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• Time-dependent solutions, called Q-kinks, of certain ( 1 + 1 )-dimensional sigma-models with scalar potentials are 
shown to have many properties in common with BPS dyons of (3 + 1 )-dimensional Yang-Mills/Higgs theory. In 
particular, sigma-model analogues of the phenomena of fractionally charged dyons and of charge-exchange between 
dyons and axion domain walls are described. In 2 + 1 dimensions Q-kinks become Q-strings. We show that the recently 
discovered Q-lumps of the (2 + 1 )-dimensional model can be considered to be stable loops of Q-string. 

I. Dyons and Q-kinks 

Dyons are solutions of  Yang-Mills/Higgs (YM/H)  theories that carry both electric charge, Qe, and magnetic 
charge, am [ 1 ]. Exact solutions can be found [2,3 ] in the BPS limit, with an energy ~ that saturates the Bogomolnyi 
bound 

C t> V~e2+  QZm. (1.1) 

These solutions obey/~rst-order (Bogomolnyi) equations. For the BPS monopole, with Qe = 0, these equations 
can be interpreted as (anti)self-dual equations for a YM four-vector potential, A, in a locally euclidean space of  
topology R 3 × S 1, if the Higgs field is identified as the fourth component of  A [4,5]. The electric charge o f a  dyon 
can then be interpreted as the component of  the momentum around the S t factor, so a dyon is a monopole that 
has been boosted in the "extra" dimension [6]. A feature of  this Kaluza-Klein (KK) interpretation is that the 
compactness of  the extra dimension provides an alternative explanation of  the quantization of  electric charge in 
the presence of  a monopole. 

It is well known that (1 + 1 )-dimensional sigma-models have many properties in common with (3 + 1 )- 
dimensional YM theory. An additional aspect of  this analogy is that a class of  sigma-models with a scalar field 
potential have (in general time-dependent) solitonic solutions, called "Q-kinks ' ,  with similar properties to those 
of  the BPS dyons of  Y M / H  theory [7]. Let {~b I } be the coordinates of  a K~hler target space, .M, with metric 
gH(cb), and let k = kZ(~b)01 be a holomorphic Killing vector. Let x 'n = ( t ,x )  be cartesian coordinates for 
(1 + 1 )-dimensional Minkowski spacetime, M2. Given a map f :  M:  ~ A,/the sigma-model fields ~b I (t, x)  are 
given by f :  (t, x ) ~ t~ I (t, X ).  The action with Q-kink solutions of  its Euler-Lagrange equations is given by 

S = f d2x l(omOlOmOJ --/12klkJ)glj , (1.2) 

where # is a mass parameter. Denoting derivatives with respect to t and x by, respectively, an overdot and a 
prime, we can write the energy of  any configuration ~bz (x), for fixed time t, as 

o o  

e[~b] = / dx ½(q31~3 J + ~tl(fitJ "4- l t l 2 k l k J ) g l J .  (1.3) 

- - o o  
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Since 34 is K/ihler it has a complex structure j ig  and a corresponding closed K~ihler two-form O with components 
OIj = gzrJK:. We may make use of this fact to rewrite C in the form 

= . i  dx  {1 (~)I _ fl,uk I) (~)J _ / . t v kJ )g l j  .+ 1 [~p,I _ /~  (V/1 _ v2)j ,Kk K ] [~b,J _ / t  (V/1 _ v2)jSt.kLjglj} 

- oca 

+ vQe + (V/1 - v2)am, (1.4) 

where v is an arbitrary constant, Qe is the Noether charge 

Qe = Iz i dxOZkJ gts (1.5) 

associated with the symmetry generated by k, and Qm is the topological charge 

Qm = 11 7 dxc~'IkJoIJ" (1.6) 

- o o  

Since k is both Killing and holomorphic it follows that £kO = 0, where £:k is the Lie derivative with respect to 
k. This implies, since dO = 0, that d(ikO) = 0, where ikO is the one-form obtained from O by contraction 
with k. This one-form induces a closed one-form on "physical" space (parametrized by x) which is precisely the 
integrand of (1.6). Hence Qm is topological. Alternatively, we may use the fact that any holomorphic Killing 
vector can be expressed locally in terms of a Killing potential [8] U (4~) by 

k z = - - O I J o I U ,  (1.7) 

which allows Qm to be re-expressed in the form 

Qm = I.t[U(~(x) ~lx=+~, jx=-oo, (1.8) 

for which the topological character of Qm is evident. 
In this model the charges Qe and Qm play a role similar to the electric and magnetic charges of the (3 + 1 )- 

dimensional YM/H theory, hence the choice of notation. In particular, by choosing the parameter v such that 
the unit two-vector (v, V'I - v 2) is parallel to (Qe, Qm ) we deduce the energy bound 

>t x/Q 2 + Q2m (1.9) 

in precise analogy to ( 1.1 ). Moreover, this bound is saturated by solutions of the first-order equations 

~i = itvk I ' q~,l = lz(V/~_ vz) j1sk  J ' (1.10) 

which are the sigma-model equivalent of the Bogomolnyi equations for YM/H dyons. Q-kinks are solutions of 
(1.10) that interpolate between zeros of the Killing vector k. 

The conditions that 34 be Kiihler and that the Killing vector k be holomorphic are precisely those required 
for N = 2 [more precisely, (2,2)] supersymmetry [8]. This is again analogous to the 3 + 1 YM/H case since 
the BPS limit is precisely what ensures the existence of an N = 2 supersymmetric extension. In ref. [7] we 
considered the special case for which 34 is hyper-K~hler and k triholomorphic, which are the conditions required 
for N = 4 supersymmetry. In this case there are three topological charges which, together with the Noether 
charge, constitute the components of a single quaternionic charge. Here we shall concern ourselves with the more 
general, K~ihler, case. Of course, since hyper-K~ihler and triholomorphic are special cases of, respectively, K~ihler 
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and holomorphic, the specific models of  ref. [7], which were based on the Gibbons-Hawking multi-centre four- 
metrics, suffice to demonstrate the existence of  models admitting Q-kinks. However, since we now require weaker 
conditions it is possible to find a simpler example. 

The simplest example is provided by the choice .A4 = S 2. In coordinates (h, ~o ), where h is the "height" and 
~0 the azimuthal angle, the metric of  a two-sphere of  unit radius is 

(is 2 1 - 1 - h  2dh2 + ( 1 - h 2 ) d ~ o  2. (1.11) 

The non-zero components of  the complex structure are 

1 Jhto = 1 -  h 2 (1.12) 
J ~ h  - -  1 - -  h E ' 

and the corresponding closed K~ihler two-form is/2 = dh A d~o. The holomorphic Killing vector is k = 0/0~o. 
For this example eqs. (1.10) reduce to 

]z = 0 ~ h  = h ( x ) ,  ~ = / l v ~ 0  = ~00(x) + # v t ,  

and 

(1.13) 

~o' = 0 ~ 0 o = / l y o ,  h ' = # ( ~ / 1 - v  2 ) ( 1 - h  2 ) : ¢ - h ( x )  = t a n h / ~ ( V / 1 - v 2 ) ( X - X o ) ,  (1.14) 

where Xo and Y0 are constants. To summarize, the Q-kinks of  this model are given by 

~o = l l ( Y o + V t ) ,  h = t a n h / t ( V / 1 - v  2 ) ( x - x 0 ) .  1.15) 

The corresponding topological charge is 

Qm = 2/z. (1 .16)  

Observe that the Killing potential in the chosen coordinates is simply U = h, and since the solutions (1.15) 
interpolate between h = - 1  and h = 1 we confirm that Qm = 2#. In general, it can be seen from (1.7) that 
zeros of  the Killing vector correspond to critical points of  the Killing potential. This is consistent with the fact 
that the function U(q~, h) = h has no critical points because the metric is singular at precisely those points, 
h = +1, at which the Killing vector vanishes. These singularities are of  course merely coordinate singularities 
and can be removed by a change of  coordinates. In non-singular coordinates the Killing potential will have the 
expected two critical points. 

The Noether charge corresponding to (1.15) is 

Qe = f l z v  f dx (1 - h 2) - 
/) 

Qm. (1.17) 

The energy is therefore 

l 
£ - ~ Qm. (1.18) 

These formulae have an obvious KK interpretation; v and Qe can be interpreted as, respectively, the velocity 
and momentum of  a particle of  rest-mass Qm in an "extra" dimension. The factor 1 / lv/] --Z v 2 in (1.18) is just 
the expected relativistic time-dilation factor. It is clear from ( I. 15) that the constant Y0 can be identified as the 
coordinate of  the extra dimension. Since ~o is identified with ~o + 2~, Y0 is identified with Yo + 2~//t. We see 
that the moduli space of  the Q-kink solutions (1.15) is R × S I. 
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Although there is no obvious analogue of the Dirac quantization condition for Q-kinks, the fact that ~0 is an 
angular variable ensures that, in the quantum theory, the "electric" charge Qc will be quantized. However, we 
remind the reader that there is a subtlety to be considered when determining the electric charge quantum of a 
YM/H type dyon in a CP-violating theory; if the CP violation is due to a non-zero 0-angle, then the dyon has 
electric charge e0/2n modulo an integer [9]. Furthermore, if the constant 0-angle of the YM/H theory is replaced 
by an axion field 0 (x), having a periodic potential V (0), then there can be axion domain walls that interpolate 
between values of 0 that differ by 2n. It has recently been shown [ 10 ] that a dyon induces a half-integral electric 
charge on such a wall and that a dyon that passes through it must exchange electric charge with the wall. We 
discuss a sigma-model analogue of these result in the following section, with the dyon replaced by a Q-kink. 

To complete the analogy of Q-kinks to dyons, we recall that the sigma-model analogue of the euclidean four- 
dimensional (anti)self-duality YM equations are the euclidean two-dimensional sigma-model equations 

Oi~ 1 = : ~ 6 - i j j I j o j O  J ( i , j  = 1,2),  (1.19) 

the solutions of which can be interpreted as (static) "lumps" of the (2+ 1 )-dimensional sigma-model with 
vanishing scalar/]eld potential which, for convenience, we refer to as the "massless" (as against "massive") 
sigma-model (see for example ref. [ 11 ] ). If  we now dimensionally reduce to dimension 1 + 1 by setting 

02(91 = I l k  I , (1.20) 

then (i) the action reduces to the massive sigma-model of (1.2), and (ii) eqs. (1.19) reduce to q~,l = l tJtskJ,  
which is just the equation of a Q-kink with vanishing "electric" charge, i.e., the analogue of the YM/H monopole. 
Thus Q-kinks of (1 + 1 )-dimensional massive sigma-models bear a similar relationship to lumps of (2+ 1 )- 
dimensional sigma-models as do dyons of (3 + 1 )-dimensional YM/H theories to instantonic solitons of (4 + 1 )- 
dimensional pure YM theories. 

At this point we should point out that one can also consider the massive sigma-model in (2+ 1 ) dimensions, 
for which there are "Q-lump" solutions [12,13]. We still have the Q-kink solutions, of course, but these must 
now be considered as "Q-strings", and the charges Qe and Qm as "electric" and "magnetic" charges-per-unit- 
length. A closed loop of Q-string has vanishing total "magnetic" charge but can have a new topological charge- 
per-unit-length, not available to Q-kinks, such that the total charge is an integer. We shall show that this charge 
can stabilize a closed loop of Q-string; the stable configuration is none other than a Q-lump. An interesting 
point here, that we have not yet investigated, is whether there is an analogue of this phenomenon in (4 + 1 )- 
dimensional YM/Higgs theory, i.e., a stable closed loop of "dyonic-string", as the Q-kink/dyon analogy that we 
are here propounding would suggest. 

2. Fractional charge and axion-kinks 

Because of the identification of ~0 with ~0 + 2n, the Q-kink solution (1.15) is periodic with period 

2n 
T - (2.1) 

/iv 

The action for a Q-kink configuration evaluated over one period is S = -4rtlx/-f-Z-~-vZ/v and hence 

S + CT = 4n v (2.2) 
4 i -77"  

According to semi-classical reasoning (see for example ref. [14] ) this quantity must be an integral multiple of 
2n. Given the expression 1.17 ) for Qe and the fact that Qm = 2/, this is equivalent to the quantization condition 

Qe = # × integer, (2.3) 

as expected from its KK interpretation. 
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Following Witten's discussion [9] of  dyons in C P  non-conserving theories we now consider the addition to 
the action of  the CP-violating total derivative term 

0 S f . ( ~  ) So = - 4--~ 

M2 

(2.4) 

where f *  (O) is the pull-back of  the target space K~ihler two-form £2. Since we wish to construct an analogy with 
YM theory we require that e iso be invariant under 0 ---* 0 + 2n, for any field configuration. Since the integral 
over f *  (12) is the integral of  12 over the image two-cycle f (M2) in .M, this is equivalent to the requirement 
that (1/4n)£2 be an integral two-form, i.e., that .M be a Hodge manifold. Note that this property is satisfied by 
our simple S 2 example because 12 is the area two-form and its integral over the unit circle is 4z~. In components, 
the addition to the action is 

So = 0 i d2x@ld)tJ f f2lJ  -~ 0 f d t d x ( ( o h ' - ~ o ' h )  (2.5) 
- 4---~ a ~ a ' 

where the second line is the expression for the S 2 model, which is the case we shall deal with in the following. 
For the Q-kink configurations of  (1.15), evaluated over one period, we have 

So (Q-kink) = 0, (2.6) 

which must now be added to the right-hand side of  (2.2). The resulting modified quantization condition is 

/10 
Qe = - 2--~n + # x integer. (2.7) 

Clearly, the mass parameter/z here plays the role of  the electric charge unit of  the Y M / H  theory. 
Following ref. [9] we can also establish the result (2.7) by canonical reasoning. For this purpose we rewrite 

the action, now including the 0-term, in the canonical form 

i i {  , ( o  )( ] S = dt  d x  ~17~ 1 - ~ 7~ s - - ~  ~'K~'~K1 7~J- ~ ~? L J) gla -- 5(91 .tl.tJ(9 g t s -  lfl2kSkJgld , 

- oo 

(2.8) 

where ns( t ,  x )  are the canonical conjugate fields to q~l; their Euler-Lagrange equations are 

ns =/bSgs l  + -ff-~ ¢'S Osl  , (2.9) 

from which we see that the effect of  the total derivative term in the action is to modify the definition of  the 
canonical conjugate fields. This has a significant effect on the Noether charge Qe because when expressed in 
canonical variables it acquires a 0-dependence. Specifically, 

i ( >j 0 Qe = Ix d x  k s n l -  0 ~)#J~JI = l x dx k17~l- -~Qrn .  

-oo -oo 

(2.10) 

For simplicity, consider the Q-kink of  the S 2 example, for which kI~zi = ~z~ and Q m  = 2/1. Then, upon canonical 
quantization, we find the "electric" charge operator 

Qe = - i l lOv I.tO 2n ' (2.11) 
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where 

j O~ ~ dx 6p(x--~ (2.12) 

is a functional differential operator with integer eigenvalues, as a consequence of the identification ¢ ~ p + 2g. 
We therefore recover the quantization condition of (2.7). 

We now promote the hitherto constant parameter 0 to a field O(x), which we shall call the axion field by 
analogy with YM theory. We thus extend our considerations to an action of the form 

f (½ l o~t~'J~ij+~O OOmO-V(O)), (2.13) S = d2x (om(}lOrn~ J -  ~2klkJ)glg- -~ 1 m 

where the potential V (0) is assumed to be periodic in 0 with period 2~z and to have its absolute minima at 0 = 
0% modulo 2n. Under these circumstances there will be additional kink-like solutions that interpolate between 
adjacent minima of V; these are the sigma-model analogues of axion domain walls and we shall therefore refer 
to them as axion-kinks. As we shall see, there is an interesting effect that occurs when a Q-kink passes through 
an axion-kink. This effect is closely analogous to a similar, recently investigated [ 10], effect that occurs when a 
magnetic monopole, or dyon, passes through an axion domain Wall. 

The canonical form of the action we are now considering is 

0 ~b,Kl2K'frcs 0 ,,z- ' ,S s f dtidx[$% Ono- (Tr,- ~ 
= + ) ~  - - ~ @  M c l J g  

i 2 ½~,I~Og ° l#2kI-~, ½(0') 2 V(O)] (2.14) - ~ K g t . l -  - , ~ ~o - 

and the "electric" charge operator is now 

j7  0e = - i ~ 0 ~ -  4- ~ f dxO(x)k~4Ys~2sx=-i#O~,-~ dxO(x)h'(x), (2.15) 

where the latter expression is appropriate for the simple S 2 model. Now consider the effect of passing, quasi- 
statically, the Q-kink through an axion kink that interpolates between 0 = 0o and 0 = 0o + 2~. If the Q-kink is 
initially in the region where 0 = 00 and carries "electric" charge [n + (I /2~)00]# then, as we see from (2.15), 
it will have a charge of one unit less after having passed through to the region in which 0 = 00 + 2g. In the 
process it must transfer one unit of electric charge to the axion kink. 

To gain a deeper understanding of this process we rewrite Qe by an integration by parts in the form 

~ OC~ 

= -i/lO~ 1tOo # [(O(x) - Oo)h(x)]~=_°°~ + Qe rind) 
2~z 4~ 

where 

Q~in~l)_ /Z f O' = -~ dx (x)h(x). 
- -  0 0  

(2.16) 

(2.17) 
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Since Q~ind) represents a contribution to the total "electric" charge from those regions for which 0' # 0, i.e., 
at the location of the axion-kink, we may identify this quantity as the charge induced on the axion-kink by the 
presence of the Q-kink. If  the Q-kink and axion-kink are well separated then in the region where 0' # 0 it will 
be a good approximation to set h = + 1, the sign depending on whether the Q-kink is to the left or to the right 
of the axion-kink. In this case the induced charge is readily calculated to be 

ae (ind) = -q-½/z. (2.18) 

We conclude, in complete analogy with axion domain walls in the presence of a monopole or dyon, that a Q- 
kink induces a half-integral "electric" charge on the axion kink. As the Q-kink passes through the axion kink the 
induced charge changes from - ½/z to + ½~t, thus accounting for the transfer of one unit of charge to the axion kink. 

The phenomenon of solitons with half-integral charge found here is reminiscent of a similar phenomenon in 
other (1 + 1 )-dimensional field theories [ 15,16], but there appear to be a number of significant differences. 
Most obviously, the effect described here requires two different types of soliton. 

3. Q-strings and Q-lumps 

We now return to the massive sigma-model of section 1, but for spacetime dimension d = 2 + 1. We still 
have the Q-kink solutions of the (1 + 1 )-dimensional theory, but they should now be interpreted as infinite 
strings, and the charges (Qe, Qm ) as charges-per-unit-length. For an infinite string the total charge, of either type, 
would be infinite. A (finite) loop of string, on the other hand, does not correspond to a solution of the (1 + 1 )- 
dimensional theory. However, a Q-kink configuration is a good local approximation to the string cross-section 
for a large loop, so it makes sense to ask what will be the total charges for such a loop. It is not difficult to 
see that the total topological charge, ~ dg Qm (g), of the loop vanishes because of cancelling contributions from 
antipodal sections of the string. The total "electric" charge can be non-zero, however, and is given by 

Te = f dgQe(e) = f d2x¢lkl. (3.1) 

Since this charge is also carried by the elementary quanta of the theory, a circular loop of string that shrinks to 
a region of dimensions of its core can annihilate into these quanta, provided that it carries no other conserved 
charges. 

Actually, there is another, topological, charge available to a Q-string, although not to a Q-kink. This charge is 
the integral over space of the pullback of the closed, integral, K~ihler two-form (1/4n)I2, 

T m =  ~ f* ( -~ )  = ~ dh A d~o, (3.2) 

Space Space 

where the second line is valid for the model with target space S 2. This quantity appeared in the previous section 
as an instanton number, but with the integral over a (1 + 1 )-dimensional spacetime instead of a two-dimensional 
space. It is also well known as the topological charge of a sigma-model lump but, by Derrick's theorem, the 
usual static sigma-model lump configurations cannot be solutions of the sigma-model with scalar field potential 
that we are considering here. However, there is a time-dependent solution carrying non-zero Te charge known 
as a Q-lump [ 12,13 ]. In fact a Q-lump can be considered as a loop of Q-string carrying a non-zero Tr~ charge, 
at least for sufficiently large Te. To see this, consider a piece of Q-string along the y-axis from Yl tO Y2; then 
dh = d x O x h ( x ) ,  while d~ = dyOy~(y) ,  so for this piece 

x = o o  ~(Y2) 

1 ( f ) ( f  ) 1 1 ATm = Tn dh(x)  d4~(y) = ~-~-[rp(y2)-~(yl)]  = ~-~A~p. (3.3) 

x = - o o  rp(y 1 ) 
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For  a closed loop A~0 = 2rtu for integer u, so we have 

T m =  u .  (3.4) 

If  we allow a loop with Tm ~ 0 to contract  quasi-statically it will reach the min imum energy configuration 
for given values of  the charges Te and Tin. I f  both are non-zero this configuration is a Q-lump. Of course, this 
min imum energy configuration will not necessarily have an obvious interpretat ion as a loop of  string but  one can 
show that for sufficiently large Te the energy density is indeed ring-shaped. There have been various at tempts in 
the past  to f ind stable string loops, usually called vortons [ 17 ], in (3 + 1 )-dimensional field theories. In effect, 
we now see that a Q-lump is an example of  a stable vorton, albeit of  a (2 + 1 )-dimensional field theory. We 
should ment ion here that  there is actually no finite energy Q-lump for T m =  + 1 but there is, an least for the S 2 
model  [ 13], for ] Tm[ > 1. 

It is now easy to see what happens when we at tempt  to pass a Q-lump through an infinite Q-string separating 
two different vacua. The Q-lump on one side of  the string can be viewed as a "bubble" enclosing a region of  the 
vacuum on the other side. When this bubble meets the Q-string it will simply coalesce with the string, giving up 
its Te and Tm charge to the string in the process. 
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