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Certain (4, 4)-supersymmetric (14 1 )-dimensional sigma-models admit a scalar potential. We exhibit models of this type for
which there are static particle-like solutions stabilized by a three-vector topological charge Q. These solutions form a special class
of (generally time-dependent) “Q-kink” solutions stabilized by a quaternionic charge Q= ( Oy, Q), where Q, is a Noether charge.
Q-kinks saturate a Bogomol’'nyi-type bound and break half the supersymmetry. As solutions of a four-dimensional field theory

they constitute examples of type Il supermembranes.

Yang-Mills (YM) instantons can be viewed as so-
liton-like solutions in a d= (4+ 1)-dimensional YM
theory, but since these objects have no definite scale,
a perturbation away from exact (anti-) self-duality
will cause them tend to spread out indefinitely or
shrink to a point. by contrast, BPS monopoles of
d=3+1 YM/Higgs theory, which can be viewed as
solutions of the dimensionalty-reduced self-duality
equations, have a definite scale and so do not share
this instability. Similarly, sigma-model instantons can
be viewed as “lumps” of a d=(2+ 1)-dimensional
sigma-model but, as in the YM case, they have no
scale and therefore suffer from the same instability.
In this letter we consider d=1+1 sigma-models, ob-
tainable by (non-trivial ) dimensional reduction from
d=2+1, which have “kink”-type solutions of a defi-
nite scale that can be considered as (1+1)-dimen-
sional analogues of BPS monopoles. The action has
the form

S— j d2x 138! 8,07 — u2k'k "Y1y » (1)

where ds?=g,,d¢’ d¢’ is the metric on the target space
M for coordinates ¢/, and k=k'9, is a Killing vector.
This action is obtained from the (2+ 1)-dimensional
sigma-model without a potential by imposing
9,0"=uk’ [1-3] [for spacetime coordinates (¢, x, y) ].
We shall consider here the particularly interesting
special case for which the target space metric is Ay-
per-Kdhler and the Killing vector iri-holomorphic.

These models have the feature that they admit a max-
imal, i.e. (4, 4), supersymmetric extension {2], and
many of their properties can be deduced from this
fact, as we explain at the conclusion of this letter.

A hyper-Kihler manifold has a triplet of closed
Kdihler two-forms € and an associated triplet of com-
plex structures,

JIJ=-Qu<gKJ, (2)

obeying the algebra of the quaternions. A tri-holo-
morphic Killing vector k is a Killing vector for which
Z82=0, where %, is the Lie derivative with respect
to k. It follows that d (i, £2) =0 and hence that

0= [ axoo' k', 3)

1s a topological three-vector charge. There is also, of
course, the Noether charge

Qo= f dx o'k’g (4)

associated with invariance of (1) under 8¢’ k!(9).
We now write the energy functional for the action
(1)as
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E= j dx%glJ(¢31¢3J+ 00" 8,07 + uk'k’)

— 0

= J dx{3g,, (0,0’ — u(n-J)  k*]

X [0,¢7 —u(n-J) k"]
+ %gu(‘l'j’—#”ok’) ((b’—unok")
+u(ngQo+n-Q)}, (5)

where (ny, n) is a unit euclidean four-vector, i.e.,
n3+n-n=1. By choosing n=(n, n) parallel to
Q= (Qy, Q) we obtain from (5) the energy bound

Ezp|Ql=p/03+Q:Q, (6)

which is saturated by solutions of the first-order
equations

¢'=pnok!, 8,¢'=u(n-J) k' . (7)
Conversely, any solution of eq. (7) (which can be
viewed as the sigma-model equivalent of the Bogo-
mol’nyi equations for the BPS monopole) has the
property that the four-vector Q is paralle/ to the four-
vector n. This can be shown by substitution of eq.
(7) into (3) and (4) and use of the quaternion al-
gebra satisfied by the three complex structures.

If ¢/ =0 we have a static kink solution with Q,=0.
Otherwise we have a time-dependent solution which
we call a “Q-kink™ by analogy with the Q-lumps of
the d=(2+ 1)-dimensional sigma-model [4,5] (and
because of the relevance of quaternions). As we shall
see later, the possible topological charges are deter-
mined by the target space metric and the Killing vec-
tor k, i.e., by the parameters of the lagrangian. For a
solution with a given topological charge Q there is
therefore a one-parameter family of solutions with
Qo=1(no/|n|)|Q| and energy E=|Q|/\/1-nj.
Static solutions with #,=0 have the lowest energy for
given @, but solutions with n,# 0 are nevertheless
stable.

To demonstrate the existence of a model of the re-
quired type (the conditions for maximal supersym-
metry were given in ref. [2] but it was stated there,
erroneously, that no non-trivial potential is compat-
ible with them ), and of finite energy solutions to (7),
we shall concentrate on the special case for which . #
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has dimension four. The general hyper-Kéhler four-
metric with tri-holomorphic Killing vector has the
form [6]

ds’=V-""(d¢°+w-dg)’+ Vdo-deg , (8)

with VX @ = 1 VIV (in the usual notation of euclidean
three-vector calculus), and the three closed Kéhler
two-forms are

Q= (d¢°+w-de) dg—V dgxde, 9)

where the wedge product of forms is understood. The
general form of V for a complete metricis [6]
nc 2M

V=0t 2 e (o)
where M>0and 6=0or 1. The points ¢,, r=1, 2, ...,
n., are called the “‘centres” of these “multi-centre”
metrics. For a complete metric we also require that
0<¢°<8nM, so that all these spaces are S' bundles
over some three-dimensional base space with orbits
of 9/0¢° as the fibres. The tri-holomorphic Killing
vector is 9/0¢°; it vanishes at the centres {@,, r=1, 2,
..., 1.} of the metric where the S' radius vanishes. It
follows that a metric with more than one centre cor-
responds to the potential term of (1) having more
than one isolated zero. Such a model admits Q-kink
solutions, which interpolate between the zeros of this
potential.

To see this, we observe that for the special case un-
der consideration eq. (7) reduces to

0°=uny, ¢=0, 8,0°=0, d,o=uV-"'n. (11)

Let ¢, and ¢, be any two centres of the metric. There
are finite energy solutions to (11) that interpolate
between them, with topological charge Q=¢, — ¢, and
Noether charge Q= (1o/|n|)/|Q]|, provided » is
chosen parallel to ¢, —¢,. For a two-centre metric
with d=0 the solution is easily found to be

9=+ unot ,
#=1(9+0:)
+1p+0) tann( A0 (). (12)

where x, and ¢ are constants. In addition to this two-
parameter family of (degenerate) solutions there isa
one-parameter family of Q-kink solutions labelled by
ny with a width (and energy) that increases with ng,
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so that the narrowest one is the static kink solution.
We turn now to the (4, 4)-supersymmetric exten-
sion of our action. A 4k-dimensional quaternionic-
Kihler manifold, .#, is one for which the holonomy
of a torsion-free connection is contained in Sp(1)
X Sp(k). Let i be a vielbein for .# with i=1,2 a
Sp(1)=SU(2) indexand a=1, 2, ..., 2k a Sp(k) in-
dex. A hyper-Kihler manifold may now be defined
as a quaternionic-Kdhler one for which the holon-
omy is further restricted to lie in Sp (k). The only non-
vanishing component of the spin-connection in this
case is w;/’=38lw; .’ where ;=R (Q2u
being the antisymmetric Sp(k) invariant tensor) is
symmetric in ab. The only non-vanishing component
of the Riemann tensor, defined by Ry .=
(8,00, + W, 5w, — (I=J) ], then takes the form

Rlajb keld = Rabrdgij €kl s ( 13 )

where R, is totally symmetric. The three-vector-
valued antisymmetric tensor £2,, may now be written
as the SU(2) triplet

Qi =2if; Vo fi . (14)

Furthermore, the condition that the Killing vector be
tri-holomorphic may be written as [3]

k“[a‘.j)b]=0a (15)
which means that k,,.',, is the only non-zero part of
k[;].

With these ingredients we may now write down the
(4, 4)-supersymmetric action
S=J d’x [$(0_¢' 8,07 — u*k'k”) gy,

—HAYV_ A, L4V, A,

+ %i.u(/llii——ib)kja:jb

—§Ranca(A5 A4, (WA D)], (16)

where 9. =0,+0, and 0_=08p—0,, VA _,,=03.4_,,+
0.0'w, "2 _,, and similarly for V_=4,,, and the
number of plus and minus signs indicates the Lo-
rentz “‘charge”. The supersymmetry transformation
laws are

6¢I=iflia('ljz e—ji+}~jg €+/ i) s

34k =ﬁjaa¢¢lfi—/ — pk’el, ;+ 30w, A%,

A =f,790_o €', — uke+ 3¢ w,, A . (17)
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The eight (hermitian) supersymmetry changes are
S© and S, ;, where

SO = f dx [(7£8,0) f; %444

-0

_ﬂkmlila"i—o(}})] 5

Sy¥==2i j dx [(n£0,8) f; A

—pk Ay P+ 0(AN)], (18)

and where 7,=¢’g,,; are the variables conjugate to ¢’;
the O(A*) terms will not be needed in what follows.
We now define

a‘St ==a0S‘i°)+%a’jSij,, (19)

where (g, a';) are components of a euclidean four-
vector a. Introducing a further four-vector b, the al-
gebra satisfied by the charges (18) can be summa-
rized as follows:

(@Se, bS8, )=2(ab) (HEP) |
{aS;,0:S_}==2u(ab)Qo
—ﬂQij(aObji_bOaj[_"iaj b’y (20)

where H is the hamiltonian, P the total momentum,
0/=(0-Q)/, and a-b=ayhy+3a';V’,. In arriving at
this result we have used the canonical (anti) com-
mutation relations that follow from (16). Observe
that not only do the topological charges appear as
central charges in the algebra, thereby generalizing the
result of ref. [7] to N=4 supersymmetry, but so also
does the Noether charge @, (as noted in the Kdhler
case in ref. [2]). This is nor surprising from the per-
spective of this paper because all four charges can be
viewed as components of a single quaternionic charge.

A feature of the supersymmetry algebra (20) is that
it implies the energy bound (6). To see this, consider
the particular hermitian supersymmetry charge

S=i(a-S, +aS.), (21)

where a is now a unit four-vector and 4 is the four-
vector with components (4o, —a’;) (i.e., the quater-
nion conjugate of @). From (20) we then find that

{Ss S}=H—,u(n0Qo+%n’JQf,-), (22)
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where
n=ad=aj—ia;a’;, n';=-2a,a’ (23)

are the components of another unit four-vector #.
Since the left-hand side of (22) is positive semi-def-
inite (as an operator in the quantum theory) we have
that

Hzun Q, (24)

where Q is the four-vector central charge with com-
ponents (Qo, Q°;). The strongest bound is found by
choosing »n parallel to Q, as we saw before, and the
expectation value of (24) then yields (6).

In fact, the bound is saturated by the Q-kink solu-
tions of eq. (7), as we saw earlier. In this case the
representations of the (4, 4) supersymmetry algebra
with a central charge are shortened (since they may
then be viewed as massless representations in
(1+1)+4=1+5dimensions). This can also be seen
from the fact that a Q-kink breaks only half the su-
persymmetry. To see this we first rewrite (7) in
SU(2) and Lorentz charge notation as

ar¢1=lufliakja(n05j I+in/ i) 5
a=¢l=ﬂflmk"a(n0§jl—inj I‘) . (25)

Substituting this into the expressions for 84 in (17)
and requiring that 84 =0 we obtain the following re-
strictions on the supersymmetry parameters:

(nd; ' tin; Ve X =€, %) (26)

These equations are consistent with €’.; #0 (since n
is a unit four-vector); they determine €, in terms of
€_, so that there are a total of four independent so-
lutions. the (4, 4) (1+1)-dimensional supersym-
metry is therefore broken down to an N=4 worldline
supersymmetry. The effective action for one O-kink
will be an N =8 supersymmetric mechanics with four
supersymmetries realized linearly and four non-line-
arly. the four linearly-realized supersymmetries im-
ply that the worldline ““field” content is that of an
N=4 scalar multiplet with two scalars and four (one-
component) spinors. One of the scalars is the Gold-
stone variable associated with the breaking of trans-
lation invariance while the other arises from the
breaking of the U(1) symmetry generated by the
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Noether charge (i.e., from a choice, respectively, of
Xo and ¢ in (12); there are no Goldstone variables
associated with Q because topological charges do not
generate symmetries ).

In four dimensions the solutions presented in this
paper can be interpreted as domain walls of an N=2
supersymmetric sigma-model. The effective action for
such a well must have N=2 worldvolume supersym-
metry (in a “physical gauge”; cf. ref. [8] where the
N=1 action is given). This is therefore an example
of a type Il supermembrane. If the Goldstone scalar
associated with the U(1) symmetry is traded for a
vector gauge field (by a duality transformation) the
effective action would be similar to the recently pro-
posed type 1l d=10 five-branes [9] and three-branes
[10,11]. In our case, however, the d=4 type II su-
permembrane can be viewed more simply as a di-
mensionally reduced version of the conventional d=5
supermembrane.

Finally, we expect that the (4, 4) supersymmetric
sigma-models retain their ultraviolet finiteness when
a potential is included [2]. It seems likely, by anal-
ogy with the WZ models [12], that some choices of
the centres of the four-dimensional multi-centre hy-
per-Kahler metrics will lead to new integrable (1+1)
-dimensional field theories.
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