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The functional form of spillover, measured as a gradient of abundance of fish, may provide insight about processes
that control the spatial distribution of fish inside and outside theMPA. In this study, we aimed to infer on spillover
mechanism of Diplodus spp. (family Sparidae) from a Mediterranean MPA (Carry-le-Rouet, France) from visual
censuses and artisanal fisheries data. From the existing literature, three potential functional forms of spillover
such as a linear gradient, an exponential gradient and a logistic gradient are defined. Each functional form is includ-
ed in a spatial generalized linear mixed model allowing accounting for spatial autocorrelation of data. We select
between the different forms of gradients by using a Bayesian model selection procedure. In a first step, the func-
tional form of the spillover for visual census and artisanal fishing data is assessed separately. For both sets of
data, ourmodel selection favoured the negative exponentialmodel, evidencing a decrease of the spatial abundance
of fish vanishing around 1000 m from the MPA border. We combined both datasets in a joint model by including
an observability parameter. This parameter captures how the different sources of data quantify the underlying spa-
tial distribution of the harvested species. This enabled us to demonstrate that the different sampling methods do
not affect the estimation of the underlying spatial distribution of Diplodus spp. inside and outside the MPA. We
show that data from different sources can be pooled through spatial generalized linear mixedmodel. Our findings
allow to better understand the underlying mechanisms that control spillover of fish from MPA.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Marine protected areas (MPAs) provide refuges where populations
of exploited species can recover and habitats modified by fishing can re-
generate. Such MPAs aimed at the enhancement of local fisheries have
recently been established around the world (Gray and Campbell, 2009;
Lubchenco et al., 2003; White et al., 2008). These MPAs are intended
to protect critical spawning stock biomass, intraspecific genetic diversi-
ty, population age structure, recruitment supply, and ecosystem balance
while maintaining local fisheries (Cadiou et al., 2009; Halpern et al.,
2008, 2010; Pelletier et al., 2005; Roberts and Polunin, 1991; Roberts
et al., 2001).

Evidence from theoreticalmodels and empirical studies suggests that
higher abundances of fish inside MPAs can lead to spillover of fish be-
yond the boundaries of the MPAs (Goni et al., 2008; Halpern et al.,
2009; Harmelin-Vivien et al., 2008; Januchowski-Hartley et al., 2013;
Perez-Ruzafa et al., 2008; Rakitin and Kramer, 1996). Furthermore,
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frequency-dependent models of animals' distribution such as the Ideal
Free Distribution (Fretwell and Lucas, 1970) predict that animals should
prefer to move from areas where their density is high relative to re-
sources to areas where it is lower. If fish emigration from reserves is an
important factor determining the distribution of fishes, abundance
should be maximal in the centre of the reserve decreasing gradually be-
yond the boundaries (Gell and Roberts, 2003; Roberts and Polunin,
1991). Rakitin and Kramer (1996) proposed hypothetical effects of ma-
rine reserves on the spatial distribution of fishes based on their mobility
and catchability. Kellner et al. (2007) used a theoretical model to project
the spatial patterns that would likely be observed for species under dif-
ferent assumptions of mobility and spatial distribution in fishing pres-
sure. Their results show that fishing around the MPA has a significant
impact on the spatial patterns of fish density both within and outside
the protected zone. Perez-Ruzafa et al. (2008) simulate potential spill-
over rates and distances by using a spatially-explicit population growth
and harvest model. Abundance of fish decreases from the inside to the
outside of theMPAs in function of the harvesting, themobility (diffusion
or passive diffusion) of fishes and population growth effects like density-
dependence. The slope depends on the strength of the diffusion process,
whereas the functional form of the gradient will depend on the spatial
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distribution of fishing pressure.When the diffusion process becomes im-
portant, the slope of the spillover is expected to be weakly negative,
whereas it becomes highly negativewith increasingfishing pressure. Hy-
potheses on the factors leading to different shapes of negative gradients
can be discussed (Chapman and Kramer, 1999; Halpern et al., 2009;
Kellner et al., 2007; Rakitin and Kramer, 1996).

Data issued from monitoring programmes of MPAs are issued
most often from different sampling methods because sampling tech-
niques inside and outside the MPA might be different. For instance,
data are collected by experimental or artisanal fishing outside a
MPA, while inside a MPA, the data can only be collected from under-
water visual censuses. The data issued of these kinds of sampling are
not normally distributed because counts are discrete and have a posi-
tive skewed distribution. Moreover, spatial autocorrelation is rarely
taken account explicitly in studies that evidence spillover and its spatial
extent (Abesamis et al., 2006; Harmelin-Vivien et al., 2008; La Mesa
et al., 2011; Roberts et al., 2001). This may produce misleading results
when traditional statistical methods are used to analyse such data.
In this case, hierarchical modelling is a promising alternative model
building strategy where data can enter at different levels of the
hierarchy (Clark, 2007; Clark and Gelfand, 2006; Cressie et al.,
2009). Integration of multiple sources of data, collected to analyse
the same ecological process, leads to reduce the uncertainty asso-
ciated to the parameters estimation (Cressie et al., 2009). In a
hierarchical model, the levels correspond to either observations or con-
ceptual, but unobservable, latent processes. A spatial latent variable de-
scribes an unobservable process which influences the realization of a
random variable. The latent variable and the observed variable are
linked by a sampling model that allows accounting for measurement
errors.

In this paper, we developed our framework from a spatial general-
ized mixed effect model (Diggle et al., 1998). This model offers the pos-
sibility to estimate a spatial underlying density conditioned by an
observed variable forwhich the distribution can benon-normal. This hi-
erarchical spatial model is casted in a Bayesian framework, implement-
ed by Markov chain Monte Carlo method, to solve the prediction
problem of the underlying density, making a proper allowance for the
uncertainty in the estimation of the parameters of the model. Here,
we included different functional shapes of spillover in the spatial gener-
alized mixed effect model and used a model selection procedure to dis-
criminate between the different shape functions of spillover. We
combinemultiple data sources in a single model to improve the robust-
ness of the estimation of the spillover parameters with respect to the
Fig. 1. Hypotheses on the different shapes of spillover deduced
results found for individual datasets. These different data sources
came from different sampling techniques but reflect the same ecologi-
cal process, specifically the spatial distribution of a harvested fish spe-
cies in and out of a protected area. We implement our hierarchical
spatial model to evidence the shape of the spillover of Diplodus spp.
from the MPA of Carry-le-Rouet (Mediterranean, France). The selected
model allows us to propose some hypotheses on the different processes
that can lead to observe such shape of spillover ofDiplodus spp. from the
MPA of Carry-le-Rouet.
2. Methods

2.1. Case study system

TheMPA of Carry-le-Rouet, in the French Mediterranean coasts was
created in 1982 and covers a surface area of 85 ha (no-take area) from 0
to 30 m of depth (Harmelin-Vivien et al., 2008). Posidonia oceanica
meadows and rocky substratum are the main habitats down to 30 m
depth. Below, sandy bottom is predominant. In the MPA of Carry-le-
Rouet, all fishing activities (professional and recreational) are forbidden
since its creation. Anchoring and scuba diving are forbidden since 1990.

Abundance of Diplodus spp. (mainly D. sargus and D. vulgaris) was
recorded in standardised sheets by underwater visual censuses
(hereafter, UVC's) using 25 × 5 m belt-transects parallel to the coast on
rocky substrates between 6 and 12 mdepth and 50 × 50 monmeadows
of P. oceanica. Actual observed number of fish was recorded up to 10 in-
dividuals, and higher numbers were ascribed to one abundance category
(11–30, 31–50, 51–200, 201–500, N500 individuals) often used in UVCs
(as recommended by Harmelin-Vivien et al. (1995), we used themedian
values in the analysis). A total of 162 censuses were performed by the
same team of well-trained scientific divers from June to October 2003.
The warm season (June to October) is the most suitable period for
assessing fish abundances in the Mediterranean, as fish communities
are more diverse and do not vary strongly in density during this period
(Harmelin, 1987). The variance among replicates was thus reduced dur-
ing this period making it easier to detect spatial patterns of distribution
and avoiding any significant seasonal effect. The general sampling design
applied was the following: six sectors, separated by about 1000 m, were
positioned at increasing distances from the core of theMPA (three inside
theMPA and three in fished areas outside theMPA). In each sector, three
zones were randomly chosen and located at a scale of 100 m (Fig. 2 in
Harmelin-Vivien et al. (2008)).
from Rakitin and Kramer (1996) and Kellner et al. (2007).



Table 1
Diplodus spp. counted by UVCs or caught by the artisanal fishing with different gears (in
italic) for different classes of distances from the MPA boundary (negative values indicate
samples inside the MPA).

Distance from MPA (in metres) −300 −150 150 300 600 900 N900

Visual census 546 273 61 192 98 64 95
Artisanal fishing 68 14 11 12 34
Trammel net 0 12 11 0 2
Gillnet 0 0 0 2 24
Combined net 68 2 0 10 8

Fig. 2. Number of individuals of Diplodus spp. counted by UVCs in relation to the distance
(in m) from the boundary of the MPA. The vertical line at distance zero indicates theMPA
boundary; plain line: linear model (M1), dotted line: exponential model (M2), point dot-
ted line: logistic model (M3).
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Finally, six transects (replicates) separated by 10 mwere sampled in
each zone (Fig. 2). Thewhole visual census sampling is composed of 108
transects inside and outside of the MPA.

The fishing fleet operating around theMPA of Carry-le-Rouet is con-
stituted of 11 boats, mainly working with traditional coastal metiers
(using trammel nets, gill nets, and combined nets). The sampling design
focused on the metiers evoked above, and targeting Diplodus species
which were known to show a positive reserve effect (Garcia-Charton
and Perez-Ruzafa, 1999; Harmelin-Vivien et al., 1995).

2.2. Modelling approach

Count data of animals cannot bemodelled directly by a normal distri-
bution because these data are discrete and positively skewed (Flechter
et al., 2005). Here, we introduced a spatial generalized linear mixed
model (Diggle et al., 1998) to account explicitly of the spatial depen-
dence of our ecological data, their non-normal nature and the observa-
tion process. Spatial generalized linear mixed models are an extension
of the conventional geostatistical method, it allows for modelling ob-
served counts with a Poisson distribution with intensity (i.e. mean).
λ be distributed as a lognormal variable. This generalization forms
the basis of many models for spatially referenced counts (Moller
et al., 1998; Royle et al., 2007; Thogmartin et al., 2004; Wikle,
2003; Wolpert and Ickstadt, 1998). The observed number of individ-
uals N at location i is modelled using an homogeneous Poisson pro-
cess so that Ni ~ Poisson(λ) where λ is the expected number of
observation or catch by sampling unit,

Ni∼Poisson λið Þ ð1Þ

h λið Þ ¼ βmi þ Si þ εi ð2Þ

where h is the link function that links the linear predictor to the
expected value at the data point. In our model the link function is the
logarithm function log,m can be an environmental covariate or a gradi-
ent function of distance d as in our study, β is a parameter to be estimat-
ed which gives information on the incidence of the slope of the model,
the more the value was high and negative, the more the gradient had a
Table 2
Estimated parameters and their 95% credibility intervals of the parameters of models M1, M2 a
protected area of Carry-le-Rouet and their deviation information criterium (DIC) values. The sel
andM3, the sign of the logistic gradient is given by β2. The variance the Gaussian spatial field S is

Model Parameters Artisanal fishing

q0.025 Median q0.95

M1 β1 −0.9 −0.6 −0.3
s 1.86 4.07 10.98
a 0.5 1.5 43

M2 β1 −1.11 −0.98 −0.8
s 1.81 3.94 11.98
a 0.5 2.4 51

M3 β1 −17 −5.2 −2.9
Β2 2.14 2.7 3.27
s 2.23 4.09 6.83
a 1.2 5.9 245
steep slope. The latent Gaussian spatial process Si is estimated from an
exponential spatial covariance model

ρ uð Þ ¼ s � exp −u
a

� �

where u is the Euclidian distance, s is the variance of the spatial Gauss-
ian field, and a is the spatial scale parameter. The Gaussian noise εi has a
mean equal to 0 and a variance σ2.

2.2.1. Modelling spillover with a spatial generalized linear mixed model
Mobility and catchability of fishes influence the effect of marine re-

serves on the spatial distribution of fish (Halpern et al., 2009; Rakitin
and Kramer, 1996). Different shapes of gradient of abundances could
emerge under the hypotheses of different spatial repartition of fishing
effort around the MPA (Kellner et al., 2007). From these studies, we se-
lected three shapes of gradient of abundance (Fig. 1). The shape func-
tion is included in a spatial generalized linearmodel formulation (Eq. 2),

M1 : h λið Þ ¼ β0 þ β1 � di þ Si þ εi ð5Þ

M2 : h λið Þ ¼ β0 þ exp β1 � dið Þ þ Si þ εi ð6Þ

M3 : h λið Þ ¼ β0−
β2

1þ exp di−β3ð Þ � β1ð Þ þ Si þ εi: ð7Þ

From Rakitin and Kramer (1996), Kellner et al. (2007) and Halpern
et al. (2009), we assume that a linear gradient (M1) of abundance of
nd M3 fitted from artisanal fishing and visual census data on the west part of the marine
ected model is highlighted in bold. The inclusion point β1 gives the shape to the model M2
s, and the scale parameter is a (effective scale is 3a). The scale parameter a is given inmetres.

Visual census

DIC q0.025 Median q0.95 DIC

112.35 −3.3 −1.1 0.4 10715
0.71 3.76 7.2
5.7 16 203

110.48 −1.2 −0.67 0.06 5898
0.35 1.84 3.52
4.8 12.7 169

110.92 −6.9 −5.1 −4 6349
−0.22 1.17 2.43

0.56 2.85 5.02
1.7 5.3 104

image of Fig.�2


Fig. 3.Number of individuals of Diplodus spp. caught by artisanal fishing in relation to the
distance (in m) from the boundary of the MPA; plain line: linearmodel (M1), dotted line:
exponential model (M2), light point dotted line: logistic model (M3).

Fig. 4. Jointmodelling of UVCs and artisanal fishing data. Dots are number of individuals of
Diplodus spp. caught by artisanal fishing. Squares are number of individuals counted by
UVCs. The vertical line at distance 0 indicates the MPA boundary. Plain line: exponential
model fitted to UVCs and artisanal fishing data.
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fish is expected for relativelymobile andmoderately catchablefish under
uniform fishing pressure, an exponential gradient (M2) is expected for
moderate mobile fish under uniform fishing pressure, a logistic gradient
(M3) is expected for sedentary highly catchable fish under uniform fish-
ing pressure (Fig. 1).

2.2.2. Modelling spillover from multiple data sources
Since it is based on conditional probabilities, hierarchical modelling

offers the opportunity to combine different sources of data, but quanti-
fying the same ecological processes. The different data sets are indepen-
dent conditionally to one or further parameters defining a single spatial
latent variable,

Yi ¼ Poisson λið Þ ð8Þ

h λið Þ ¼ β0vi þ exp β1 � dið Þ þ Si ð9Þ

where vi are explanatory variables which can be factors that might rep-
resent different sampling techniques or quantitative explanatory vari-
ables and β0 is the observability parameter.

2.2.3. Bayesian estimation by Monte Carlo Markov chain
The parameters of the models are estimated in a Bayesian frame-

work using Markov chain Monte Carlo algorithm. Non-informative
priors were defined for the different parameters of the model (see Ap-
pendix) in the same manner with Diggle et al. (1998). The algorithm
was developed in the free software package R (R Development Core
Team, 2010) using conventional methods based on the Metropolis–
Table 3
Estimated parameters of the exponential function (M2) and their 95% credibility intervals
by combining the visual census data and the artisanal fishing. Each observability ratio is
related to each sampling technique.

Parameters Artisanal fishing and visual census

q0.025 Median q0.95 DIC

β1 −4.3 −2.4 −0.38 11028
s 1.73 3.04 4.83
a 1.3 6.3 351
Β0 trammel net −1.29 0.423 0.474
Β0 gillnet −0.759 0.158 1.164
Β0 combined net −0.17 0.406 0.959
Β0 UVCs −1.592 0.094 1.28
Hastings algorithm and Gibbs sampling (Robert and Casella, 1999).
We generated two chains of length 200,000, discarding the first
100,000 as burn-in. The burn-in and the length of the chain needed
have been obtained from the statistics defined by Raftery and Lewis
(1995) included in the package R Coda (Plummer et al., 2009). The con-
vergence was assessed using the Gelman and Rubin statistic (Gelman
et al., 2004). We used the deviance information criterion (DIC) for the
selection procedure of the different models (Spiegelhalter et al., 2002).

3. Results

For both datasets, the raw counts decreased when the distance from
the MPA increased (Table 1), while a slight increase was observed for
distance N900 m for the visual censuses. All the estimates of themedian
of the posterior distribution of the β1 were negative (Table 2) for the 3
models fitted on both data set. The exponential model was associated
for both dataset to the lower deviation information criterium value
(110.48 for the artisanal fishing and 5898 for the UVCs). The slope of
the exponential model decreased for UVCs (Fig. 2) and the artisanal
fishing until ~1000/1500 m (Fig. 3) giving an approximation of the dis-
tance of the spread of the spillover. For the artisanal fishing, the 95%
credibility intervals never included zero, which confirms that the
slope of the gradient is clearly negative. For the UVCs the 95% credibility
included zero for each model (Table 2). The logistic model had also a
weak DIC (Table 2). The linear model had larger values compared to
the exponential and the logistic models (Table 2). The joint modelling
of the two datasetswith andwithout explicative variables gave negative
median estimates of the parameter β1 (−0.0021, Table 3) and the 95%
credibility intervals never include zero (−0.003 and −0.0021). The
slope of the gradient is clearly negative (Fig. 4) and the scale of the spill-
over is estimated at 2000–2550 m (Table 3; Fig. 4). The estimation of
the observability parameter β0 gave information on how the different
sampling methods affected the estimation of the spatial abundance of
the species.

4. Discussion

In this study, we qualified and quantified the spillover of a harvested
fish in the Mediterranean. The exponential model was selected for both
data sources quantifying the spatial abundance of Diplodus spp. inside
and outside theMPA. Following the hypotheses exposed in Fig. 1, the se-
lected functional shape of spillover of Diplodus spp. is consistent with

image of Fig.�3
image of Fig.�4
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their mobilities and spatial distribution of fishing pressure around MPA
(Harmelin-Vivien et al., 2008; La Mesa et al., 2011). Relatively mobile
fish such as Diplodus spp. should exhibit a shallower gradient of abun-
dance across the reserve boundaries such as an exponential shape,
whereas sedentary fish should exhibit a steep gradient (i.e. linear gradi-
ent) and highly mobile fish a flat gradient (Fig. 1). The artisanal fishing
pressure around the MPA of Carry-le-Rouet was relatively spatially uni-
form (Harmelin-Vivien et al., 2008). Uniformfishing is also associated to
shallower gradient of spatial fish distribution outside and inside the
MPA while “fishing the line” practices should lead to a linear gradient
or a logistic gradient (Kellner et al., 2007).

Few empirical studies have documented explicitly spatial gradient
in abundance across reserves and adjacent areas (Goni et al., 2008;
Harmelin-Vivien et al., 2008; Murawski et al., 2005). Our results do
not only confirm but reinforce the evidence of spillover already
shown by Harmelin-Vivien et al. (2008) and Goni et al. (2008) in the
NW Mediterranean area using generalized additive models. Our study
allows giving a functional shape to spillover leading to a better infer-
ence on the processes producing exportation of fish from MPAs. Our
models estimate a spillover distance of approximately 1 km from
UVCs and artisanal fishing modelled independently and jointly. Our re-
sults in terms of shape and scale of spillover are in line with the results
of the theoretical study of Perez-Ruzafa et al. (2008). By using a
spatially-explicit population growth and harvest model, they show
that the simulated spillover has an exponential form that vanish around
2000 m from the boundaries of the MPA. Furthermore, Roberts and
Polunin (1991) and Russ (2002) concluded that the increase of the
catches due to spillover should not exceed 1 km with an even more
clear effect on short distance. The observed differences in the estimates
of the scale of spillover from visual census and artisanal fishing could be
explained by the behaviour of fish. Export of fishes naïve to exploitation
frommarine reserves has greater catchability leading to differences be-
tween underwater visual census and catch data (Januchowski-Hartley
et al., 2013).

The estimation of the range of the exponential covariance function
presents rather large uncertainty. One possible reason of this large un-
certainty is the way of considering the sampling design when analysing
the data. In this study the artisanal fishing sampling and the transect
sampling are assumed to be “punctual location of sampling”which arti-
ficially reduced the spatial sampling effort and in turn can increase the
uncertainty of the range estimation. Furthermore, the range of the expo-
nential model is not finite but asymptotically infinite that leads often to
large uncertainty in the estimates of this parameter (Webster and
Oliver, 2007). Modelling spillover of fish explicitly from a distinct
shape function is a way to model the non-constant spatial mean often
observed in the spatial distribution of a species (Fortin and Dale,
2005). The latent spatial field estimated in this study corresponds to
the underlying spatial constant mean of the harvested species. Local
heterogeneity observed in the estimated latent density of Diplodus
spp. might be due to factors acting at different scales on the species dis-
tribution (Garcia-Charton and Perez-Ruzafa, 1999). Habitat quality can
be different inside and outside the MPA, schooling behaviour and terri-
toriality can influence the spatial distribution of fish inside and outside
of the MPA (Claudet et al., 2010). Fishes can differ in their response to
protection depending on their size, habitat preferences or schooling
behaviour.

5. Conclusion

Including functional shape in a spatial generalized linear mixed
model allows selecting between different shapes of spillover and associ-
ating multiple sources of data to reduce the uncertainty on the estima-
tion of the shape function. This might aid when management measures
relative to harvested species have to be taken. Further work is required
to extend this model to two dimensions in order to take into account in
amore efficientmanner the differentfishing pressures outside theMPA.
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