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Abstract. The action for an extended object (string, membrane, etc) can be written in a form
that is worldsheet or worldvolume (super)-Weyl invariant. We show that, as a consequence,
such actions are never spacetime conformal invariant. In contrast, we also show that the
action for a massless particle of spin 0, %, or 1, in an arbitrary spacetime background has
symmetries corresponding to conformal isometries of the background, precisely because of
the absence of worldline (super)-Weyl invariance.

Conformal invariance is one of those recurrent notions in elementary particle physics
and general relativity. The equations of Maxwell, and Yang and Mills, are conformally
invariant (for d = 4 spacetime dimensions) and this fact is closely related to their
renormalisability as quantum field theories. Einstein’s general relativity is neither
conformally invariant nor renormalisable, and various authors have suggested that
the latter problem might be solved by replacing Einstein’s theory at high energy by
‘conformal gravity’, for which the action is the square of the Weyl tensor. It must
be admitted that the word conformal is being used here in two different senses; the
conformal invariance of conformal gravity is actually a gauge invariance, often referred
to as ‘Weyl invariance’, whereas the conformal invariance of Maxwell’s equations is a
rigid invariance with Noether charges that generate the Lie algebra of the conformal
group SU(2,2). There is a sense in which conformal gravity is the gauge theory of
SU(2,2) [1]. One can also show that any Weyl-invariant theory of gravity plus (spin
< 1) matter will yield a theory with rigid SU(2,2) invariance on restriction to flat
spacetime or, more generally, a theory with symmetries corresponding to conformal
isometries on restriction to some other background spacetime [2].

Conformal gravity has, therefore, a certain aesthetic appeal in that it promotes to
a gauge invariance the maximal rigid symmetry of Maxwell’s equations. It is worth
remarking that renormalisability is not sufficient for the quantum consistency of a
Weyl-invariant theory since any ultraviolet divergence will spoil Weyl invariance. A
necessary condition for a sensible Weyl-invariant quantum field theory is finiteness.
Remarkably, the only known Weyl-invariant quantum field theory is N = 4 conformal
supergravity [3, 4, 5], possibly coupled to N = 4 super Yang-Mills theory. The
Einstein—Hilbert action would have to appear as a result of a spontaneous breaking
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of conformal invariance [5, 6]. Potential difficulties with unitarity presumably account
for the lack of interest in this spacetime conformally invariant approach to quantum
gravity.

String theory is, in contrast, an approach to quantum gravity that accepts the
existence of the Planck length as a fundamental unit (in the same sense that /i and ¢
are fundamental units). String theory is therefore explicitly not spacetime conformally
invariant. However, as is well known, conformal invariance or rather Weyl invariance
still plays a role but now as a worldsheet symmetry. This is in fact true of all extended
objects, not just strings. One standard form of the action for a p-dimensional extended
object (a ‘p-brane’), in a background spacetime with metric g,,,(x) in local coordinates

x™, 18

5, = fd"“i det 2 (6,8, x"g,,. (x) ()

another equivalent form of the action introduces an independent auxiliary (p + 1)
worldvolume metric *,'ij(é),

S,= 1 [ &7V [N 08,00 — (0 - 1)]. | @)

This action is invariant under Weyl rescalings of y;; for p = 1 only. However there is
another equivalent form of the action [7], also involving the auxiliary metric y;;, which
is Weyl invariant for arbitrary p

Sp _ f dp-i—lé /—? (,yijaixmajxngmn(x))(p+1)/2. (3)

For p = 0 the actions (1) and (3) are identical, while for p = 1 the actions (2) and (3)
are identical.

In the case of the particle, p = 0, an action inequivalent to (3) can be obtained by
omitting the (p — 1) term in (2). This yields the action for a massless point particle,

s=4 [ ¥ g, @

where e(t) is the worldline einbein. This action cannot be put into the manifestly
Weyl-invariant form (3), and is clearly not invariant under a Weyl rescaling of e(t).
However, the action (4) does have spacetime conformal invariance. Given the general
coordinate transformation x™ — x™ + k™(x), where k™(x) are the components of an
infinitesimal vector field k, we find the variation

65 =1 f dte™ XX (Z,2) ®

where &, is the Lie derivative with respect to the vector field k. For a Killing vector
#,g& = 0 and the action is invariant; ie. isometries of spacetime yield symmetries of
the particle action. This much is also true of extended objects; in fact the variation of
the action (3) is

58 =— f dPHe = [@07]7 2 9Y0,x70, X" (L18) (6)
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where (0x)* = (7Y0,x"8,x"g,,). The particle action (5), however, is invariant if k
satisfies the weaker condition that it be a conformal Killing vector, ie. if

(L&) = 2/ D)k, 7

where 4 is the dimension of spacetime (and the semicolon indicates covariant differen-
tiation with the Levi-Civita connection). This is because the resulting variation 8§ can
be cancelled by a variation

Se= (/K , 8)

of the einbein. The wave equation in curved spacetime obtained by quantisation of
the point particle is not uniquely determined by the classical action (4) because of
operator ordering ambiguities. However, given a classical symmetry one can fix the
factor ordering, at least partially, by requiring that the symmetry be respected by the
quantisation procedure. For field theories this prescription can be spoiled by ‘anomalies’,
but for the quantum-mechanical models considered here the only anomalies that can
arise are global ones that affect only discrete symmetries [8]. Thus, by requiring that
all the continuous symmetries of the classical action (4) be maintained by the quantum
theory we obtain, upon quantisation, a conformally invariant wave equation.

The transformation (8) is a special case of a worldline Weyl transformation. Had
the particle action been worldline Weyl invariant we would not have been able to use
the variation (8) to cancel the k., terms in 6S. That is, it is the lack of worldline Weyl
invariance that allows the possibility of spacetime conformal invariance. One therefore
suspects that the Weyl-invariant action (3) is not spacetime conformally invariant.
Substituting (7) into (6) we find the variation

2
85 = =3 [@tie v [0k, )

It is easily seen that any candidate variation of y; designed to cancel this must be
proportional to y;;, and then it is obvious that, precisely because of the Weyl invariance
of the action, a non-zero variation §S of (9) cannot be cancelled. This means, in turn,
that the equations that result from quantisation of an extended object, e.g. string field
equations, cannot be conformally invariant.

The above remarks illustrate the main point of this paper, which is that there is a
kind of ‘exclusion principle’ between spacetime and worldsheet/worldvolume conformal
invariance. In the remainder of this paper we report the results of a detailed check of
this idea, principally in connection with an extension of the particle action (5) to one
with N-extended worldline supersymmetry that describes a spin N /2 point particle [9,
10].

In the presence of an arbitrary background spacetime the Hamiltonian form of the
spinning particle action is [10]

S = f dt {£7p,, + Lid 4 n,,
- %e[gmn(pm - %iiia}'ibwmab)(pn - %i)'jcijdwncd) - %iiaiibljcj'deabcd]

— 14, (P — %i;“ja)“jbwmab)eam - %ifijiia}“ibnab} (10)
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where x™,p,, are the coordinates of the 2d-dimensional phase space of the particle,
A" = Afe"(x), i =1,2,...,N, are the N worldline supersymmetry partners, with e "
the inverse of the spacetime vielbein e,,9(x), g,,, = e,,%¢, 1, the metric, w,,,, the usual
spin connection and R, ; the corresponding curvature tensor. The Lagrange multiplier
fields e, y; and f; are the worldline supergravity fields; the einbein, gravitini, and O(N)
gauge flelds, respectively. The N-extended supersymmetry transformations were given
in [10] where it was shown that for N > 2 the action is supersymmetric only if the
spacetime background is flat.

It has also been shown [8, 11} that for a flat background the action has invariances
corresponding to the conformal isometries of flat space. Here we shall extend this result
to a curved spacetime background, in which case we are restricted by supersymmetry
to N < 2 for the reason just mentioned. We found that the action (10) is invariant
under the infinitesimal transformations

Sx™ = k" 84" = e, Ky i’ — K 0,47
5pm = _pnamkn - %i)'ia’ﬁtib (earebskr;sm - 2earecswmbck[r;s] - (krwrab),m) (1 1)
provided only that k is a conformal Killing vector satisfying (7), or, equivalently,

k(m;n) = (l/d)gmnkrr (12)

This is because, as for the spinless particle, the resulting variation of 4§ is proportional
to k", and can be cancelled by the following variation of the worldline supergravity
fields,

de = (2/d)€ kr;r
o, = (1/dyy, (K r € e, A K ;rn)
5fij = (2i/d)l»U[i/{aj]eamkr;rm - (ie/d))”iaijbeanebSkr;rsn' (13)

The transformations (13) are in fact worldline super-Weyl transformations. This
can most easily be seen from the superspace form of these results. The Lagrangian
form of the N = 2 superspace action was given in [8]. In the superconformal gauge it
reads

S = —zf dt 420 V' Dé" D" g, (&) (14)

where V' (t,0,0) is the superfield containing the worldline supergravity fields, and ¢
contains the dynamical fields x and i. We refer to [8] for details of our superspace
conventions. The transformations of (11) and (13), with the auxiliary momentum
variable p,, eliminated, can now be written as

0" = k"(¢) oV = 2/dK . (15)

A general infinitesimal worldline super-Weyl transformation has the form V' — V' + 8§,
where S is an arbitrary worldline superfield. Thus ¢V in (15) is a special case of a
super-Weyl transformation with S = (2/d)k”,, . It follows, by truncation, that the same
is true for N = 1.
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We have therefore verified that for N < 2 the spinning particle action of [9, 10]
has invariances corresponding to the conformal isometries of spacetime, by virtue of
its lack of worldline (super)-Weyl invariance. For N > 2 the same is true in a flat
spacetime, as shown in [8, 11], but the conformal invariance of the field equations that
result upon quantisation is specific to the free field equations and does not generalise
when interactions with a gravitational background are included. That is, at present
the only conformally invariant wave equations that we can obtain in curved spacetime
from the quantisation of a point-particle model are those of spin 0,1 or 1. It is likely
that these are the only spins allowing consistent conformally invariant wave equations
in curved space for d > 4.

One can similarly show that the spinning string action does not have invariances
corresponding to the conformal isometries of spacetime (unless these happen to be
ordinary isometries). This follows from the similar result for the bosonic string given
earlier. For higher dimensional extended objects one might wonder whether anything
is to be gained by using, for example, the form of the action (2) which is not world-
volume super-Weyl invariant. We shall now investigate this point. The variation of (2)
under the transformation x" — x™ 4+ k™, y¥ — 9V 4 §y¥, with k™ the components of a
conformal Killing vector but §y¥ arbitrary, is

S = f AP E {1/, =7 (0%) + 3697 [0,x" 3% gy — 37(0%)7]
+ %(P - 1)57ij')’ij}- (16)

For p = 1 the last term in (16) vanishes but the middle term cannot cancel the first
because the coefficient of §7Y is traceless. For p = 2 the last term in (16) must cancel
independently of the other terms, and this requires 67 to be traceless. However, if
the first two terms in (16) are to cancel 6y must be proportional to ¥ and so no
cancellation is possible.

This last result immediately extends to the case of spacetime supersymmetric
extended objects, e.g. superstrings and supermembranes. The massless superparticle
[12], however, must be investigated separately. In a general superspace background
with superspace vielbein E,* = (E,,* E,,*) the action may be written as

S = f dr e 1NAME CE P, (17)

where zM = (x™,0%), i = 1,...,N are the coordinates of N-extended superspace. This
action is obviously not worldline Weyl invariant and so, from our previous discussion,
one would expect it to be spacetime superconformally invariant for those backgrounds
admitting superconformal isometries. Superconformal transformations are defined to
be superdiffeomorphisms which leave the supervielbein invariant up to super-Weyl
transformations and local tangent space rotations. Super-Weyl transformations are
local rescalings of the supervielbein with a (possibly complex) scalar superfield, W. In
general this superfield will be constrained as these transformations must preserve the
constraints which have been imposed on the superspace torsion tensor. However, it is
always the case that E,;? is scaled by a real (possibly constrained) scalar superfield, U
(= W, when W is real). Thus for a superconformal Killing vector we have

(ZLE)y* = UEy“+ E,°L,° (18)
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where L,? is the parameter of a local Lorentz transformation in superspace, and where
(LLE)y" = 0y k" E, “+ k"0, E,,° is the superspace Lie derivative of E,,®. Equation (18)
implies, as expected, that the component k™|,_, of a superconformal Killing vector k™
is an ordinary conformal Killing vector. For the case of flat d = 3,4 superspace it has
previously been shown [13] that the action (17) is indeed superconformally invariant.
It is easy to see that this extends to the other dimensions (d = 5,6) for which a flat
superspace superconformal group exists, and in fact to any background admitting a
superconformal Killing vector. Specifically, for kM satisfying (18) the action (17) is
invariant under the transformations 6zM = kM, e = 2eU.

It is possible to construct spinning superparticle models [14, 15] with both worldline
and spacetime supersymmetry. It would appear [15] that they are not superconformally
invariant for d > 4. These models would therefore seem to deserve further investigation.
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