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Certain (4, 4)-supersymmetric ( 1 + 1 )-dimensional sigma-models admit a scalar potential. We exhibit models of this type for 
which there are static particle-like solutions stabilized by a three-vector topological charge Q. These solutions form a special class 
of (generally time-dependent ) "Q-kink" solutions stabilized by a quaternionic charge Q = (Qo, Q), where Qo is a Noether charge. 
Q-kinks saturate a Bogomol'nyi-type bound and break half the supersymmetry. As solutions of a four-dimensional field theory 
they constitute examples of type |I supermembranes. 

Yang-Mills (YM) instantons can be viewed as so- 
liton-like solutions in a d =  (4 + 1 )-dimensional YM 
theory, but since these objects have no definite scale, 
a perturbation away from exact (anti-) self-duality 
will cause them tend to spread out indefinitely or 
shrink to a point, by contrast, BPS monopoles of  
d =  3 + 1 YM/Higgs  theory, which can be viewed as 
solutions o f  the dimensionally-reduced self-duality 
equations, have a definite scale and so do not share 
this instability. Similarly, sigma-model instantons can 
be viewed as " lumps"  of  a d =  ( 2 +  1 )-dimensional 
sigma-model but, as in the YM case, they have no 
scale and therefore suffer from the same instability. 
In this letter we consider d =  1 + 1 sigma-models, ob- 
tainable by (non-trivial) dimensional reduction from 
d =  2 + 1, which have "kink"-type solutions of  a defi- 
nite scale that can be considered as ( 1 + 1 )-dimen- 
sional analogues of  BPS monopoles. The action has 
the form 

f d2x 1 (Omol OmOJ _ll2ktkJ)glj, ( 1 ) S =  

where ds 2 = g~s dO I dOJ is the metric on the target space 
~/¢ for coordinates 0 ~, and k =  kIO/is a Killing vector. 
This action is obtained from the (2 + 1 )-dimensional 
sigma-model without a potential by imposing 
0y0/=/ tU [ 1-3 ] [for spacetime coordinates (t, x, y)  ]. 
We shall consider here the particularly interesting 
special case for which the target space metric is hy- 
per-Kiihler and the Killing vector tri-holomorphic.  

These models have the feature that they admit  a max- 
imal, i.e. (4, 4), supersymmetric extension [2],  and 
many of  their properties can be deduced from this 
fact, as we explain at the conclusion of  this letter. 

A hyper-K~ihler manifold has a triplet of  closed 
K~ihler two-forms g2 and an associated triplet of  com- 
plex structures, 

• 11 s =£2izcgt~J, (2) 

obeying the algebra of  the quaternions. A tri-holo- 
morphic Killing vector k is a Killing vector for which 
L~kl~= 0, where ~ is the Lie derivative with respect 
to k. It follows that d(ikD) = 0 and hence that 

Q= i dXOlOlkJ~~lJ (3) 
- - o o  

is a topological three-vector charge. There is also, of  
course, the Noether charge 

O0= i dx@tkJgIJ (4) 
- - c o  

associated with invariance of  ( 1 ) under 80 / zc k / (0).  
We now write the energy functional for the action 

( l ) a s  
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=i 

dx ½gtj( O@J + O,O' a,OJ + t12k'k J) 

dx{ ½g,,[ 0, 0 '  - ~ ( n ' S ) ' ~  k ~] 

× [OlOJ--lt(n'J)JL kl-] 

+ lgtj( a t_  Itnok') (0 J -  lznok J) 

+ It(noQo +n'Q)} , (5) 

where (no, n) is a unit euclidean four-vector, i.e., 
no+n .n=l .  By choosing n=(no,  n) parallel to 
Q = (Qo, Q) we obtain from ( 5 ) the energy bound 

E>~ ~I QI = lzxf Qo + Q'Q , (6) 

which is saturated by solutions of the first-order 
equations 

O'=lmok', 3~O'=lz(n'J)'jk J . (7) 

Conversely, any solution of eq. (7) (which can be 
viewed as the sigma-model equivalent of the Bogo- 
mol'nyi equations for the BPS monopole) has the 
property that the four-vector Q is parallel to the four- 
vector n. This can be shown by substitution of eq. 
(7) into (3) and (4) and use of the quaternion al- 
gebra satisfied by the three complex structures. 

If 0z= 0 we have a static kink solution with Qo = 0. 
Otherwise we have a time-dependent solution which 
we call a "Q-kink" by analogy with the Q-lumps of 
t h e d =  (2+  1 )-dimensional sigma-model [4,5] (and 
because of the relevance ofquaternions). As we shall 
see later, the possible topological charges are deter- 
mined by the target space metric and the Killing vec- 
tor k, i.e., by the parameters of the lagrangian. For a 
solution with a given topological charge Q there is 
therefore a one-parameter family of solutions with 
Qo=(no/Inl) lQI  and energy E = l Q I / x / 1 - n o .  
Static solutions with no= 0 have the lowest energy for 
given Q, but solutions with no¢ 0 are nevertheless 
stable. 

To demonstrate the existence of a model of the re- 
quired type (the conditions for maximal supersym- 
metry were given in ref. [2] but it was stated there, 
erroneously, that no non-trivial potential is compat- 
ible with them), and of finite energy solutions to (7), 
we shall concentrate on the special case for which,/! 

has dimension four. The general hyper-K~ihler four- 
metric with tri-holomorphic Killing vector has the 
form [6] 

ds 2= V-l(dO°+og"dO)2+ VdO'dO, (8) 

with V × o~ = __ V V (in the usual notation of euclidean 
three-vector calculus), and the three closed K~ihler 
two-forms are 

D =  (d0°+o~-d0) d O -  VdO×dO, (9) 

where the wedge product of forms is understood. The 
general form of Vfor a complete metric is [6] 

V=O+ ~ 2M 
r=, 1 0 - 0 , 1  ' (10)  

where M> 0 and g = 0  or 1. The points Or, r=  1, 2, ..., 
no, are called the "centres" of these "multi-centre" 
metrics. For a complete metric we also require that 
0~<0°~< 8zcM, so that all these spaces are S ~ bundles 
over some three-dimensional base space with orbits 
of 0/00 ° as the fibres. The tri-holomorphic Killing 
vector is 0/00°; it vanishes at the centres {0,, r=  1, 2, 
.... no} of the metric where the S ~ radius vanishes. It 
follows that a metric with more than one centre cor- 
responds to the potential term of (1) having more 
than one isolated zero. Such a model admits Q-kink 
solutions, which interpolate between the zeros of this 
potential. 

To see this, we observe that for the special case un- 
der consideration eq. (7) reduces to 

~°=/~no, ~=0 ,  3 ,0°=0 ,  alO=l. tV- 'n.  (11) 

Let 01 and 02 be any two centres of the metric. There 
are finite energy solutions to (11 ) that interpolate 
between them, with topological charge Q = 0~ - 0 2  and 
Noether charge Qo = (no/I n I ) / I Q I, provided n is 
chosen parallel to 0J -02 .  For a two-centre metric 
with d=0  the solution is easily found to be 

O°=~o+ lZrlot , 

0=½(01 +02) 

+½(0, +02) tanh(/~lnl\ 4M (X-Xo) )  , (12) 

where Xo and ~o are constants. In addition to this two- 
parameter family of (degenerate) solutions there is a 
one-parameter family of Q-kink solutions labelled by 
no with a width (and energy) that increases with no, 
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so that the narrowest one is the static kink solution. 
W e  turn now to the (4, 4)-supersymmetric exten- 

sion of our action. A 4k-dimensional quaternionic- 
K~ihler manifold, ~#, is one for which the holonomy 
of a torsion-free connection is contained in Sp(1) 
x S p ( k ) .  Let f/~ be a vielbein for J / w i t h  i=1,  2 a 
S p ( 1 ) ~ S U ( 2 )  index and a =  1, 2 ..... 2k a Sp(k) in- 
dex. A hyper-K~ihler manifold may now be defined 
as a quaternionic-K~ihler one for which the holon- 
omy is further restricted to lie in Sp (k). The only non- 
vanishing component of the spin-connection in this 
case is O.)liaJb~.(~J(.Ola b, where O)lab:=O)laCff~cb (ff~ab 
being the antisymmetric Sp(k)  invariant tensor) is 
symmetric in ab. The only non-vanishing component 
of the Riemann tensor, defined by R1jia jl':= 
[Ol~Oj,J'+~OliakCwjkj b -  (I*--'J) ], then takes the form 

Ri~jbk, ta =Rabccltijekl , ( 13 ) 

where Rabcd is totally symmetric. The three-vector- 
valued antisymmetric tensor Dzj may now be written 
as the S U  ( 2 )  triplet 

12~j = 2if1 "a fS  )~ . (14) 

Furthermore, the condition that the Killing vector be 
tri-holomorphic may be written as [ 3 ] 

kUt~:J) t, 1 = 0 ,  (15) 

which means that k,~;'h) is the only non-zero part of 
k t ; j .  

With these ingredients we may now write down the 
(4, 4)-supersymmetric action 

S= f d2x [ ½ (0= 0 1  O T O  J - -  , t t 2 k l k J ) g l j  

!;]ia V_~+za_ 1 :a - 2"~+ - ~2_  V , 2 _ i ~  

1" ia + ~llt(A +)~_ib)kja:Jb 

IR t2'~2 b) (2~2_ja)  ] (16) - -  ~ abcd ~, + + i 

where 0, =0o+0~ and 0= = 0 o -  0~, V,2 _; ,=  0,2 _;~+ 
O~_oltol~t'2_,l, and similarly for V==2+,~, and the 
number of plus and minus signs indicates the Lo- 
rentz "charge". The supersymmetry transformation 
laws are 

80 / = i f  1i~ ( ~  ~_j i +2  J~_ ~+j i ) , 

82'~ =fd"O+O~ % -/~kJ"~'+~ + 80'o.~ ";t'+ ~ , 

~).,~ia_ = f l J a o = o I 6 ~ + i _ _ ~ k ~ , a ~ i j _ l _ ~ O I o ) t t  a ~ . ~  . (17) 

The eight (hermitian) supersymmetry changes are 
S~ °~ and S± i j, where 

s~+°) i ~[(~r+°'0)'f"°'~ _ ~ +_ ia 

-- oo 

-/tk~aA=ia+O(23) ] , 

S+~J=-2 i  i dx [(~Z--+0~0)Zf~('a2+'J)a 

-- /zk( 'a2,  J)a+O(23) ] , (18) 

and where ~1 = ~"gsi are the variables conjugate to 01; 
the 0(23 ) terms will not be needed in what follows. 
We now define 

a.S+_ :=aoS~ ) + ½aijS+ Ji, (19) 

where (ao, a~) are components of a euclidean four- 
vector a. Introducing a further four-vector b, the al- 
gebra satisfied by the charges (18) can be summa- 
rized as follows: 

{a.S+, b.S+ } = 2 ( a . b )  (H+_P) , 

{a.S+, b.S_ }= - 21~(a'b )Qo 

- ItQ~J( aobj ~-boaj' + iaj kbk ' ) , (20) 

where H is the hamiltonian, P the total momentum, 
Q/  = ( tr.Q ) /, and a'b=aobo + ½a~jbJi. In arriving at 
this result we have used the canonical (anti) com- 
mutation relations that follow from (16). Observe 
that not only do the topological charges appear as 
central charges in the algebra, thereby generalizing the 
result of ref. [7] to N =  4 supersymmetry, but so also 
does the Noether charge Qo (as noted in the K~ihler 
case in ref. [2] ). This is nor surprising from the per- 
spective of this paper because all four charges can be 
viewed as components of a single quaternionic charge. 

A feature of the supersymmetry algebra (20) is that 
it implies the energy bound (6). To see this, consider 
the particular hermitian supersymmetry charge 

S= ½ (a.S+ +a.S_ ) ,  (21) 

where a is now a unit four-vector and a is the four- 
vector with components (ao, - a ~j) (i.e., the quater- 
nion conjugate of a).  From (20) we then find that 

{S, S} = n - l t ( n o O o  + ½n'jaJ,) , (22) 

87 



Volume 291, number 1,2 PHYSICS LETTERS B 17 September 1992 

where 

n = a . a = a ~ -  ½a'jaJ,, n' = - 2aoaij (23)  
I 

are the components  of  another  unit  four-vector  n. 
Since the lef t-hand side of  (22)  is posi t ive semi-def-  
inite (as an opera tor  in the quan tum theory ) we have 
that  

H>~#n.Q, (24)  

where Q is the four-vector  central  charge with com- 
ponents  (Qo, Qij). The strongest bound  is found by 
choosing n parallel  to Q, as we saw before, and  the 
expectat ion value of  (24)  then yields (6) .  

In fact, the bound  is sa turated by the Q-kink solu- 
t ions of  eq. (7) ,  as we saw earlier. In this case the 
representat ions  of  the (4, 4) supersymmetry  algebra 
with a central charge are shortened (since they may 
then be viewed as massless representa t ions  in 
( 1 + 1 ) + 4 =  1 + 5 d imens ions ) .  This can also be seen 
from the fact that  a Q-kink breaks only half  the su- 
persymmetry.  To see this we first rewrite (7)  in 
SU (2)  and Lorentz charge nota t ion as 

O=( 9t = l~f liakJ~( no6j i+ in j i) , 

O= ¢ ' =  l t f  ',~k-'a( no,Sj ' - i n j  ' ) .  (25)  

Subst i tut ing this into the expressions for 82 in (17)  
and requiring that  ~ 2 = 0  we obta in  the following re- 
str ict ions on the supersymmetry  parameters :  

(no6j,+inji)~_vki=~ k (26)  + j .  

These equat ions are consistent  with ~'+j ~ 0 (since n 
is a unit four-vector) ;  they de te rmine  ~+ in terms of  
e_, so that  there are a total  of  four independent  so- 
lutions, the (4, 4) (1 + l ) -d imens iona l  supersym- 
metry is therefore broken down to an N =  4 worldl ine 
supersymmetry.  The effective act ion for one Q-kink 
will be an N =  8 supersymmetr ic  mechanics  with four 
supersymmetr ies  realized l inearly and four non-line- 
arly. the four l inearly-real ized supersymmetr ies  im- 
ply that  the worldl ine " f ie ld"  content  is that  o f  an 
N =  4 scalar mul t ip le t  with two scalars and  four (one- 
componen t )  spinors. One of  the scalars is the Gold-  
stone variable  associated with the breaking of  trans- 
lat ion invariance while the other  arises from the 
breaking o f  the U(1  ) symmet ry  generated by the 

Noether  charge (i.e., from a choice, respectively, of  
Xo and ~ in (12) ;  there are no Golds tone  variables 
associated with Q because topological  charges do not 
generate symmetr ies ) .  

In four d imensions  the solutions presented in this 
paper  can be in terpreted as domain  walls of  an N =  2 
supersymmetric  sigma-model.  The effective action for 
such a well must  have N =  2 wor ldvolume supersym- 
merry (in a "physical  gauge"; cf. ref. [8] where the 
N =  1 act ion is given) .  This is therefore an example  
of  a type II supermembrane .  I f  the Golds tone  scalar 
associated with the U(1  ) symmetry  is t raded  for a 
vector  gauge field (by a dual i ty  t rans format ion)  the 
effective act ion would be s imilar  to the recently pro- 
posed type II d =  10 five-branes [ 9 ] and three-branes 
[ 10,1 1 ]. In our case, however,  the d =  4 type II su- 
pe rmembrane  can be viewed more  s imply as a di- 
mensionally reduced version of  the conventional  d =  5 
supermembrane .  

Finally,  we expect that  the (4, 4) supersymmetr ic  
s igma-models  retain their  ul t raviolet  f initeness when 
a potent ia l  is included [2] .  It seems likely, by anal- 
ogy with the WZ models  [ 12 ], that  some choices of  
the centres of  the four-dimensional  mult i -centre  hy- 
per-K~ihler metrics will lead to new integrable ( 1 + 1 ) 
-d imensional  field theories. 
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