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Abstract The fractal properties of specimens of a planar
branching sponge Raspailia inaequalis (Porifera, Dem-
ospongiae) were determined by analysing digitised
photographs. The specimens, collected from a single site
in northeastern New Zealand, had a wide range of
morphology. Three different fractal methods were used:
box counting; a method that gives the scaling of branch
length with distance from the base of the fan; and an
allometric analysis of the dependence of frontal area on
specimen size. All three approaches gave a similar value
for the fractal dimension. The conjecture that the spec-
imens have a fractal branching structure is consistent
with the results of a Horton analysis of their branching
pattern. There is a significant relationship between
fractal dimension and number of fingers, which implies
that a simple count of the number of fingers is as useful
for discriminating between individuals as the more
complex fractal analysis. Using this relation, sponges
from a site with less water movement are inferred to
have a lower fractal dimension. This result is in agree-
ment with the predictions of the Kaandorp model of
sponge growth.

Introduction

The description of the indeterminate growth forms of
many sessile marine invertebrates is often only achiev-
able in qualitative terms. The lack of ability to describe
growth form accurately has hampered the use of exter-
nal morphology as a diagnostic character and has made
interpretations of the interaction between the growth
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form and the environment difficult to achieve. Since the
popularisation of fractals (Mandelbrot 1982), many
authors have used fractal methods to provide some
quantification of morphology and to demonstrate the
dependence of growth form on environmental parame-
ters. Seaweeds (Corbit and Garbary 1995; Kubler and
Dudgeon 1996), corals (Basillais 1997), the sponge
Haliclona oculata (Kaandorp 1991; Kaandorp and de
Kluivjer 1992), and gorgonians (Burlando et al. 1991;
Mistri and Ceccherelli 1993) provide examples of marine
organisms that have been shown to have fractal prop-
erties. Despite the successful application of fractals to
the study of biological form, the commonly used meth-
odologies lack any ready biological interpretation.
Changes in measured fractal dimension can be caused
be different branching patterns, surface elaborations, or
simply through a different arrangement of the prepared
specimen. Moreover, many objects may have the same
fractal dimension, even though they are qualitatively
quite different in appearance.

In the study reported here, several different fractal
analyses were carried out on specimens of the arbores-
cent sponge Raspailia inaequalis [Dendy 1924; also re-
ferred to as Axinella sp. A by Pritchard et al. (1984) and
Axinella sp. 1 by Battershill (1987)]. This sponge has a
planar habit, typically with a sympodial dichotomous
branching pattern, which meant that photographs of the
specimens could be used for morphometric analysis. A
principal aim was to compare the box-counting method
(Feder 1988), which is the most commonly applied
technique for determining fractal dimension, with other
approaches. The intention was to determine whether
fractal methods give useful morphometric information.
An additional motivation for studying the fractal
properties of arborescent sponges was the model of
sponge growth developed by Kaandorp (1991, 1994a, b,
1995). In this model the growth of branches is away
from the substrate and other branches, towards in-
creasing flow. If the growth rate is proportional to the
flow speed in the vicinity of a branch tip then iteration of
this basic growth rule, together with a rule controlling
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branching, leads to a fractal structure. This provides an
explanation of why filter-feeding branching marine in-
vertebrates may be expected to be fractal. A prediction
of this model is that specimens from a high-flow envi-
ronment will have a higher fractal dimension than
specimens of the same species from a low-flow envi-
ronment (Kaandorp 1991, 1999; Kaandorp et al. 1996).
The analysis presented here provides data that can be
used to help determine the applicability of the Kaandorp
model.

Materials and methods

Sponge specimens and habitat

The sponge R. inaequalis is endemic to northern New Zealand,
where it is found on sub-tidal rock platforms that have a thin
(<3 cm) sediment covering. In the localised sites where R. inaeg-
ualis is known to occur it forms an important component of the
sponge-characterised community. Some aspects of the ecology and
population structure of this species are described in Battershill
(1987).

Forty-five specimens were collected at Leigh Reef (36°17°28”S,
174°49°13”E) by SCUBA, on 18 July 1995. The sponges were ob-
tained from within 10 m of the boat anchor, at a depth of 24 m.
They were chosen to represent the range of morphological varia-
tion, although small sponges (<5 cm high) were not collected. On
return to shore the drip-dry wet weight, W (g); the height, H (cm);
and the number of branch-tips or fingers, F, of the sponges were
measured. Each sponge was photographed laid flat against a black
background, with a standard scale bar. The specimens were then
preserved by drying at room temperature.

A count was made of the number of fingers of tagged R.
inaequalis individuals from the Sponge Garden (36°15°58”S,
174°47°35”E), approximately 5 km distant from Leigh Reef and
within the Leigh Marine Reserve, and their height was measured.
The sponges were in three 10 m x 10 m areas, situated 30 m apart
along a line running north to south through the centre of the 20-m
deep Sponge Garden reef. All of the fractal analyses were carried
out on the Leigh Reef specimens; the inter-comparison with the
Sponge Garden site was included to test whether the prediction of
the Kaandorp model holds for this species.

Aanderaa current meters were deployed at both the Leigh Reef
and Sponge Garden sites. The current meters were set to a sampling
interval of 30 min and positioned 4 m above the seabed. The me-
ters were put in place on 13 September 1995 and retrieved 7 weeks
later on 1 November. Tidal analyses of the current records were
performed by fitting the data with harmonic components at the
same frequencies as the major tidal constituents, using the software
TIRA (available from the Proudman Oceanographic Laboratory).

Image processing

Pre-processing of the digitised photographic slides, using routines
written in Matlab, included removing stray light pixels from the
dark background, filling in any dark pixels on the image of
the sponge, and determining the scale (pixels/cm) from the bar.
Background pixels were set to zero and all other pixels were set
to one (Fig. 1). From the binary image the frontal area, A (cm?),
of each sponge was calculated from a count of the non-zero
pixels.

A skeletal branching structure was obtained from the binary
images using the following sequence. Firstly, each non-zero pixel
was given the value of its distance to the nearest zero pixel. Sec-
ondly, an ordered list of the non-zero pixels was made, sorted first
by value, then within each group of equal-valued pixels by the
average value of their nearest neighbours. Finally, the pixels were
progressively set to zero, beginning with those that were closest to
the boundary, and so of lowest value, until only a pixel-wide digital
skeleton remained. This gave an objective method of determining
the branching structure. Once the skeletal pixels had been found,
the vertices and branch-tips were identified and their positions held
fixed. To remove the step-like pixel structure from the skeletons,
the branches were smoothed by 20 passes of a three-point running-
mean filter. On all the passes each point was shifted halfway to
being directly between its two neighbours. From these smoothed
morphological skeletons the branch lengths could be calculated.
Because of the well-defined branching structures of the specimens,
the resulting morphological skeletons accurately reflected the
branching of the sponges, with very few spurious fingers being
generated. Figure 2 shows the morphological skeleton of the
specimen illustrated in Fig. 1 (number 1) and defines the termi-
nology that will be used throughout the article. The numbers on the
branches refer to the Horton analysis (see below).

For the skeletonisation procedure to work correctly the binary
images required some pre-processing. Like many sponges,
R. inaequalis is anastomosing: branches that touch while the
sponge is growing eventually fuse together. Because of the axially
condensed structure of the branches these anastomoses were easily
identified. They were removed from the images by inserting a line
of zero-valued pixels between the branches. A few of the sponges
had been damaged while growing and had a confused, three-
dimensional structure. The images were hand edited so the skele-
tonisation process would correctly recognise the underlying
branching pattern.

Once the morphological skeleton had been identified the length
of branch, /(r), within an along-branch distance, r, from the pri-
mary vertex was calculated. The characteristic size of each sponge
fan was then determined from the radius of gyration, r,. This is
defined as the distance for which /(ry) = lioti/2, Where [ioar is
the total branch length of the sponge fan.

Fig. 1 Digitised images of five of the sponge specimens, showing a
range of morphologies
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Fig. 2 The morphological skeleton of sponge 1, from Fig. 1, with
terminology used in the description of the branching pattern. The
numbers are the Strahler order, w, of the branches. The small lines at
the base of the stipe are excluded from the analysis. Contiguous links
of the same order are counted as a single branch, so this specimen is
order Q = 4, with 2 order-3 branches; 5 order-2 branches; and 14
order-1 branches or fingers

The statistical methods and terminology used throughout this
article follow Sokal and Rohlf (1981).

Box-counting dimension

To calculate the box-counting dimension, a grid of squares of size r
is placed over the image and the minimum number of squares, N,
that contain the image, for any position of the grid, are counted.
The procedure is repeated to obtain N as a function of r (Feder
1988). In the implementation used here, the number of non-zero
pixels was first counted. The resolution of the image was then
halved by summing groups of four pixels together, and the count
was repeated. This was continued until the image had only a single
non-zero pixel. By performing the whole procedure 12 times, using
a random offset of up to a pixel in either direction before each
change of scale, an estimate of the minimum count at each reso-
lution was obtained. The fractal dimension and associated uncer-
tainty were then determined by linear regression of log(N) on
log(r). It was intended that the box-counting dimension reflect
properties of the branching structure of the sponges, so the lower
limit on the scaling relation was set at the width of the branches,
which ranged from 3 mm up to 1 cm. The box-counting dimension
is usually calculated from the boundary of planar images. Here it
made no difference whether the entire image or only the boundary
was used. For simplicity, the dimension was calculated from the
whole image. At the upper end the scaling was limited by the size of
the specimens. When forming the regression relation, the upper
limit for the pixel size was set to be between one-quarter and one-
half of the largest dimension of the specimen.

Allometric relations

The fractal dimension of the sponge fans could also be estimated
from the scaling of frontal area, 4, with their radius, rg, by per-
forming a model II reduced-major-axis (RMA) regression of log(A4)
against log(ry). The resulting dimension was called the allometric
dimension, dajometric- Allometric analyses of the relations between
the other measures of sponge morphology, height H, number of
fingers F, and wet weight W, were also carried out.
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Branching structure

There are several methods of characterising ramifying networks
that can be applied to biological structures, such as the sponge
morphoskeletons (Berntsonn 1997). Horton analysis (Horton 1945;
Strahler 1952) was used here to enable comparison of the branching
structure of R. inaequalis with other ramifying forms and to help
establish whether the branching of R. inaequalis is self-similar.

The fundamental step of Horton analysis is the assignment of a
Strahler order, w, to each link of the network (Fig. 2). Firstly, the
most distal links, the fingers, were labelled w = 1. Then, proceeding
from the fingers towards the stipe, an order was given to each link
via the following rule: if the two distal links that joined at a vertex
had orders @w; and w, then the proximal link was given an order
o =w;+1, if w; = w,, or an order w = max(w;, w,), if w; # w,.
Contiguous links of the same order were regarded as forming a
single branch. The order of the entire sponge, Q, was then defined
as the Strahler order of the stipe. For gorgonians this ordering is
found to be natural, in the sense that branches of similar order have
similar function (Mitchell et al. 1993).

Once the Strahler order of the branches had been defined, the
bifurcation ratio rg(w) = N(w)/N(w+ 1), and the length ratio,
rL(w) =L(w+1)/L(w), were calculated, where N(w) was the
number of branches of order w, and L(w) was their average length.
If a network has a self-similar branching structure then these ratios
are independent of w, so the entire network has well-defined bi-
furcation and length ratios, Rg = rg and Ry = r. In this case, the
ratios may be calculated as Rp = antilog(—fig) and Ry = anti-
log(pL), where fg and i are the respective slopes of the model |
regression lines of log(N) and log(L) on w.

Branch dimension

The branch dimension, dganch, Was defined as the slope of the
linear regression of log(/) on log(r), for ry;, <r<ry. It was assumed
that within the radius of gyration the sponge had finished growing,
so the branch dimension reflected properties of the final develop-
ment of the branches. The lower limit, r;,, was chosen to provide a
sufficient range of scales for the calculation of the dimension, while
maintaining a linear relationship between log(/) and log(r).

In this analysis r was measured along the branches. This had the
advantage that the cumulative length, /(r), did not depend on how
the fingers are arranged. With r defined in this way, the branch
dimension does not reflect the embedding of the ramifying form in
space, but rather intrinsic properties of the branching pattern.

Results
Box-counting fractal dimension

Figure 3 shows the dependence of the number of pixels
needed to cover the images on the pixel size, for all 45
specimens. Between a pixel size similar to the width of
the branches (> 0.3 cm) and less than half the size of the
specimens, the relationship is approximately linear (the
minimum correlation coefficient is > = 0.996, which is
significant: n > 4; P < 0.01). The box-counting dimen-
sion calculated over this range of scales varies between
dpox = 1.44 and dpox = 1.75, with a mean value of
dpox = 1.60 £ 0.012. The estimates of the box-counting
dimension of single specimens have an rms standard
error of 0.028.

To test the linearity of the data, the box-counting
dimensions obtained using only the largest two pixel
sizes were compared with those derived using only the
smallest two sizes. If the underlying relation were linear
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Fig. 3 Variation of pixel number with pixel size, for all 45 specimens.
The solid lines show the region used to calculate the box-counting
dimension

then the mean difference between these dimensions
should be zero, instead Adgox =-0.173 £ 0.0206 (H:
Adpox = 0 was rejected; 1, =8.4; P < 107'°). The slope
of log[ N(r)] flattened at the larger sizes. This implies that
the box-counting dimension was not strictly well de-
fined, as its value depended on the range over which it
was calculated. Although the curvature is significant, the
variation this caused in the value of the box-counting
dimension was small. It was therefore assumed that a
box-counting dimension could be meaningfully ascribed
to each specimen.

The box-counting dimension of the specimens was
not correlated with the height of the sponges
(* = 2.1 x 107 n.s.), but there was a significant corre-
lation between the box-counting dimension and the
number of fingers (r*=0.629; P < 107'%), with
the consequent model I regression dpox = (1.600 £
0.0073) + (7.0 £ 0.65) x 10~ x (F — 21.2), defined on
the range 5 < F < 50. Sponges with more branch-tips
had a higher box-counting dimension, and so the box-
counting dimension reflected branching complexity. For
sponges from this population a count of the fingers en-
ables an estimate to be made of the fractal dimension,
with a similar standard error to that obtained directly
from the box-counting procedure.

Allometric relations

There was a high correlation between log(4) and log(r,)
(* =082 P < 107", with the RMA regression
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Fig. 4 A Allometric relation between frontal area and radius of
gyration. The /ine marks the model II reduced-major-axis (RMA)
regression relation. B A model I bivariate regression of wet weight on
sponge height and number of fingers gives a close fit to the data

log(4) = (4.264 £ 0.0200) + (1.61 £ 0.105) x log(r,/
8.145), defined for 2.80 < r, < 14.55(Fig. 4A). The
allometric scaling dimension was dajometric = 1.61 *
0.105, which was not significantly different from the
mean of the box-counting dimensions. The relation be-
tween wet weight and the height of the sponges was

W~ H"®* 0139 2= 0.74). The difference between
this exponent and dajjomewric Was reflected in the relations

W~ AM2E0035 (2 096y and H ~ rg1.01 £ 0.035
(r* = 0.95). Wet weight was also correlated with the
number of fingers: if two sponges are the same height
then it is expected that the sponge with more fingers will
be heavier. A model I multiple regression of log(#) on
log(F) and log(H) gave the predictive relation

W = (85 ﬂ:0289)>< 10—2 X [_11442i0.076>< F0A62i0.061. The
resulting correlation coefficient was a high r* = 0.925
(Fig. 4B), indicating the order that underlies the ap-
parent morphological diversity of the specimens.

Horton analysis

The Leigh Reef specimens displayed a wide variation in
morphology: although it might have been expected that
taller sponges should have more fingers, there was no
correlation between the height of the sponges and the
number of fingers (Fig. 5) (#*=0.0013; n.s.). The
Strahler order of the collected specimens varied between
Q =2 and Q = 5, with most (29) of the sponges being
order Q = 4. In general, specimens with more fingers
were higher order: there was a significant linear relation
between log(F) and Q (Fy; = 73.28,df =1, 2; P < 0.05),
with the linear regression giving F o< (2.05 =+ 0.18)%.
The linear regression of log[N(w)] on w was a close fit
to the data (Fig. 6A). This suggests that, despite their
variable morphology, the sponges had a statistically self-
similar branching pattern. The mean bifurcation ratio,
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Fig. 5 The variable morphology of the specimens from both sites is
illustrated by the low correlation between height and number of
fingers. The dashed lines represent the mean number of fingers
of specimens from the two populations that are taller than 5 cm

estimated from the Q > 2 specimens, was Rplg_3 45 =
2.71+£0.046 (n=44). The single Q =2 specimen
(Fig. 1, number 5) was an outlier, with a bifurcation
ratio, Rplg_, = 6.00, more than 7 seven standard errors
from the mean of the other sponges. The variation
of branch length with order required a more careful
interpretation (Fig. 6B). For the order-5 sponges
r1(2) ~ r;(3), and the length ratio, 7;(2), of the order-4
sponges had a similar value. From these ratios it was
estimated that R, = 0.75 4 0.043, so the distal branches
were typically longer than the proximal branches. This
trend was not followed by the most proximal branches,
which included the stipes. These branches were longer
than expected and so did not fit into the apparently self-
similar branching pattern of the fan. Nor did the fingers
have the length that would be expected from self-simi-
larity. This was likely to be because the growth in branch
length occurs at the branch tips, so the first-order
branches were shorter than they would have been if
growth had continued. The first-order branches were
also shortened by the skeletonisation process, which
eroded the length of the branch tips by an amount
similar to their radius of curvature (1-2 mm).

Branch dimension

The relationship between the radius, log(r), and the cu-
mulative branch length, log(/(r)), was not linear (Fig. 7).
For small values of r there were no branchings and so
branch length was proportional to distance from the
primary vertex. For r larger than the radius of gyration
the length tended to the total branch length of the
sponge fan, and the curve flattened. Nevertheless, a
branch dimension could be defined by regression of /(r)
on r, over the range ryj, <r <rg, where ry,, was
arbitrarily chosen to be the distance to the vertex which
was fourth closest to the primary vertex. This choice
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Fig. 6 Horton analysis of the morphological skeletons. Mean branch
number (A) and length (B) for specimens of each order (the number of
specimens is shown in brackets). Where error bars are not visible they
are smaller than the size of the plotting symbols, or else there is only
one sample so the standard error is not defined. Symbols in B are
offset in the x-direction so that they do not overlap

allowed the branching to have reached sufficient com-
plexity before beginning the regression. To ensure that
the relation was calculated over at least some range of
scales, the branch dimension was only estimated for the
26 specimens for which 7y > 2rin. The range of the
branch dimension was 1.04 < dgranch < 2.06, with a
mean value, dgrancn = 1.63 +0.047 (n = 26), which was
not significantly different from the mean of the box di-
mension. The branch density fell with distance from the
primary vertex, and this branching pattern was likely to
have been the source of the low box-counting fractal
dimension of the sponge specimens.

As a test the branch dimensions were calculated,
for the same specimens, on the ranges rpiy <r <
Fmin + (Fg — Tmin)/2  and  ryin + (rg — min) /2 < 7 < 1.
The mean difference between these two estimates,
Adpgranch = —0.07 £ 0.045, was not significant (¢, = 1.73;
n=26; P > 0.05). Using this simple test, dpranch
appears well defined for the specimens with a sufficient
range of scales to enable it to be calculated. The branch
dimension was correlated with the box-counting di-
mension (r* = 0.41; n=26; P < 0.001). If the sponges
were fractal both dimensions should have provided in-
dependent estimates of the same fundamental quantity;



508

10 r

-
(]
o

.._.
oh—t

Total branch length I(r)/cm

10° - =
10 10

Distance from primary vertex r/cm

10°

Fig. 7 Dependence of branch length on distance from the primary
vertex. The relation is clearly not linear over the whole range. The
solid lines mark the portions of the curves used to estimate the branch
dimension

however the RMA regression relation between the two
dimensions,  dpranch = (1.63 £0.036) + (3.7 £0.58) x
(dpox — 1.60), had a slope different from 1 (1;,= 4.7;
n=26; P < 107*). This discrepancy was possibly be-
cause the box-counting dimension was calculated from
the entire images, whereas the branch dimension was
calculated from the morphological skeletons.

Comparison between sites

The Sponge Garden specimens of R. inaequalis that were
taller than 5 cm had a mean of 8.8 £ 0.51 (n = 69)
fingers, compared with a mean of 21.2 £ 1.69 (n = 45)
fingers for the specimens collected from Leigh Reef
(Fig. 5). By using a Kolmogorov—Smirnov test, the
cumulative probability distribution of the number of
fingers was found to be significantly different between
the three Sponge Garden areas and the Leigh Reef site
(P < 0.01). In contrast, there was no significant differ-
ence in the distribution of the number of fingers of
sponges from any two of the Sponge Garden areas
(P > 0.05). This implied that the sponges from the
Sponge Garden had a less complex branching pattern. If
the same regression relation between number of fingers
and box-counting dimension could have been assumed
to hold for the Sponge Garden specimens as held for
those from Leigh Reef, then they would have had an

average fractal dimension of dpy, = 1.506 £ 0.0035
(n = 83).

The current meter deployed at the Sponge Garden
recorded good data throughout its deployment, but the
meter at Leigh Reef only recorded for 15 d, sufficient to
resolve the springs-neaps cycle. At Leigh Reef the rms
current speed was 22.4 cm/s, the M, tidal ellipse had a
semi-major axis of 27.2 cm/s, at 33° from North, with a
semi-minor amplitude of 1.0 cm/s, and the residual
current was 10.1 cm/s, in a direction 53° from North.
The M, tide at the Sponge Garden site had a semi-major
amplitude of 5.5 cm/s, at 53° from North, with a semi-
minor amplitude of 0.51 cm/s. Over the period during
which the Leigh Reef current meter obtained data, the
rms current speed at the Sponge Garden was 7.4 cm/s
and the residual current was 4.9 cm/s, at 53° from
North. The currents at the Sponge Garden are sub-
stantially weaker than the currents at Leigh Reef. It is
important to note, however, that the Aanderraa current
meters do not give any information on the high fre-
quency wave and swell-driven currents. These may at
times be stronger than the tidal flows and so may be the
dominant environmental control on the growth form of
the specimens.

Discussion

All three of the methods used for estimating the fractal
dimension of these sponges gave statistically indistin-
guishable estimates of the mean fractal dimension of the
collected specimens. This implies that the apparently
fractal structure of these sponges is a result of their
branching structure rather than being due to varying
branch width, surface elaborations, or an artefact of the
way the specimens were prepared.

The simplest and most direct method of determining
the mean fractal dimension of these sponges was the
allometric method. In general this has great advantages:
it can be calculated for specimens with a three-dimen-
sional morphology, and it is relatively independent of
the way the specimens are prepared. In addition, allo-
metric scaling relations are known to be important de-
terminants of life-history strategies (e.g. Sebens 1982)
and often have biophysical interpretations (Denny
1988). Because of this the allometric dimension is
potentially a measure of ecological importance. The only
problem is that the allometric dimension cannot be
calculated for a single specimen and so has limited
morphometric value. The allometric analysis demon-
strated other scaling relationships that do not have an
obvious fractal interpretation but that revealed that
there is order behind the morphological variability of the
specimens. In particular, the wet weight could be accu-
rately estimated from height and number of fingers, two
quantities that can be quickly determined in the field. It
would be interesting to weigh sponges from other sites to
explore the variation of this relation between popula-
tions growing under different conditions.



A box-counting dimension could be assigned to each
specimen. Although there was evidence of consistent
departure from a fractal relation it was felt that this
departure was relatively minor and so the dimension
could be defined. For this population it was found that
an estimate of box-counting dimension could be
obtained from a simple count of the branch tips, this
estimate having the same error as that obtained by
following the box-counting procedure itself. For these
sponges the harvesting, preparation, and digital analysis
of the specimens is not needed to estimate a fractal
dimension — the number of branch tips may be quickly
counted in the field, without damaging the sponges. A
count of the branch tips, together with an allometric
analysis, gives all the information provided by the
commonly used box-counting dimension, without
the same difficulties of definition or interpretation. The
count of branch tips demonstrates that the sponges at
the higher energy site are more densely branched, in
agreement with the predictions of the Kaandorp model.
Because the number of fingers can be rapidly counted in
the field, it would be possible to extend the study to
examine the morphological variability over a wide range
of sites.

The close correspondence between tip number and
box-counting dimension raises what appears to be a
serious objection to the fractal analysis. By definition,
the fractal dimension should be independent of the size
of the sponge. If fractal dimension is to be a useful
property then as a sponge with a particular genotype
and environment grows, its fractal dimension should
remain unchanged. As these sponges mature they will
produce more branch tips, so it seems that their fractal
dimension will increase as they develop. This objection is
not as serious as it first appears. Specimens with a higher
fractal dimension will rapidly produce more branch tips
than specimens with a lower dimension. Because their
growth is not indefinite and the sponges never get
beyond a certain size, this will induce the observed
correlation between branch tip number and fractal
dimension.

Although it predates the development of fractals,
Horton analysis provides a succinct method for analy-
sing the scaling properties of branching structures and
gives the most detailed information. Because of the
simple interpretation of the bifurcation and length ratios
such analyses are very useful for morphometric com-
parisons. Horton analyses of five different species of
gorgonian have found bifurcation ratios larger than 3
(Brazeau and Lasker 1988; Mitchell et al. 1993). The
specimens of R. inaequalis have a significantly different
branching structure, being less pinnate or more fan-like
than the gorgonians. The Horton analysis allows the
difference to be quantified. It has been suggested that for
many biological systems the variation of branch length
with order is better described by an arithmetic rather
than a logarithmic relation (Park 1985). The data,
summarised in Fig. 6B, are unable to distinguish
between these possibilities due to the small number of
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order-5 sponges. This highlights a problem with the
application of fractal techniques to the study of bio-
logical specimens: there is often an insufficient range of
scales to allow fractal properties to be unambiguously
determined. Horton analysis, by itself, shows that the
branching pattern of these sponges is consistent with
self-similarity but does not allow a stronger statement to
be made. Importantly, however, the Horton analysis
enables exceptions from self-similarity to be identified.
In particular, it showed that the stipes were longer than
would be expected purely from scaling considerations.
This is interesting, as in the Kaandorp growth model the
fractal structure is determined by the flow around the
sponge and over the substrate. Because the boundary
layer above the substrate will be much larger than the
boundary layer around the sponges, a longer stipe might
be expected. Measurements could be made on other
arborescent invertebrates to check whether this was a
general result. An advantage of making an analysis of
the abstracted branching structure is that it can be car-
ried out on specimens for which the projected image is
impossible to work with. For example, an analysis of a
three-dimensional branching structure could be per-
formed by measuring branch lengths manually. This has
been done for several species of tree (Leopold 1971).
Clearly, these methods can only be used when the object
to be analysed has a well-defined branching structure.
Some finger sponges and corals have a more amorphous
lobed morphology, which would be difficult to resolve
into uniquely defined branches. For species such as
these, only methods such as the calculation of box-
counting and allometric dimensions could be used.

The consistency of the data with a fractal morphol-
ogy raises some questions. The Kaandorp model sug-
gests one way in which an organism such as a sponge,
which has an indeterminate growth pattern, can grow in
a branching fractal form. The question of the adaptive
value of a fractal morphology has not been addressed. In
studies of river networks, fractal branching patterns are
found to be optimal, in that they minimise some cost
function (Rinaldo et al. 1992). It has also been suggested
that fractal structures such as networks of blood vessels
(West et al. 1997) or the foraging trails of ants (Gane-
shaiah and Veena 1991) occur as optimal solutions to
transport problems. It would be interesting to explore
the question of whether the fractal branching structures
found for these sponges, and in other marine inverte-
brates, are in any sense optimal.
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