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INTERSECTING EXTENDED OBJEC17S IN SUPE
FIELD THEORIES

We show that there are three cases for which the generic intersectkms of p-dimensional
extended object solutions of a supersymmetric field theory in a d-dimensional space-time are
stringlike. They are 6) d = 4. p = 2. 60 d = 6. p = 3 and Gii) d = 10. p = 5. By consideration of
the topological charges associated with these objects we obtain a necessary
stable stringlike intersections to occur, a condition that is satisfied by the first two cases
the third . which may have implications for the "heterotic 5-branes7 recentLy discussed b_y

Strominger. For case G) we show by an analysis of the d = 4 Wess-Zumino model
that stringlike

intersections of domain walls can indeed occur.
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Relativistic fiele- theories often allow the formation of topological defects which,
at low energies, appear to be extended objects such as strings or membranes. The
dynamics of such objects is a well studied subject. Less well studied is the issue of
whether such extended objects can intersect and if so what governs the dynamics of
the intersection . In a d-dimensional space-time, p-dimensional extended objects,
with (p + D-dimensional worldvolumes, will generically intersect in such a way
that the intersection is an extended object of dimension

pi. . =p - (d -p - 1) .	(1 .1)

For supersymmetric extended objects the possible values of p and d are severely
limited, there being four families labelled R, C, H, 0, for which the worldvolume
codimension (d -p - 1) equals 1, 2, 4, 8 respectively [I]. For each family there is a
maximum value Pma. of p, equal to 2,3,5,2 respectively from which it is clear that
pi,,, < 1, with equality only for P =P.a. and then only for the R, C, H families.
There are therefore only three instances for which the generic intersections of an
extended object of a supersymmetric field theory will themselves be extended .
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They are

and in each case Pin, = I-
Examples of supersymmetric field theories in dimensions d = 4,6, 10 allowing

topological defects of dimension p = 2,3,5, respC.Ctively, are known. In particular,
it was pointed out by one of the authors [21 that the usual d = 4 Yang-Mills (YM)
instanton is an example of a super 5-brane when Aewed as a solution of d = 10
super YM theory. This solution was recently extended by Strominger [3] to include
the gravitational and other fields of the field theory limit of the d = 10 hcterotic
string. and it was suggested that the dynamics of the stringlike intersections would

governed by the Green-Schwarz superstring action.
Teitelboim has shown that there is a duality of electric/magnetic type between

extended objects of dimensions p and d - p+4 [41; this is closely related to the
duality between field strengths of antisymmetric tensor gauge potentials of ranks
p + I and d -p - 3. Tl bzrefore, given an extended object of dimension p, the dual
extended object, in &e sense of [41, has dimension

,2-Pdual' - d -p - 4

Comparing with 0- 1) we see that Pdual

	

3=Pin, requires p = 1(2d - 5), in which case
Rd - 7). Then Pint = I implies d = 10; i.e . case GO above, the d = 10Pint =Pdual= 3

5-brane, is the only one of the three for which there is a duality between the
extended object and its stringlike intersections.

It was emphasised by Duff [51 that the existence of two dual forms of d = 10,
N= I supergravity (with either a second-rank or sixth-rank antisymmetric tensor
gauge potential) is possibly a reflection of a similar duality between the d = 10
superstring and super 5-brane. This dual relationship fails for cases G) and GO
however; e.g. for d = 6, p = 3 we do not find that Pdual = 1, but we do find that
Pint = 1 1 So it is the notion of intersections, rather than field strength duality, that
unifies the four families of extended objects. It happens that both notions agree for
d = 10, a fact that was exploited in ref. [3].

Despite this special feature of the d = 10 5-brane, it is still of interest to
consider cases 0), 60 and (iii) together when discussing whether stringlike intersec-
tions of supersymmetric extended objects will in fact occur. We shall show that
there is a necessary condition for the stability of any generic intersection (neces-
sary at least for the type of extended object solution we envisage here) which is
satisfied by cases 6) and (ii) but not by case (iii).

(i) d=4 p=2

(à) d = 6 p=3

(iii) d=10 P=5
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The point at issue is as follows. We imagine that the cores of two p-dimensional
objects (or possibly distant parts of one such object) overlap at rest, at least across
a p-dimensional region that is large compared to the size of the objects' cores. If
this happens it may be possible for the two cores to fuse, thereby forming the core
of a third p-dimensional object . This would result in the formation of intersections
of three p-branes. However, this can happen only if the energy per unit p-volume,
i.e . the tension, of the newly formed p-brane is less than the sum of the tensions of
the original p-branes, and then only if the third type of p-brane actually exists. It
might be supposed that these conditions are easily met by postulating a single type
of p-brane with tension M, as M< 2M, but this overlooks the possibility that
process might violate a conservation law. In fact, for all known extended
solutions of supersymmetric field theories there is a conservation law
tension M is the magnitude of an additive topological charge carried
For a p-dimensional object this charge is a pth rank antisymmetric tensor, but it is
clear that in a small region of overlap it is a good approximation to ignore
dependence on the coordinates of the p directions defiing the p-plane of the
objects. We can therefore analyse the process in terms of particle-like solutions,
which we shall refer to as "solitons", of a (d -p)-dimensional supersyrnmetric
field theory obtained by dimensional reduction. In the process of reduction the
pth rank charge becomes an ordinary Lorentz scalar charge . If two solitons, of
topological charge T fuse they must, by charge conservation, form a third soliton
of topological charge 2T. The crucial point is that the topological charge T of a
soliton appears in the supersymmetry algebra as a central charge [61 and that, as a
consequence, one can prove that

M> ITI,

use the
the

0.3)

where M is now the soliton's mass. The mass of the third soliton is therefore at
least 12TI . In practice one finds that the bound 0.3) is always saturated, so that
the process of soliton fusion is energetically possible but has zero phase space.

If this were all, we could immediately conclude that supersymmetric extended
objects can never fuse to form stable intersections (stable in the sense that energy
is required to remove them) but there is an obvious way in which the above
reasoning might be circumvented. Returning to the soliton analysis, the topological
charge, although a Lorentz scalar, may be a vector in some internal space.
Addition of topological charges is then vector addition . For example, suppose that
the topological charge T is a complex number. Then the mass M3 of a soliton
formed by fusion of two other solitons of masses M, and M2, with complex
topological charges T, and T2, respectively, is

Al~j = IT, + T21 < IT 1 1 + IT21 =M1 +M2 .

	

(1 .4)
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The inequality is saturated if and only if the phases of T, and T2 are equal.
Otherwise, A1~3 < M, +M2 and the fusion of the two solitons is an exothermic
reaction, i.e . the third soliton will be stable . However, given the existence of this
third soliton, the stabilivy, of the other two requires that M, < M2 + Al~, and
M, <M3 +M,. Thus the phases of all three topological charges T1 , T2 and T., must
differ . This cannot be satisfied for real charges (for which at most two are of
opposite sign).
We can now translate this discussion about solitons of a (d -p)-dimensional

field theory into one about p-brane solutions of the original d-dimensional field
theory. The central charge in the (d -p -dimensional supersymmetry algebra
becomes a pth rank charge in the d-dimensional algebra. This can be demon-
strated either directly from the field theory [7] or in a model-independent way
from the super p-brane action [8]. We are therefore led to the following criterion :
a necessary condition for the formation of a stable stringlike intersection of
p-dimensional objects of a supersymmetric field theory is that the pth rank charge
in the supersymmetry algebra must be a vector in some internal space of dimension
>, 2. This does not mean that we could not set up an initial configuration for which
a collection of p-dimensional objects would appear to have stringlike intersections
but, if our criterion is not satisfied, these will disappear because their stability is, at
best, marginal. We have discussed only intersections at which three p-branes meet
but the result is easily extended to intersections of higher degree .

In sect . 2 we shall show that our criterion for the existence of stringlike
intersections is satisfied for cases G) and GO but not for case Gii) . In the latter case
the analysis may be reduced, as explained above, to one involving solitons in a
d= 5, N=4 supersymmetric field theory . A suitable model is N= 4 super YM
theory with the YM instanton as the soliton core . The number of possible central
charges in this theory is 6. They form a carrier space for the 5 ED I representation
of the supersymmetry automorphism group USp(4) . If the soliton has a topological
charge that is a vector in the 5-dimensional space then any two of them need not
have parallel 5-vector charges. Therefore, in principle, two solitons of N= 4, d = 5
super YM theory could fuse to form a third. However, one must be careful in
drawing conclusions about d = 10 super YM theory from this fact . The point is
that the 5-vector charges do not originate from the topological 5-index charge of
the d = 10 supersymmetry algebra. They have a standard Kaluza-Klein (KK)
origin as components of the momentum in the compactified directions . For the
standard 5-brane solution of d= 10 super YM theory these charges vanish.

Because of the importance of correctly identifying the higher-dimensional origin
of the central charges of supersymmetry algebras we present in sect. 2 a complete
analysis of this question . Briefly, all central charges not of standard KK type
originate from antisymmetric tensor charges in dimension 4, 6, 10 or 11 .

Having determined that for cases M and 60 the intersection of membranes or
3-branes, respectively, is energetically possible, it remains to show that there exist
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models for which it happens. In this paper we shall discuss in detail only case (i)
for which a suitable model is the d = 4 Wess-Zumino (WZ) model with polyno-
mial holomorphic superpotential W. This model admits domain walls, for which
the effective action is the d = 4 supermembrane action, as discussed in ref. [91,
following ref. [101. Having shown in sect. 2 that there is a phase freedom for the
two-index topological charge in d = 4, we carry through the analysis in sect. 3 in
terms of the dimensionally reduced d = 2 theory, for which the solitons carry the
complex topological charge

+ =

	

a
T=2£. do-W.au

We show that there exist superpotentials Wsuch that two solitons, can fuse to form
a third. It turns out that the condition on W for this to be possible is not simply
that there exist solitons carrying topological charges of differing phases; this is
necessary but not sufficient . We give a complete analysis for quartic W.

2. The higher-dimensional origin of central charges

Extended super-Poincare algebras, in whatever dimension d of space-time,
generally allow central charges, i.e . charges that commute with all those of the
super-Poincare algebra (and with each other). In many cases these central charges
have a Kaluza-Klein (KK) origin in that they can be understood as the (quantized)
values of the momenta in the "extra" periodically identified directions . A much
studied example is N = 2, d = 4 for which two real central charges are possible;
this may be seen to be a consequence of the fact that d = 4 field theories with
N

	

2 supersymmetry can generally be obtained by the dimensional reduction of a
d

	

6 supersymmetric field theory. Similarly, a d = 4 field theory with N= 4
supersymmetry can generally be obtained by dimensional reduction from d = 10.
This might lead one to suspect that the N = 4 supersymmetry algebra should allow
a total of 10 - 4 = 6 central charges whereas, in fact, it allows 12 [Ill. What is the
origin of the other 6? In this section we find the higher-dimensional origin of all
central charges of all supersymmetry algebras for 1 <d < I I and such that the total
number of real components of the supersymmetry charges does not exceed 32.
These conditions are satisfied by all interacting supersymmetric field theories. As
might be expected, any "'additional" central charges, i.e . those not interpretable as
values of momenta in the compactified dimensions, arise from non-central charges
of the higher-dimensional super Pointcare algebra. By "non-central" we mean
charges that fail to be central only because they carry a non-trivial representation
of the Lorentz group. Van Holten and Van Proeyen have made a thorough analysis
of which non-central charges can in principle occur [121 . They included spinorial
charges which may appear in the commutator of P.. (space-time translation
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TA13LE I

Number of central charges of d-dimensional supersymmetry algebras

The nuraber in the last column is the total number of (real) components of the supersyMmetry
charges.

generator) with the Q'. (supersymmetry generators), a possibility that has been
recently exploited for other purposes [131. Here we shall be interested only in the
tensorial charges antisymmetric in all k indices, which may appear in the
anticommutator of two supersymmetry charges.
Our main result is simply stated. Firstly, we remark that if a d-dimensional

supersymmetric field theory can be obtained by dimensional reduction from a field
theory in dimension D>d with the minimal number of supersymmetries for that
dimension, then D = 3, 4, 6, 10 or 11. The "surplus" central charges in the
d-dimensional supersymmetry algebra, i.e . other than the D-d charges of conven-
tional KK origin, can then be seen to arise from the following non-central charges
in dimensions D= 4, 6, 10 or 11 :

Tninpqr *

T
Here + indicates selfdual and all charges are real except for the D = 4 charge+ which is complex (its complex conjugate being anti-selfdual). The ij indicesmto
for D = 6 indicate that the charge is an SU(2) triplet G, j = 1, 2) . Observe that
there are no possible central charges in the minimal supersymmetry algebra in
these dimensions and that the given tensorial charges are the only ones allowed by
the Jacobi identities [ 121.

Dimension Number of central charges Total

-IN(N + 1) - I N
2 NL - NR NL + NR
3 1~JIWN - 1) 2N
4 N(N - 1) 4N
5 11MN- 1) (N even) 4N
6 NLNR 8NL + 8NR
7 N(N + 1) (N eve 0 8N
8 N(N + 1) 16N
9 --';A'(N + 1) 16N
10 NI_NR 16NL + 16NR

D=4 T,,,,,

D=6 T+(ii)
'P111P

D= 10 T,'1111Pqr

D= 11 T,?, )
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We shall need to know how many central charges are possible for d-dimensional
extended super-Poincare algebras. The numbers are easily found from a case by
case inspection for the relevant dimensions, i.e . 1 < d < 10. The result is given in
table I as a function of the number N of supersymmetries, except for d = 2,6, 10
for which it is given for (NL, NR)-supersymmetry as a function of NL and NR, the
number of chiral and anti-chiral supersymmetry charges. Note that for d =- 5 and 7
the minimal number of supersymmetries, is, by convention, N= 2 rather than
N= 1, because the minimal supersymmetry algebra in these dimensions has an
SUM automorphisin group.

Let n equal the total number of (real) components of the supersymmetry
generators (in parentheses in table 1). If a d-dimensional algebra is non-chiral and
has n equal to 2, 4, 8, 16, or 32 it can be viewed as the dimensional reduction of a
minimal supersymmetry algebra in the higher dimension D= 3, 41, 6, 10 or 11,
respectively. Clearly not all supersymmetry algebras in d < 10 satisfy these condi-
tions (e.g . (1, 2) supersymmetry for d = 2 and N= 3 for d = 4) but those that
not can be obtained by truncation of one that does (e.g . (2,2) in d = 2 and N = 4
in d = 4). We may therefore restrict ourselves to those cases for which these
conditions are satisfied.
As an example consider d = 5, N= 4. Since n = 16 we can start in D= 10 where

we have the tensorial charge T,,',.pq,-- On dimensional reduction from D= 10 to
d = 5 this yields the real central charge

T= T'567819'

V'i) = T~41i) .5

There are also five real central charges of obvious KK origin, making a total of
5 + I = 6 possible central charges. We can see from the table that this is precisely
the right number. As another example consider d = 3, N= 4. Since n = 8 we can
start in D = 6 where we have the SUM triplet of tensorial charges

	

OnP
dimensional reduction from D= 6 to d = 3 this yields the triplet of central charges

(2.2)

Together with the three central charges of KK origin, this makes a total of six
possible central charges. Again, we see from table I that this is the right number.
Observe that in both examples the central charges coming from the higher-dimen-
sional tensorial charges and those of KK origin belong separately to representa-
tions of the automorphism group of the lower-dimensional algebra MSpM in the
first case and SOM X SOM in the second).
Another example is d = 2, p = q = 2. Since n = 4 we can start in D= 4. The

complex selfdual antisymmetric tensor charge T,,',, now gives rise to a complex
central charge in d = 2,

T= T2' -

	

(2 .3)
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Another way of putting this is that given the real antisymmetric tensor charge T,,,,,
both it and its dual contribute to the central charges in lower dimensions. This
must be borne in mind when reducing from D = 11 . For example the d = 5, N= 8
supersymmetry algebra has a total of 28 central charges of which 6 are of KK
origin . Of the remaining 22, 15 come from T,,,,,,, 6 from Timpqr and I from the dual
Of Timpqr (i.e . TOU., = &78910)* In this case the central charges of different origin
must be combined to form a representation of the lower dimensional automor-
phism group U Sp(8).
We come now to the question of whether the tensorial non-central charges in

dimensions 4, 6, 10, and I I have a physical realisation. It was pointed out by Zizzi
[7] that for super Yang-Mills theory in a flat space-time of topology R4 X T' the
d = 4 YM instanton is a configuration for which the fifth-rank charge T,,,,nnpqr
appears in the ten-dimensional supersymmetry algebra as a topological charge, and
in ref. [21 that such a configuration could be interpreted as a five-dimensional
extended object for which the effective action is that of the d = 10 super 5-brane.
It was further shown in ref. [81 that, owing to the presence of a Wess-Zumino term
in this action, the supersymmetry algebra is modified to include a fifth-rank charge
Tntzpqr, The advantage of the effective action derivation is that it is model
independent. We should be able to deduce the presence of the charges T,,+,, and
T,""' in a similar fashion from the actions for the four-dimensional supermem-
brane and the six-dimensional super 3-brane, respectively. In fact, this already
follows from the general analysis of ref. [81 except that the freedom of choice for
the Wess-Zumino term in the action, and hence of the topological charge in the
algebra, was not taken into account. This gap is easily filled .
The Wess-Zumino term in the d= 4 supermembrane action is constructed from

the exact super-Poincar6 invariant superspace 4-form H =H...H" dO F,,111 dO, where
H .. = dx"' - i6rin dO. If we now make the substitution 0 --> 00/20, with 0 a
constant phase, we find that

H --> Hlp'H" däF�� , e'Y -31d0,

	

(2.4)

whereas all other terms in the supermembrane action are unaffected . There is
therefore a phase freedom in the topological charge of the four-dimensional
supermembrane.
The WZ term of the d = 6 super 3-brane action is related to an exact 5-form . In

the d = 6 symplectic-Majorana spinor notation [14] this 5-form is

H = 17,, 13 1110"ITYj dO" d03i ~ij ,

	

(2.5)

where the constants ~ij must satisfy -!~ij~'i = I (summed over i, j) . The action2
given in ref. [10] corresponds to the choice e ij = 3ij but by an SUM rotation we
can achieve any other allowed choice for H. All other terms in the action are



ERC Abraham, RK Townsend / Ertended objects

	

321

constructed from the components of the SUM-invariant form H10 =dX .&P -
iO"'dO1Oi,Eij . It follows that there is a three-dimensional freedom in the topological
charge of the d = 3 super 3-brane.

Note that the crucial point in the above analysis is that the supersymmetry
automorphism group is non-trivial, UM for d = 4 and SUM for d= 6. For d = 10
(and NL = 1, NR = 0) this group is trivial so there is no internal degree of freedom
for the 5-index charge. As explained in sect. 1, this fact means that stringlike
intersections of 5-branes are not stable .

Concerning the physical realisation of the D= I I charges T.. and T...., we
remark that, although there is no known domain wall solution of I I-dimensional
supergravity, there is an I I -dimensional supermembrane action [15] for which a
charge T.... appears in the supersymmetry algebra. We further remark that,
although there is no known I I -dimensional super 5-brane (which might be associ-
ated with Tnotpqr), a 5-brane in d = I I is dual, in the sense of ref. [41, to a
membrane .
We now proceed to give a more detailed analysis of case G), intersecting

supermembranes in d = 4.

3. Supermembranes and superparticles as effective actions

We have seen that, for our purposes, the study of intersecting domain walls in a
(3 + O-dimensional space-time can be reduced to a study of solitons, in a 0 + D-
dimensional space-time . As the effective action for a single domain wall is that of
the d = 4 supermembrane the corresponding effective action for the soliton will be
that of the (2,2) supersymmetric d = 2 superparticle, obtained by dimensional
reduction. This action is

S = -Mf dt r( ., *.=) +
12 Tf dt 0+6-+ c .c .

	

(3.1)

where M is the particle's mass, T is a complex number with dimensions of M, and

(0 * = .i * -io +0 +- i0+0+,

	

(0 = = .U -iO-O-- io -0- .

	

(3.2

Here 0+, 0 - are a pair of complex (anti)chiral anticommuting spinors of SOO, 1),
and the number of + or - indices indicates the SOO, 1) charge . The first term in
(3.1) is manifestly invariant under the (2,2) space-time supersymmetry transforma-
tions

&E
O+= E+,

	

16E0-= E - ,

	

S"X* = ie ' O '+ ié+0+, aEx~ = iE - O- + iE-

(3.3)
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The second term in (3.1) is a WZ term for the supertranslation group 3nd is not
manifestly invariant . As a consequence the supersymmetry algebra is modified to
include T as a central charge, as follows:

where P. and P_ are the self-dual and anti-selfdual components of the two-
momentum. From the supersymmetry algebra, we can derive a lower bound on the
particle's mass M. Consider the hermitian cLarge

for which

Since P-, +P- = 2P11 = -2H, where H is the hamiltonian, it follows, by choosing
a = arg T, that H >, I T1 . For a particle at rest H = M (its mass); we therefore have
the bound
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[Q+'96J =PVE I

	

IQ - -) zjj = P= I

IQ"?ij = 0,

	

(Q,,Q-) = T,

	

(3.4)

Q(C, ) = e -i,12(Q++ Q_) + e""/2(6++6_) ,

	

(3.5)

Q(a)
1 = P~, +P_ + 2Re(e -'«T) > 0 .

	

(3.6)

M> ITI .

	

(3 .7)

When this bound is saturated the action acquires a fermionic gauge invariance
with transformations

ö�x= = lii,5� 0-0

	

c.c .a ', x

	

-:iiö"o-0+ + C .C .,

O+=

	

S#c 0

	

(3.8)
2

	

2

This "K-symmetry" allows one complex combination of 0' and 0- to be gauged
away, after which the action depends on only a single complex variable .
The above analysis is model independent. A suitable model is provided by the

d = 4 WZ model with holomorphic superpotential W. Upon dimensional reduction
to d = 2 the action becomes

2a[(7=Z(7'J: - + i-

	

-
S

	

f d

	

- z

	

41+a~ q/ ++ iqf -a, 41

-iW"(Z)41'q1_-iW"(Z) 1___,W,(Z)12
(3 .9)

where cr = (t, a) are the coordinates of 0 + O-dimensional Minkowski space, 4cr)
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is a complex scalar field and #A , (a), 41 -(a), are complex one-component spinor
fields of chirality + 1, - 1, respectively, W(z) is the holomorphic superpotential
(with W'= dW/dz), and

a .1, = a

	

+8-

	

0

	

1 V 8= =ao -a, .

The action (3.9) is invariant under the following supersymmetry transformations
with complex infinitesimal anticommuting parameters e,e_ :

âz = ÎE +*-+ ie _*+ ,

	

(3.1 la)

80 += _CI* zi- - W'(Z) C ' ,

80-= -cl=zi ++ W'(z) E_ .

	

(3.11 b)

The corresponding complex chiral supersymmetry charges Q, and Q_ are

323

(3 .10)

and their complex conjugates (all others vanishing), we recover the supersymmetry
algebra (3.4) with the topological charge T being given by

+ X

	

a
T = 2~. do,-W.'au

(3 .14)

This generalises the result of Witten and Olive [61 to extended supersymmetry.
For time-independent field configurations the equations of motion that follow

from (3.9) reduce to

,902

	

- W'( Z) W"( Z) -M. ..(Z)

	

0,'z

	

(3.15a)

e+J

	

a,

	

W"( Z)

	

e+

	

= 0 .

	

(3.15b)
W"( z ~

	

a,

Q+= f da[-Rz~,- W(z)0-1,

Q-= f duld=z~_+ W(z)0J . (3 .12)

Replacing oR,z by p, and using the (ant0commutation relations

[P' f I = -i' 1414_9~+I = = 1 (3 .13)
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Given a soliton solution for z(u) of (3.15a), with 41 ,= 41-= 0, its mass is

M=
ZC

f.du [ 1 (9
ür
Z 12 + IW,( Z) 121

x
dcrla.,z - e'" W'(z)

	

+ Re(e` T)

	

(3.16)f.
for arbitrary phase a. Since ci is arbitrary we obtain the strongest lower bound on
M by choosing ci = arg T. Then

M>, ITI,

	

(3 .17)

as we fouid previously from our analysis of the supersymmetry algebra. The bound
is saturated by solutions of the first-order equation

~,,r z - e"W(z) = 0

	

(3.18)

with a = arg T, which are easily seen to be solutions of the second-order equation
(3.15a) when 0. Multiplying (3.18) by W'(z) and integrating over or, we
find that

3T

	

f Oc

dal W'( z) 1

	

(3.19)

so that a indeed equals arg T. Clearly, the only solutions of (3.18) with finite T
(and hence finite mass) are those which interpolate between two critical points of
WI(z).

A feature of soliton configurations for which the bound (3.17) is saturated is that
only half, rather than all, of the supersymmetry is broken [6]. To see this we define
Iq =RE

	

_'E

	

+E-) and rewrite (3.1 lb), for 1 = 0, as2

	

+

	

-)and C = -(E+

(a,, z - e'- W'(z) )	(a,,z + e'- W'( z) )	(77

	

(3.20)ia(d',E

	

-ia W,( Z ))

	

-ia W'(Z))e

	

-e

	

-e'a(df + e

Configurations satisfying eq . (3 .18) therefore have the property that they are
preserved by supersymmetry transformations with ~ = 0, 77 * 0, i.e . E++ E-= 0,
whereas they are not preserved by those with Y7 = 0,

	

0 0. This has the following
consequence : for any solution of eq. (3.15a) with 41 +

	

ip -= 0 a solution of (3 .15b)
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*+

	

1

	

z - e'a W`( z) ) ,q + (,a,, z + e'O'W"( z) )C
ik-	e'a[(,a,,i- e-'u W'(z»n - (,a,,i + e- " W(z»CI

for any complex constants q, C. When 61,z = e'" W'( z) these "zero mod&" are
parametrised by only one complex constant, r. In this case the term in eq.
(3.15a) is zero, so that

Z=zd( Cr),

	

*,= -c«*-= (2,a,,,z)e

	

(3.22)

is an exact solution of eqs. (3.15a, b) for arbitrary complex (anticommutin
constant C if z(o, ) is a solution of eq. (3.18). Since the soliton configuration z(a)
breaks spatial translation invariance, Aa +a) is also another solution for arbitrary
(real) constant a. For fixed boundary conditions, therefore, solutions of eqs.
(3.15a, b) that saturate the bound M> I TJ are parametrised by the coordinates of
a superspace of real dim.--nsion 0 12), rather than 0 114). This is taken into account
in the superparticle (effective) action by virtue of its fennionic gauge invariance for
M= ITI .

4. Intersecting domain walls in theWZ m
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(3.21)

In the d = 4 WZ model the domain walls separate regions which have different
vacuum configurations, each vacuum being associated with a critical point of the
superpotential W(A For many superpotentials these domain walls can have stable
stringlike intersections, providing explicit examples of intersecting supersymmetric
extended objects. In this section we analyse the WZ model with a general quartic
superpotential,

2-r, t 13This superpotential has three symmetrically placed critical points at z

	

e
z,=e- 2,;-ril3 and Z3 = 1 . To each pair of critical points (z, zb) is associated the
topologic:!] charge

T� l, = 2 ei arg(iV(z1,) - tf'(z� »
1 W(Zb) - W(ZII) 1 -

	

(4 .3)

W=Z4 _ CZ 3 _
O
Z 2 - ,YZ, (4.1)

to find the conditions under which stable intersections can occur.
Consider first a model with the superpotential

W=Z4 - 4z . (4.2)
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Fi& 1 . Phase flow of the soliton equation (3.18) for a superpotential (4.2) with three symmetrically
placed critical points, a = -.. /2 .

Upon dimensional reduction the domain walls become the solitons of the d = 2
WZ model described in sect. 3, so to find whether there exists a domain wall
interpolating between the vacuum configurations z = z , and z = z, we have to
determine whether the first-order differential equation (3.18), with a equal to
arg T,2, admits a solution that connects z, to z, We are therefore interested in
the solutions of

q,,, z = 4e", /2( 23 _ 1) ,	(4 .4)

which are sketched in fig. 1 . We see that there is indeed a solution with the
required boundary conditions. For the superpotential in hand, symmetry consider-
ations clearly imply that there exist soliton solutions connecting any pair of the
three critical points once this is established for a particular pair. To see this
explicitly we need not actually redraw fig. I for each of the other two values of a.
We have merely to note that in taking a --3- a+ 0, the flow lines of (4.4) are rotated
through an angle 41 at each point of the diagram. The rotated flow lines are
therefore curves which cut the original flow lines at constant angle 41 . By continu-
ity, there exists a value of 41 for which the rotated flow line leaving z = z , will
reach Z=Z3. Because of the symmetry we know that the value of 41 for which this
happens is 27ri/3 . There are three possible soliton-antisoliton pairs with topologi-
cal charges of equal magnitude but relative phases (± 1, +e2-,ri/3, + e- 27ri /3). Thus
any two solitons of different types may annihilate to leave an anti-soliton of the
third type, and therefore in the d = 4 WZ model with this superpotential there are
three domain walls which can intersect .



It might be suspected that a superpotential with three critical points would
always allow three domain walls, but one of the domain walls can become unstable
as the parameters of the non-leading terms in the superpotential change. For
exampl%c, the tension A~.j of a domain wall, initially satisfying M3 <M, +M2,
where M, and M2 are the tensions of the two other walls, may increase as the
superpotential is changed until A~, = M, +M2. At this point the domain wall
becomes unstable against decay into the other two and will therefore not appear as
an e-ract solution of the first order equation Rz = e~"WT7z joining two critical
points of W (for any value of 0.
To see how a domain wall solution can vanish in this way, let us consider the

influence of a critical point at Z -_'~ Z3 on a pair of nearby critical points, at z =z,
and z =z, as the superpotential changes. We can choose et = arg T,,I, so that if
there is a soliton solution interpolating between z =z , and z =z2 it will a
the phase portrait of cl,, z = e" W7(_z_~ as a separatrix between these points. Given a
phase portrait for which such a separatrix, exists, the way in which it may disappear
is illustrated in fig. 2. The potential in fig. 2a allows three soliton solutions (two of
them do not appear in the figure as they have other values of a), whereas the
potentials in figs. 2b, c allow only two solitons. At the crossover point, illustrated by
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Fig . 2 . When the parameters of the potential are changed the domain-wall solution vanishes.
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a)
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b)

Fig. 3 . Possible "networks" of domain-wall solutions connecting the three vacua of a quattic
superpotential.

fig. 2b, z, and z, are both connected to Z3 by separatrices ; the corresponding
topological charges TB and T32 therefore have the same phase. Thus, allowing for
all values of a, the three distinct vacua are connected by a "network" of possible
domain-,%vall solutions in one of two ways, either as in fig. 3a (corresponding to fig.
2a) or a-,,. in fig. 3b (corresponding to figs. 2b, 0.
As an illustration we now turn to the general quartic superpotential . By

rescaling and shifting z by complex constants we can always arrange (provided that
not all three critical points are degenerate) that W of (4.0 take the form

W= Z 4 _ 41,Z :t -2 Z2 + 4liz,

	

(4.5)3

up to multiplication by a complex number which can be absorbed by a rescaling of
o, and a shift of a. For example, the symmetric potential (4.2) is equivalent to the
potential (4.5) with Ii = ±iC3 . Thus the physics depends on the single complex
parameter Ii = tL I + 'A2 . The three critical points are given by

Z, = - 1,

	

Z2 = 1 -)

	

Z3 =A*

	

(4.6)

We have seen previously that at any boundary separating regions in which the
three critical points have different connectivities two topological charges must have
the same phase. This happens if either A2 = 0 or

3g4 +2 L2

	

2 -g42 - 61£2 -6 112 + 3 = 0 .1 Ibt2

	

1 2 (4.7)

There is no change in the stability of the domain walls in crossing the real IL-axis
but there is in crossing one of the boundaries defined by (4.7). These boundaries
are shown in fig. 4.

For a generic polynomial superpotential, of order k + 1, there will be k isolated
critical points in the z-plane connected by some network of solutions to the
equation d,, z = eia jVif-Z-~, for appropriate values of a. All the critical points are
saddle points from which it follows that the integral curves of this equation, for
given a, cannot form closed loops. Hence there is at most one separatrix joining
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Fig. 4 . The connectivity of the three critical points in different regions of the parameter space of a
quartic superpotential .

any pair of critical points and if there is such a separatrix it will occur for a unique
value of a, modulo 7r . There will therefore be at most one solution linkingany pair
of critical points (which can be traversed in opposite direction by taking er --+ a + -,r).
As the parameters of Ware continuously changed the connectivity of this network
may change. Domain-wall intersections will be possible whenever the network of
connected vacua has loops, the domain walls that meet at the intersection corre-
sponding to the links of the loop . For higher-order superpotentials it will be
possible to have intersections which involve more than three domain walls. For
example a generic quintic superpotential will have four isolated critical points.
There are in principle six possible ways in which these critical points might be
connected by domain-wall solutions, as shown in fig. 5, although we do not know
whether all possibilities are realised for some region of the (four-dimensional)
parameter space of physically distinct quintic superpotentials.

If the connectivity is as in figs . 5a or 5b no stable domain-wall intersections are
possible . If it is as in figs. 5c, 5d or 5e, intersections of three domain walls are
possible ; for figs . 5d or 5e intersections of four domain walls are also possible but
they can be viewed as superpositions of intersections of three walls. If the
connectivity is as in fig. 5f an intersection of three walls is not possible but one of
four is .
The polynomial superpotentials we have considered so far are all perturbations

of the degenerate superpotential W= z". Under a generic perturbation by lower
powers of z the degenerate critical point of this superpGtential at z = 0 is resolved
into k isolated non-degenerate critical points . If we had restricted discussion to
interactions of the scalar field z that are renormalisable in d = 4, then k = 2
would have been the only possibility, leading to at most one type of domain wall,
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a)

	

b)

J)

&,tended objects

Fig. 5. Possible networks of domain-wall solutions for a quintic superpotential .

for which the topological charge can be taken to be real and for which stable
domain wall intersections therefore cannot form. To find renormalisable potentials
for which stable domain wall intersections can form it is therefore necessary to
consider superpotentials that depend on at least two complex variables. For a
superpotential that depends on just two complex variables z, and z, it remains
true that the critical points are isolated . In this case the possible degenerate
critica! points belong to one of the A, D or E series [16]. The restriction to field
theories that are renormalisable in d = 4 now yields one further possibility:

Z2

	

+Z31
Z2

	

2. The critical point at Z I =Z2 = 0 is of type D and multiplicity 4, i.e .
2D4. Under a generic perturbation by the monornials (z , zI , Z2) the degenerate

critical point is resolved into four non-degenerate critical points, i.e . a four-well
potential. In this case there will certainly be at least three types of domain wall and
it seems likely that stable intersections will be able to occur for some regions of the
parameter space formed by the coefficients Of (Z 1, Z 2,

1 Z2)* If there are more than
two scalar fields then non-isolated critical points will be generic.

5. Conclusions

Motivated by Strominger's recent suggestion that the dynamics of stringlike
intersections of 5-brane solutions of d = 10 supergravity/Yang- Mills should be
governed by the action of the Green-Schwarz superstring, we have investigated
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the general conditions under which extended object solutions of supersymmetric
field theories may be expected to form stringlike intersections.

Firstly we have noted that there are two other cases, i.e. in addition to the one
suggested by Strominger, in which this might be expected to happen. Curiously,
they are precisely the maximally-extended objects of the RC,H families in the
classification of supersymmetric extended objects, suggesting that the notion of
intersections provides the unifying link between these families.

Secondly we have shown that the conservation of the antisymmetric tensor
topological charge carried by extended objects of supersymmetric field theories
provides a severe constraint on the energetics of their intersections, suffikient to
prevent stable intersections from forming unless there is an internal degree of
freedom allowed to the topological charge. An example for which there is such a
freedom is that of domain walls in the d = 4 Wess-Zumino model with holomor-
phic superpotential W. In that case the topological charge is complex and a
difference in the phase of this charge for intersecting domain walls is crucial to the
stability of the intersection . We have presented a detailed analysis for a quartic
superpotential, and shown that for certain regions of parameter space domain
walls will indeed intersect on strings.

In contrast, there is no internal degree of freedom allowed to the 5-index
topological charge of a d = 10 5-brane, a fact that is related to the absence of a
non-trivial (continuous) automorphism group of the (1, 0) d = 10 supersymmetry
algebra. It follows from our general arguments that intersections of 5-branes
cannot be more than marginally saable . At this point we should emphasise that
these arguments strictly apply to flat space d = 10 field theories because it is only
in this case that the supersymmetry charge is locally well defined. Hence while the
argument applies to the 5-brane solitons of the pure d = 10 super YM theory , it
might fail for the analogous heterotic 5-brane solution of ref. [3], which involves
gravitational fields . Another escape from our conclusion would be to consider
5-brane solutions that wrap around a compactified dimension and that have a
non-zero momentum in this direction. This could bring other charges into play.

Edward Abraham would like to thank the Commonwealth Scholarship Commis-
sion for their financial support.

Note added in proof

That the central charge of solitons in the d = 2 (2,2)-supersymmetric Wess-
Zumino model is complex has been noted previously by Fendley et al . [171 . These
authors have shown that the model with superpotential WW = Zk+1 _Z for
integer k is integrable . In this case, therefore, the "solitons" are actually solitons
in the strict sense of the word, as well as in the loose sense of "particle-like

solutions" used here . We thank D. Olive and G. Sierra for bringing this paper to
our attention.
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