there were only two pairs of

siblings in the data set).

As a result of the short lifetime of the transmitters (maximum

6 weeks), the tracking period was too short to follow all the radio-

tracked juveniles until they settled.We therefore doubled the tracking

period in 2003–2004 and 2004–2005 by recapturing and retagging

each juvenile before the first transmitter was due to fail. Juveniles

were visually checked every 2 days while still in the natal territory,

then every day after they left. At each check, the position of the bird

was recorded with a Garmin� handheld global positioning system

(GPS; Olathe, KS, USA), with an accuracy of less than 10 m.

We used data for all juveniles that moved >150 m, even if they

were found dead or if their signal was lost, as the sampling units were

the daily dispersal steps and not the final settlement locations.

COST DISTANCE MODELL ING AND ANALYSIS

Base GIS

The GPS locations of the radio-tagged juveniles were transferred into

aGIS that included the vegetation cover of the study area. Vegetation

was classified asmature native broadleaf ⁄ podocarp forest, exotic pine
plantation, pasture and shrubland, which was mainly composed of

manuka Leptospermum scoparium, kanuka Kunzea ericoides and

young totara Podocarpus totara. The vegetation cover map had a cell

resolution of 15 m andwasmanually digitized from recent aerial pho-

tographs (5-m resolution) and satellite images using Imagine 8Æ3Æ1
(ERDAS, Atlanta, GA, USA) to ensure adequate representation of

all the vegetation features of the landscape, including individual trees

in pasture. The accuracy of the map and the vegetation classification

was assessed in the field during the 3 years of study andmodifications

were madewhere necessary.

Cost maps

Alternative models for landscape connectivity had different costmaps

consisting of the resistance values assigned to the four recognized veg-

etation types. The first four models had resistance values of 1 for

native forest and 10 for pasture, but different resistance values for

exotic plantation and shrubland, respectively, assigning them with

values 1 and 1 (no difference in resistance to movements between the

three woody vegetation types), 2 and 2, 2 and 3 and 3 and 2 (Table 1;

Models 1–4). The resistance values of the three types of woody vege-

tation in the best of these models were then used for all subsequent

models. We created two other cost maps with values of 5 and 20 for

pasture (Models 5 and 6) to assess the validity of the value we

assigned to pasture forModels 1–4.

We created several cost maps (Fig. 2), where the resistance of pas-

ture cells changed as a function of the distance to the nearest woody

vegetation to assess the gap-crossing limitation of robins. Five cost

maps (Models 7–11) were created where this function increased line-

arly with distance (with intercept a and slope b; Fig. 2), and five cost

maps (Models 12–16) where resistance followed a Gompertz function

(eqn 1). The Gompertz function was chosen as it seemed a plausible

function to model robins’ perception of pasture, with a slope first

increasing with distance then decreasing before reaching zero for cells

very far from any edge of woody vegetation (Fig. 2). The cost of

crossing 1 m of pasture was given by:

cost ¼ K

15
� expð lnðx0

K
Þ � expð�a:dÞ Þ; eqn 1

where d is the distance in metres to the closest edge of woody

vegetation, a is the overall slope of the function and K and x0
are two scaling parameters that were fixed to 1455 and 15, respec-

tively. These values were chosen so that the first cell of pasture

encountered from an edge of woody vegetation was assigned a

value of 4, and the maximum resistance value was 100 (Fig. 2).

Cost distances

We used a case-control design similar to Fortin et al. (2005) and

Coulon et al. (2008) to characterize the chosen step in comparison

with 10 possible alternatives of similar Euclidean distance (or fewer

Fig. 1. Digitized map of vegetation cover of the 15 000 ha area used

for obtaining data on dispersal movements of juvenile North Island

robins.
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when the number of available alternatives was insufficient; Fig. 3). If

the movement behaviour of the studied organism is driven by land-

scape characteristics, one can find the factors and their associated

coefficients that maximize the connectivity of the chosen destination

in comparison with the alternatives. The random alternatives were

created using the free extension ofHawth’s Analysis tools for ArcGIS

(http://www.spatialecology.com/htools) and constrained to occur in

distinct woody vegetation features, to satisfy the model assumption

of independence of irrelevant alternatives (see next), and because we

never recorded robins in pasture. They were also constrained to be at

the same distance from the start point as the observed destination,

but with a 200-m tolerance to be able to select a sufficient number of

random alternatives while keeping them similar in distance to the

observed destination.

Because the observed dispersal steps were of different lengths, each

cost distance was standardized by dividing its value by the Euclidean

distance in metres between the start and end point for the steps to be

equally weighted. Consequently, the quantity of interest here was not

the distance achieved by an individual between two locations, but the

mean resistance value per metre, or in other words the mean connec-

tivity of each map pixel along the least-cost path between two loca-

tions given the assigned resistance values.

Table 1. Comparison of 15 conditional logit models fitted to radio-tracking data for dispersal of juvenile North Island robins, sorted by Akaike

information criterion (AIC) value. The coefficient b of cost distance, AIC, DAIC (difference in AIC from the best model) and weight (AICw)

values of the models are indicated. Linearx and Gompertzx denote the models in which resistance of pasture increased, respectively, linearly or

following a Gompertz function with distance to the closest edge of woody vegetation, with values of x increasing with the slope of the function

(see Fig. 2)

Model #

Resistance values

b AIC DAIC AICwNative forest Pines Shrubland Pasture

10 1 2 3 Linear4 )2Æ76 690Æ88 0Æ00 0Æ20
9 1 2 3 Linear3 )2Æ84 691Æ24 0Æ36 0Æ17
11 1 2 3 Linear5 )2Æ61 691Æ36 0Æ48 0Æ16
8 1 2 3 Linear2 )3Æ02 691Æ87 0Æ99 0Æ12
14 1 2 3 Gompertz3 )3Æ15 692Æ25 1Æ37 0Æ10
15 1 2 3 Gompertz4 )2Æ98 692Æ73 1Æ85 0Æ08
13 1 2 3 Gompertz2 )3Æ34 692Æ91 2Æ02 0Æ07
7 1 2 3 Linear1 )3Æ33 693Æ86 2Æ98 0Æ05
3 1 2 3 10 )2Æ79 695Æ21 4Æ33 0Æ02
12 1 2 3 Gompertz1 )3Æ62 695Æ32 4Æ44 0Æ02
6 1 2 3 20 )2Æ15 698Æ18 7Æ30 0Æ01
5 1 2 3 5 )3Æ66 699Æ54 8Æ66 0Æ00
2 1 2 2 10 )2Æ86 702Æ65 11Æ77 0Æ00
4 1 3 2 10 )2Æ82 705Æ56 14Æ68 0Æ00
1 1 1 1 10 )2Æ64 721Æ20 30Æ32 0Æ00
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Linear 1   α = 1         β = 0.2
Linear 2   α = −3.5    β = 0.5
Linear 3   α = −8       β = 0.8
Linear 4   α = −11     β = 1
Linear 5   α = −17     β = 1.4
Gompertz 1    α = 0.01
Gompertz 2    α = 0.02
Gompertz 3    α = 0.03
Gompertz 4    α = 0.04

Fig. 2. Costs of crossing 1 m of pasture in relation to the distance

from the closest edge of woody vegetation under different dispersal

models (seeModels 7–15 in Table 1).

Fig. 3. Example of an observed dispersal step (in white) taken by a

juvenile North Island robinmatched to 10 randomly sampled alterna-

tives (in dark grey). The black dots represent the set of potential alter-

natives from which the selected ones were sampled, constrained to

have a Euclidean distance within 200 m of that of the observed step.

The lines represent the least-cost paths calculated from the cost map

ofModel 3 (see Table 1).
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The software ArcGIS 9Æ2 (ESRI, Redlands, CA, USA) was used to

calculate the cost distances for each cost map previously described,

using the function CostDistance, and for the selection of random

alternatives, automated by a script we wrote in Python for ArcGIS

freely available at: http://www.massey.ac.nz/~yrichard/Dispersal_

choice_analysis.

Choice analysis

We used conditional logit models (McFadden 1974), sometimes

called multinomial logit models (e.g. Cooper &Millspaugh 1999; but

see Hoffman & Duncan 1988), to test whether the preference of dis-

persers for the observed destinations relative to their matched ran-

dom alternatives followed a given cost map. To find the cost map that

maximized the connectivity of the chosen steps relative to the avail-

able alternatives, we compared the models based on their associated

AIC (Akaike information criterion) values (Burnham & Anderson

2002). This comparison was made possible because the random alter-

natives were constrained to be identical amongmodels.

Conditional logit models reflect the fact that an individual chooses

the alternative that provides the highest utility (U), and the probabil-

ity of choosing the alternative i relative to the other alternatives (j) is

therefore:

pi ¼ PrðUi>Uj; 8j 6¼ iÞ:

By expressing utility as a linear model composed of an observed

component and an error, this probability can be expressed as:

pi ¼ Prðb:SCDi þ ei>b:SCDj þ ej; 8j 6¼ iÞ;

with SCD being the standardized cost distance, b its associated

coefficient and e the error. By assuming the independence of irrel-

evant alternatives (i.e. that the ratio in utility between two alter-

natives does not change with the addition of another) and that

the errors follow a Type-I (Gumbel) extreme value distribution,

the choice probability takes the form:

pi ¼
expðb � SCDiÞPn
i¼1 expðb � SCDiÞ

:

The part exp(b.SCDi) of the equation is often called the step selec-

tion function (Boyce et al. 2002;Manly et al. 2002; Fortin et al. 2005)

and indicates the acceptability of choice i of cost SCDi irrespective of

the alternatives. We fitted each model using the function clogit from

the survival package in R (RDevelopment Core Team 2008), with the

binary-dependent variable being whether the alternative was chosen

or not.

Each set of choices was considered to be independent as our data

did not show any indication of heterogeneity among individuals or

changes in behaviour over individuals’ dispersal periods. We checked

for the former by adding the individual as a clustering variable in the

models (this did not change the results), and checked for the latter by

examining cost distances as a function of number of days the individ-

ual started dispersing.

A significantly negative b indicates a preference for locations with

lower cost distance in comparisonwith the randomalternatives.

Gap-crossing ability

We estimated the maximum gap a juvenile robin can cross by calcu-

lating the least-cost paths between each pair of consecutive recorded

dispersal points, using the cost maps of the bestmodels. These models

were defined by having DAIC < 2, a common criterion above which

models are considered to be significantly inferior (Burnham&Ander-

son 2002). The maximum distance crossed over pasture by each least-

cost path was calculated, giving the maximum gap a juvenile robin is

likely to have crossed. Least-cost paths were calculated using the

function CostPath in ArcGIS.

Results

Of the 53 radio-tagged juveniles, 38 were relocated out of their

natal territories at least once. Of the other 15, two were killed

by predators before dispersing, two were never found after

capture and ten did not disperse during the lifetime of the

transmitters but were not found 3 months after capture within

150 m of their natal territory. Only one juvenile settled next to

its natal territory, in the centre of a well-connected 316-ha for-

est patch. A total of 220 daily dispersal steps were recorded

(median length of 389 m; maximum 3762 m), with 1–21 steps

recorded per juvenile (median 4Æ5). Each of the 220 observed

steps was matched between 1 and 10 alternative steps (median

10,mean 7Æ9).
The negative coefficients associated with cost distance were

highly significant for all models considered (P < 10)10). The

worst was Model 1, in which the resistance was identical for

the three types of woody vegetation, whereas all other models

assumed that dispersal was less likely in pine plantation and

shrubland. This indicates that native forest was the least resis-

tant habitat to juvenile robins’ movements. The best ofModels

2–4, in which the relative resistance of native forest and pasture

were held fixed, indicated that juvenile robins disperse more

readily through pine plantation than through shrubland. Of

the models where pasture resistance increased with distance to

the closest edge of woody vegetation (7–15), all but one (12)

clearly performed better than those where pasture resistance

was spatially invariant. This shows that the spatial arrange-

ment of dispersal barriers is important for robins’ dispersal,

that is, crossing a gap of length x is less likely than crossing x

gaps of 1 length unit.

Using the costmap of the best model (10), themedian length

of the largest gaps crossed by each juvenile during their dis-

persal (Fig. 4) was 15 m, indicating that most juveniles moved

across the pasture only for very short distances. The largest

gap crossed under this model was 109 m, and was consistent

among all models with DAIC < 2 (109 m for Models 8–11

and 102 m forModels 14 and 15).

As indicated by Fig. 5, the best model provides a good fit to

the data as the distribution of ranks of alternatives randomly

chosen from the model matches the observations well. More-

over, the underlying cost map explains well the dispersal

choices of dispersers, as themajority of the chosen destinations

had amuch lower cost distance than random alternatives.

Discussion

Our results show that it is possible to compare models of

functional landscape connectivity even from relatively small

collections of recorded dispersal locations that cannot be
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analysed using alternative approaches such as state-space

modelling. In many studies, some data on animal movements

are often collected and much knowledge can be potentially

gained from them, essential for sound management recom-

mendations.

By combining step selection functions and cost distance

modelling, the resistance values assigned to various landscape

elements can be estimated objectively instead of relying on

expert opinion (Beier et al. 2008). It may also be more appro-

priate than defining the values based on proxy data such as the

relative time spent in each habitat type (e.g. Graham 2001),

and less costly ormore feasible than using genetic markers (e.g.

Stevens et al. 2006).

Unfortunately, the time required to calculate cost distances

currently prevent the estimation of the resistance values by iter-

ation, meaning that only a limited number of possible values

and functions can be compared. Indeed, a single cost distance

can take several minutes to calculate, and considering multiple

hypotheses based on several hundred dispersal steps, each

matched to several random alternatives might require several

months. Improved communication between statistical and

GIS packages (e.g. R and GRASS) along with the continuous

increase in computing power will probably overcome this

problem in the near future. However, several studies showed

that cost distance modelling is very robust to uncertainty in the

resistance values, as soon as their rank is correct (e.g. among

vegetation types; Beier, Majka & Newell 2009). It might be

therefore more beneficial to test for the effect of more factors

instead of trying to getmore accurate estimates.

Our analysis of the juvenile dispersal of North Island robins

clearly showed that robins’movements are determined by both

the physiognomy (i.e. the spatial arrangement of elements;

Dunning, Danielson & Pulliam 1992) and composition of the

landscape. We quantified the resistance of the four main vege-

tation types present in the study area and found that move-

ments occurred by decreasing order of preference in native

forest, pine plantations and shrubland, but movements were

impeded by large stretches of pasture between blocks of woody

vegetation. Indeed, under the best model none of the studied

individuals crossed gaps in woody vegetation larger than

110 m, suggesting that such gaps act as absolute barriers to

robin dispersal consistent with Flack’s (1979) guess of 100–

200 m for South Island robins.

The cost map that best explains observed dispersal steps can

then be easily used for the management of landscapes and spe-

cies. If the start and end points of the dispersal of a number of

individuals are known, the multiplication of the cost distance

map calculated froma given location by the probability density

function fit to the distribution of total cost distances provides a

powerful simulation of dispersal from this location. The addi-

tion of cost distance maps from multiple locations can reveal

the linkages between them and therefore provides a powerful

tool to aid corridor design and conservation (e.g. see the

corridor function in ArcGIS at: http://webhelp.esri.com/

arcgisdesktop/9Æ2/index.cfm?TopicName=Least_cost_path_

and_least_cost_corridor). Similarly, this approach can easily

estimate the effect of landscape modifications on a species’

movements, which can be used to guide landscape and spe-

cies management. Being GIS-based, the results can be visu-

ally represented, making the information accessible to a

range of stakeholders.

The approach aims to identify the mechanisms linking

dispersal behaviour to landscape characteristics, and it should

be possible to extrapolate the results to other landscapes.

The method is also very flexible as most hypotheses about the

Gap length (m)

F
re

qu
en

cy

0 20 40 60 80 100 120

0

50

100

150

Fig. 4. Distribution of the maximum pasture gap crossed by juvenile

North Island robins during their dispersal, where paths taken

between recorded locations are assumed to be the least-cost paths cal-

culated from the best model (Table 1).
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Fig. 5. Distribution of the ranks of observed chosen destinations in

terms of cost distance in relation to sampled alternatives (black bars),

and median ranks of destinations randomly chosen based on the best

supported model (grey bars). Cases where there were fewer than 10

sampled alternatives (17% of observations) are excluded for ease of

comparison. Medians are from 5000 simulated sets of choices, and

error bars show the 2Æ5 and 97Æ5 percentiles. The dashed line indicates

the expected distribution if movements were independent of the cost

map.
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factors affecting dispersal may actually be represented as cost

maps that can be combined. They can also be applied to differ-

ent species. One could represent the preference of some species

to move through wide corridors instead of narrow ones by

making the resistance value of cells a function of corridor

width. The avoidance of buildings, roads and valley bottoms

by a species, such as roe deer Capreolus capreolus (Coulon

et al. 2008) may be represented by a cost map where the resis-

tance value of each cell would be a function of the distances to

these features.

In addition to the analysis of the effect of landscape charac-

teristics on dispersal behaviour, one could also include in the

conditional logit model some characteristics of the dispersing

individuals such as sex, size, age or sibling status to analyse or

control for variations in dispersal behaviour among individu-

als (Maddala 1983; Hoffman&Duncan 1988;Greene 1991).

Our analysis also illustrates that cost distance modelling can

integrate realistic behavioural rules rather than assigning fixed

resistance values to cells based only on substrate type. Making

the cost of crossing pasture dependent on the distance to the

closest woody vegetation significantly improved the fit of the

models, indicating that movements are not decided just based

on the total distance of each vegetation type that needs to be

crossed. Indeed, a path crossing a single gap over x cells of pas-

turewas found to be less likely than one crossing x times a one-

cell gap. Ignoring species’ gap-crossing abilities may lead to

underestimates of connectivity (Castellón & Sieving 2006a)

and we therefore recommend that landscape and dispersal

ecologists consider it in their studies.

Although the dispersers generally chose destinations with

lower-cost distances than random alternatives based on the

cost map of the best model (Fig. 5), this was not always the

case.However, the situationwhere all chosen destinations have

a lower cost distance than any of their matched random alter-

natives is unrealistic because this would suggest that the cost

map is perfect (i.e. it includes all the elements of the landscape

having an effect on dispersal), but also that individuals’ dis-

persal is exactly dictated by the landscape and that individuals

have perfect knowledge of their environment. Nonetheless, the

explanatory power of our most supported cost map indicates

that ourmethodology was robust to violation of these assump-

tions. In particular, assuming the individuals’ perfect knowl-

edge of the landscape may not be unrealistic in our study, as

our observations of the birds suggest that daily steps often

involved small exploratory movements that would have given

them considerable information about the feasibility of different

paths.

The choice of 10 random alternatives per dispersal step is

slightly ad hoc, and therewill be someMonte Carlo error intro-

duced through the random choice. However, the 10 alterna-

tives apply tomost of 220 different dispersal steps, meaning the

overall sampling effect is likely to be minimal, and re-running

the analysis always gave very similar results. Although we did

not look at the effect of changing the number of random alter-

natives, 10 seemed a logical number because increasing this

number would lead to a more unbalanced sampling, with

many dispersal steps having too few alternative vegetation fea-

tures of similar distance from the starting point. Examination

of our landscape also suggests that increasing the number of

random alternatives would be unlikely to change the rank of

the observed destination among the sets of alternatives. How-

ever, the best sampling strategy will depend on the particular

landscape, and it would be useful to formally analyse the

effects of sampling if themethod is to be widely applied.

The role of linkages in the landscape in species persistence

has been controversial and heavily debated (Lindenmayer &

Fischer 2007), as have the relative effects of habitat loss vs.

fragmentation (Fahrig 2002). The controversy may partially

reflect the difficulty of studying dispersal, with oversimplifica-

tion of the dispersal process potentially confounding results in

some cases. Modern approaches can overcome many difficul-

ties, and we hope our approach will further enhance the ability

of researchers andmanagers to fit realistic models to a range of

data sets, and therefore improve our ability to manage species

and landscapes.
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