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We find the conditions under which the three-dimensional K~hler sigma model with a potential term has non-dissipative but 
time dependent solutions, called Q-lumps, which saturate a Bogomol'nyi bound. These solutions only exist if the target manifold 
has a Killing vector field, k ~, with at least one fixed point and if the potential is of the form V=g,~Bk'~k p. This potential arises 
from dimensional reduction and in the linearised theory it is just a mass term. We discuss the elementary properties of the Q- 
lump solutions and construct explicit examples for the CP n sigma models. 

1. Introduction 

Non-linear sigma models have been intensively 
studied in a variety o f  different contexts. Although 
they are not renormalisable in dimensions higher than 
two they are often used to describe the low energy 
behaviour of  other theories. For an important  class 
of  these models, the three-dimensional K~hler sigma 
models, non-dissipative solutions to the equations of  
motion can be found. These lump solutions are sta- 
bilised by a topological charge and appear as topolog- 
ical defects, in many ways analogous to the mono-  
poles of  four-dimensional gauge theories. If, however, 
the sigma model is regarded as a low energy effective 
theory it is natural to allow possible potential terms 
to be included in the lagrangian. It then follows from 
Derrick's theorem that there can no longer be static 
lump solutions: the potential will cause them to col- 
lapse. It would therefore appear that in the presence 
o f  a potential the sigma model has no topological de- 
fects. It has, however, recently been found [ l ] that 
in the case of  a particular sigma model, the CP 1 model, 
there is a potential for which non-dissipative but time- 
dependent solutions to the equations o f  mot ion can 
be constructed. These solutions, called Q-lumps be- 
cause of  similarities with Coleman's Q-balls [ 2 ], have 
the same form as the pure sigma model lumps but 
their phase changes with time. In addition to their 
topological charge they carry a conserved Noether 
charge which prevents them from collapsing. It is of  

interest to try to generalise this construction for other 
models. In this paper we find the conditions under 
which a sigma model with a potential has Q-lump so- 
lutions. We show that for a K ~ l e r  sigma model Q- 
lumps exist only if the target manifold has a contin- 
uous isometry with at least one fixed point. For sigma 
models o f  this type (which include the CP n models, 
for example) the required potential has a particularly 
simple form. It arises from the dimensional reduc- 
tion o f  a pure sigma model in one dimension higher 
and in the linearised theory it is just a mass term. Be- 
cause o f  the naturalness o f  this potential it can be ex- 
pected that Q-lumps, or their four-dimensional "Q- 
string" relatives, will be found in theories o f  physical 
significance. 

2. The massive sigma model 

It is well known that if the target of  a sigma model 
has isometrics then these isometries induce an 
invariance of  the sigma model lagrangian. Namely, if 
0: ~ 3 - ' M  is a map from ( 2 +  1 )-dimensional space- 
time with the standard flat metric ~/#~ ( + - - ) to a 
target manifold with r iemannian metric g-B then the 
action 

S=½ f d3xrl uu OUOaOuO#ga#(O) (2.1) 

is invariant under the infinitesimal transformation 
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0"--*@'~+ ek '~ , (2.2) 

where k"  is a Killing vector of the target manifold. 
The conserved Noether charge induced by this iso- 
metry is 

Q= f d2xg,~#@'~k #, (2.3) 

where Z is some spacelike hypersurface. It is this 
charge that will play the crucial role in the Q-lump 
construction. We must add a potential term to the la- 
grangian in such a way that the transformation (2.2) 
is still a symmetry. The simplest invariant potential 
is 

V=g,#(@)k"(@)k#(@) . (2.4) 

Any function of Vwould also be invariant under this 
transformation, and so would be a candidate for a 
potential. The existence of topological defect solu- 
tions is often associated with the existence of a 
Bogomol'nyi bound. For a bosonic model such a 
bound invariably indicates that it may be enlarged by 
the addition of appropriate fermionic terms to form 
a model with extended supersymmetry. The pure 
sigma model, for example, may be extended in this 
way if the target manifold is K~ihler or hyper-K~ihler, 
precisely the conditions under which the sigma model 
has lump solutions. We therefore expect that Q-lumps 
will be found when the lagrangian with a potential 
admits such an extended supersymmetric enlarge- 
ment. It can be shown that the potential (2.4) is the 
only one that can be added to the hyper-K~ihler sigma 
model lagrangian so that it is still consistent with N =  4 
supersymmetry in three spacetime dimensions [3]. 
There are more general potentials that are consistent 
with three-dimensional N =  2 supersymmetry, which 
is all that we require, but (2.4) is the only one invar- 
iant under the symmetry (2.2). The potential (2.4) 
is therefore a very natural term to add to the sigma 
model action; we shall see below that it is the unique 
potential for which Q-lumps can be constructed. 

We will therefore look for Q-lump solutions to the 
equations of motion following from the action 

S= ½ ~ d3xg~# Ou(~ ~ Ou()#-mZgc~#k~k#. (2.5) 

We assume that the target manifold is K~hler, that is 

there is defined on the target manifold a covariant 
constant tensor J~#, called a complex structure, which 
satisfies J~7 J~#= - ~'~#. This will be sufficient to en- 
sure the existence of a Bogomol'nyi bound. Our ar- 
guments generalise to models with hyper-Kghler tar- 
gets, manifolds with three independent complex 
structures, J~#, although we shall not discuss them di- 
rectly here. We shall refer to (2.5) as the massive 
sigma model action since when the theory is linear- 
ised the potential becomes a mass term. 

The action (2.5) has an interesting interpretation 
as the dimensional reduction of a pure sigma model 
action in four dimensions, the four-dimensional 
spacetime being taken to have topology R 3X S 1, with 
the flat metric. Configurations for which the lagrang- 
ian is independent of the compact direction must 
satisfy 

Oa(x +e~3)=~)C~(x) +~mkC~(O(x) ) , (2.6) 

where x is an arbitrary spacetime point and 9~3 is the 
unit vector in the compact direction, which implies 
that 

0(~'~ - m k  '~ . (2.7) 
0x3 

Geometrically this means the circles of  constant Xo, 
x~, x2 are mapped into the orbits of the Killing vector 
flow. For this to be possible the Killing vectors must 
generate a U(  1 ) group of isometrics ~0t: M--,M. For 
the field to be single-valued we must require that a 
translation of 2r~r:f3, where r is the radius of the com- 
pact direction, corresponds to an identity transfor- 
mation of the isometry group. I f  the Killing vector 
flow is parametrised so that ~02, is equal to the iden- 
tity then m must be a constant, given by 

rn=nr -~ , (2.8) 

for some integer n. So for configurations satisfying 
(2.7) we can reduce the pure sigma model action in 
four dimensions to the three-dimensional massive 
sigma model action (2.5), up to a factor of  21tr. We 
can similarly obtain a massive sigma model in any 
dimension by dimensional reduction of the pure 
sigma model in one dimension higher. The Noether 
charge Q can then be interpreted as the component 
of  the momentum in the compact direction. This is 
analogous to the Kaluza-Klein interpretation of elec- 
trically charged monopoles or "dyons" and extreme 
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charged black holes [4 ]. Both of these can be viewed 
as dimensional reductions of  chargeless objects mov- 
ing in a five-dimensional spacetime. 

This Kaluza-Klein interpretation gives a strong 
motivation for studying Q-lumps. As many of the 
candidates for unified theories - most notably string 
theory - are supersymmetric theories that describe 
four-dimensional physics via some dimensional re- 
duction procedure, one may expect the low energy 
dynamics of  the scalar fields to be governed by an 
action of the form (2.5). In four dimensions the sca- 
lar fields would then have cosmic "Q-string" defects, 
corresponding to the Q-lumps of the three-dimen- 
sional theory. 

3. The Bogomol'nyi equations 

The full equations of  motion that follow from the 
massive sigma model action are 

OuO~(~"+F~ OuO# OuOr+m2ky V"k~=0,  (3.1) 

where F~r and V '~ are the metric connection and the 
covariant derivative on the target manifold. These are 
non-linear second order partial differential equa- 
tions and so are difficult to solve in general. It is pos- 
sible, however, to find a special class of solutions 
which satisfy simpler first order equations, the so- 
called Bogomol'nyi equations. 

The energy of a field configuration is 

E=½ f d2xO~O,~ O,(~°'+~,O'~+m2k,~k'~. (3.2) 
Z 

By using the complex structure, J"#, this may be rear- 
ranged to give 

E= f d:x l(O,O '~ "~J'~#e o O:#)2+½(O"Tmk"): 
Z 

+ ~ d:x09'~#eaOi~)'~ OJO#+m f d:x~"k'~' (3.3) 
Z E 

where o9,#-g-r  jr# are the components of  the K~hler 
form. The third term is just the integral over space of 
the pull-back of o9, 

T=  ] 0*09, (3.4) 
Z 

and as the K~ihler form is closed it is a topological 
invariant, i.e., it is invariant under smooth deforma- 
tions of the map 0, and must be conserved under evo- 
lution of the field by the equations of  motion. The 
fourth term is just the Noether charge (2.3) (multi- 
plied by the coupling constant) and so that too is 
conserved, it should be noted that no other potential 
would have led to the conserved charge appearing in 
this way. 

Since the target space metric is riemannian the first 
two terms are never negative, and so the energy of 
any configuration must always satisfy the inequality 

E>_. I T[ + ImQ[ . (3.5) 

This is similar to the Bogomol'nyi inequality for the 
pure sigma model but it now depends on the value of 
the charge Q, which is non-topological in origin. 

We see, moreover, from (3.3), that the inequality 
is only saturated by configurations satisfying the first 
order equations, 

Oi(9'~ T- J'~p ~j 8jq~#=0, ~'~T- mk'~=O . (3.6) 

The solutions to these equations are the Q-lumps. It 
is straightforward to check that they are exact solu- 
tions to the full equations of motion. The first equa- 
tion is just the Bogomol'nyi equation for the pure 
sigma model, its finite energy solutions are the 
(anti-)holomorphic maps from the compactified 
plane into the target manifold. These maps have a 
natural interpretation. There is a theorem due to 
Wirtinger (see, for example, ref. [5] ) which implies 
that the only holomorphic submanifolds of  a K~hler 
manifold are those whose induced volume is an ab- 
solute minimum among the volumes of all the sub- 
manifolds in the same homology class. Moreover, any 
submanifold whose volume is such an absolute min- 
imum is necessarily holomorphically embedded. This 
means that the lump solutions are precisely the maps 
of minimum area. 

From the second equation we see that the field must 
move with or against the Killing vector flow at a rate 
which depends only on the coupling constant m. Thus 
if there are Q-lump solutions they will exist for any 
value of the coupling constant, no matter how small. 

It can be seen that the two Bogomol'nyi equations 
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are consistent with one another. The Killing vector 
flow will preserve the area of  any map, relative to the 
target space metric. It follows from Wirtinger's theo- 
rem that this flow must take holomorphic maps into 
holomorphic maps. Thus a configuration that ini- 
tially saturates the Bogomol'nyi bound will continue 
to do so, as of  course one would expect on physical 
grounds. 

4. The Q-lump solutions 

It appears that from any lump solution of the pure 
sigma model one can construct Q-lump solutions to 
the massive sigma model, we have to check, however, 
that the energy of our Q-lump configurations is fi- 
nite. The Q-charge of a solution to eq. (3.6) may be 
written as 

Q = m  ~ d2xg~pk~k p . (4.1) 
Z 

For finite Q the point at infinity must therefore be 
mapped to a zero of the potential, corresponding to a 
fixed point in the Killing vector field. This is not al- 
ways possible, it may happen that there are no holo- 
morphic spheres embedded in the target manifold on 
which the Killing vector field has fixed points. For 
example the manifold C P  1 X C, with metric given by 
the product of  the standard metric o n  C P  1 with the 
standard flat metric on C, is isometric under transla- 
tions in the plane, but the corresponding Killing vec- 
tors have no fixed points. Thus although a pure sigma 
model with this target space would have lump solu- 
tions it would not be possible to construct Q-lumps 
from a lagrangian with a potential formed from a 
Killing vector that generates a translation. While in 
this case there are other isometries which one could 
exploit to construct Q-lumps, this need not be so in 
general. 

I f  the Noether charge is to be finite the fields must 
also fall off sufficiently fast at infinity; whether they 
do will depend on the particular model and the par- 
ticular configuration being considered. Consider, for 
example, the CP n model, with the Fubini-Study met- 
ric. We have n fields ua(z), a= 1 ..... n, and the metric 
is given by 

ds2=4 ~a6( 1 + ~cuc) --l~aUb du a dab. (4.2) 
( 1 + adUd) 2 

The metric is invariant under unitary transforma- 
tions of  the fields Ua, in particular under the transfor- 
mation Ua--,e i'~ ua, which rotates each of the fields 
about the origin. This transformation is generated by 
the Killing vector ka=iUa. I f  we form the potential 
from this Killing vector then, defining z=x l  + ix2, the 
Bogomol'nyi equations are simply 

0eua=0,  t~a= +-imua, (4.3) 

and their complex conjugates. These have solutions 
of  the form 

ua(z, t) =f~(z) e +imt . (4.4) 

Since the Killing vector field has a critical point at 
Ua=O the functions f~ must go to zero at infinity, for 
the topological charge to be finite they must be ra- 
tional [ 6 ]. The general Q-lump solutions will then be 
of the form 

u~(z , t )=  ~ 2ai e+imt, (4.5) 
i = 1  Z - - Z i  

where k is the degree of the map. When I z i - z j l  is 
sufficiently large this solution represents k compo- 
nent Q-lumps situated at z =  zi with internal parame- 
ters ;tat. The Q-charge of these solutions is not, how- 
ever, necessarily finite; in fact 

i dr (4.6) 
Q~  (2)2r+O(r3)  ' 

where 

So Q will be infinite unless (2) 2 vanishes. The pa- 
rameters 2ai must therefore satisfy the "polygon" 
equalities, 

Z 2 a , = 0 ,  (4.8) 
i 

for each a. There is thus not a Q-lump corresponding 
to every pure sigma model lump. In fact if k =  1 there 
are no Q-lump solutions at all, isolated Q-lumps can 
only arise as components of multi-lump configura- 
tions. The moduli space of Q-lump solutions is cor- 
respondingly smaller than in the pure sigma model 
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case. The solutions (4.5) depend on ( n +  1 )k com- 
plex parameters which are constrained by the n con- 
ditions (4.8). These solutions do not, however, all 
have the same Noether charge. I f  we scale the param- 
eters by a factor a we find that Q(a2ai, ctzi)= 
I a 12Q(Aai, zi). From a solution with a given value of 
Q we may obtain a solution with any other value of 
Q by scaling. The moduli space of solutions with a 
given topological charge which have the same energy 
is thus one real dimension less than the space of all 
solutions in that sector. So for any Q the moduli space 
of Q-lumps has real dimension 

d=2(n+ l )k-2n-1 .  (4.9) 

In the CP ~ case it is easy to visualise the physical 
significance of these degrees of  freedom. When the 
component Q-lumps are well separated there are 2k 
parameters, zi, which specify their positions and 
2 ( k -  1 ) parameters 2 i, satisfying the polygon equal- 
ity (4.8), that represent their sizes and phases. Since 
the positions, zi, are arbitrary there are no forces be- 
tween the component Q-lumps: they do not change 
their energy by moving relative to one another. In the 
two lump sector the polygon constraint implies that 
there must be a relative phase difference o fn  between 
the two lumps and they must both be of the same size. 
For a configuration in which the two component Q- 
lumps each have size ;t and are separated by a dis- 
tance r the Q-charge, by using results from refs. [ 7,1 ], 
may be calculated to be 

I a l  =2nA2p[2K(p) - E ( p )  ] ,  (4.10) 

where p = r / ~  and K(p), E(p) are the com- 
plete elliptic integrals of  the first and second kind re- 
spectively. By using the asymptotic expansions of the 
elliptic integrals we find that for sufficiently large r 

2(r)  ~ N/4rt Ialln r" (4.11) 

The size of  the component Q-lumps, for a given sep- 
aration, is therefore fixed by the value of their Q- 
charge. In topological sectors with more than two 
component Q-lumps the situation is different. It is 
now possible for the lumps to change their sizes and 
phases in a way consistent with the polygon equality. 
Certainly none of the lumps can go to infinite size: 
no one lump can have a size greater than the sum of 

the sizes of  the other lumps. However, it is possible 
for one lump to lose its Q-charge to the others, getting 
smaller and smaller while the others get closer to a 
configuration in the sector with one lump less. Thus 
spiky Q-lumps of arbitrarily small size and large en- 
ergy density will arise as components of multi-lump 
configurations. 

5. Radiation and stability 

It follows from the Bogomol'nyi bound (3.5) that 
the energy of a Q-lump is the absolute minimum of 
the energies of  all the configurations with the same 
Q-charge. Since the charge Q is conserved it follows 
that a configuration which is initially sufficiently close 
to saturating the Bogomornyi bound must always re- 
main close to being a Q-lump solution, so the Q-lumps 
are stable against classical radiative decay. For the 
CP ~ model this has been confirmed by numerical 
simulations [ 1 ]. The only instability is a rolling in- 
stability: since there is generally a continuous family 
of  Q-lumps which have the same charge and energy 
an arbitrarily small generic perturbation of a Q-lump 
will cause the configuration to move further and fur- 
ther from the initial Q-lump solution, but it will al- 
ways remain near this family. 

If, however, a Q-lump is given a perturbation that 
is large enough to cause it to radiate then it may never 
return towards a non-singular Q-lump solution. The 
radiation will carry away Q-charge as well as energy 
and so after such a perturbation the Q-lump may pos- 
sible shed all its Q-charge, leaving behind a configu- 
ration with a residual non-trivial topological charge 
that would collapse to a singular spike. It is therefore 
of  interest to study the radiative solutions that carry 
away energy and charge to infinity. It suffices to study 
the solutions which are perturbations about the field 
at infinity ~=0c, 0c being a critical point of the 
Killing vector field. If  we choose ¢c=0 then we are 
looking for approximate solutions to the equations of  
motion which are valid for small ~. The Killing vec- 
tors of ~2, which have a critical point at the origin 
are, in appropriate coordinates, k s = ~'~# q~a where ~ a  
is a complex structure. By using the exponential map 
we can project these coordinates onto a neighbour- 
hood of the origin of the target manifold so that in 
this neighbourhood the Killing vector field is just 
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ka=  ~'~p O#+O(02) , (5.1) 

where ~ ~p= J"plo=o. In these coordinates the connec- 
tion vanishes at the origin and the equations of mo- 
tion (3.1) for small ¢ reduce to 

OuOuO '~ + mZ~t~=0. (5.2) 

This is just the wave equation for a massive scalar 
field and it has the familiar plane wave solutions. It 
is equivalent to the first order equation 

0u¢'~= +_p~,E~O p , (5.3) 

where Pu is a constant three vector such that p u p  u 
= m 2. The Q-charge carried by a radiative solution is 
therefore 

Q= -+po f d 2x 0,~q ~'~ (5.4) 

and the total energy is found from (3.2) to be 

E = p o I Q [  • (5.5) 

As p2 = (p i )2+ m z, the radiation will come arbitrar- 
ily close to saturating the Bogomol'nyi bound for low 
frequencies, o 9 = ~  z. The charge Q is approxi- 
mately proportional to the volume of space in which 
the field is non-zero, so for plane wave radiation the 
Q-charge is infinite. There are, however, wave packet 
solutions built from plane waves with a range of mo- 
menta. These wave packets are confined to a volume 
(Ax)E~I / (Ap)  z so their Q-charge is Q ~ ( O o ) 2 /  

(Ap) z, where ~o is their amplitude. By lowering the 
frequency of the packet while at the same time in- 
creasing its size and adjusting its amplitude one can 
find radiative solutions that are arbitrarily close to 
saturating the Bogomol'nyi bound, for any value of 
Q. Thus although for small perturbations the Q-lumps 
are stable against radiative decay one cannot imme- 
diately rule out the possibility that after a large per- 
turbation the Q-lump will radiate its Q-charge away. 

6. Conclusion 

We have seen that Q-lumps arise as stable time-de- 
pendent solutions to the sigma model with a poten- 
tial. This potential appears naturally as a result of di- 
mensional reduction for a large class of K~ihler (and 
hyper-Kiihler) sigma models and in the linearised 
theory it can be simply interpreted as a mass term. 

The Q-lumps saturate a Bogomol'nyi bound and sat- 
isfy the first order equations which have a simple 
interpretation in terms of the geometry of the target 
manifold. 

The scale of the Q-lump solutions is fixed by a con- 
served Noether charge and so they do not suffer from 
the rolling scale instabilities of the pure sigma model 
lumps, although spiky configurations will appear as 
components of multi-lump solutions. 

It would seem that Q-lumps are an interesting ad- 
dition to the bestiary of topological defects. There are 
many further issues to explore. We have not dis- 
cussed at all the low energy dynamics of the Q-lumps, 
which is known from numerical simulation to be 
markedly different from that of their pure sigma 
model relatives [1,8]. The dynamics of the pure 
sigma model lumps can be understood in terms of the 
geometry of their moduli space [7,9], it would be 
satisfying if a similar understanding of the Q-lump 
dynamics could be obtained. It would also be partic- 
ularly interesting if "Q-string" solutions could be 
found in four-dimensional theories of phenomologi- 
cal interest. The natural origin of the potential term 
in the massive sigma model suggests that there will 
be theories of direct physical relevance which con- 
tain these solutions. 
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