
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 5, NO. 2, APRIL 2001 117

A Voter Model of the Spatial Prisoner’s Dilemma
Marcus R. Frean and Edward R. Abraham

Abstract—The prisoner’s dilemma (PD) involves contests be-
tween two players and may naturally be played on a spatial grid
using voter model rules. In the model of spatial PD discussed here,
the sites of a two-dimensional lattice are occupied by strategies. At
each time step, a site is chosen to play a PD game with one of its
neighbors. The strategy of the chosen site then invades its neighbor
with a probability that is proportional to the payoff from the game.
Using results from the analysis of voter models, it is shown that
with simple linear strategies, this scenario results in the long-term
survival of only one strategy. If three nonlinear strategies have a
cyclic dominance relation between one another, then it is possible
for relatively cooperative strategies to persist indefinitely. With the
voter model dynamics, however, the average level of cooperation
decreases with time if mutation of the strategies is included. Spatial
effects are not in themselves sufficient to lead to the maintenance
of cooperation.

Index Terms—Coexistence, competition for space, evolution of
cooperation, prisoners dilemma, voter model.

I. INTRODUCTION

I N THE prisoner’s dilemma (PD), two agents make indepen-
dent choices about whether they will cooperate with one an-

other or defect. The payoffs are structured so that an individual
agent does best if it defects while the other player cooperates. At
the same time, the combined payoff to both agents is highest for
mutual cooperation and lowest for mutual defection. This gives
rise to the paradox that even though the two agents would be
better off to fully cooperate with one another, self-interest leads
to them both defecting. This dilemma elegantly captures the
tension between group and individual incentives for behavior,
an issue of crucial importance in understanding how functional
wholes arise from their constituent parts under selection. Such
tensions are a key feature in several facets of cognitive science,
most notably the formation of signaling systems, including lan-
guage.

The relationship between payoffs is shown in Fig. 1 for two
players denoted and having degrees of cooperationand
, respectively. In a PD situation, the payoff forhas the form

indicated by the lower surface in Fig. 1: the slope of the sur-
face is toward the rightmost corner (1, 0), meaning thatal-
ways benefits from increases in’s cooperation, but is always
better off decreasing its own level. The payoff surface foris
the same as this but with axes reversed, so the maximum is in
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Fig. 1. Payoff surfaces for two agentsX andY caught in a PD. Each player
adopts a degree of cooperation between zero and one and the payoff received
depends onbothagents’ choices.X ’s individual surface is not shown, but is the
mirror image ofY ’s. The slope of either individual’s surface favors defection,
despite the fact that the total payoff is highest for mutual cooperation.

the leftmost corner (i.e., prefers a situation where is fully
cooperative while itself is not). These two summed together
give the total payoff, which is the upper surface in the figure.
This has its maximum at the uppermost corner (1, 1), meaning
that mutual cooperation yields the maximum total payoff. Any
decrease in cooperation by either agent decreases the total value
of the joint state. In what follows, we take the payoff surface for

to be , where and are the respective levels
of cooperation of the two players (this is equivalent to the fairly
conventional PD payoffs of , , , and
[1], rescaled to lie between zero and one).

Consider a population of agents with fixed degrees of cooper-
ation in the face of the PD payoff structure. In every pairwise in-
teraction, the least cooperative party gets a higher payoff. If indi-
viduals mix freely and payoffs translate directly into fitness, the
most cooperative individuals are the least fit on average. Con-
ventional evolution by preferential reproduction of fit individ-
uals would lead to the system being dominated by noncooper-
ative individuals. The PD, therefore, raises the question of how
evolution allows cooperation to be maintained in environments
where defection or free-riding is possible. Not surprisingly, the
ubiquitous nature of cooperation in the real world has inspired
a number of replies to this challenge. One answer lies in the
theory of kin selection [2] and, more generally, trait group se-
lection [3]. Another plausible explanation is reciprocity, which
applies to cases where the game is played many times over the
lifetime of the agents. If contacts between players are liable to
be repeated, it can be advantageous to cooperate if doing so en-
genders the cooperation of the other agent. The generic example
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of such a successful behavior is the strategy of “tit-for-tat” [1],
which always copies its coplayer’s behavior and its noise-tol-
erant cousin “generous tit-for-tat” [4], which sometimes coop-
erates even though its coplayer does not.

II. COOPERATION ANDSPACE

Nowak and May [5] introduced the additional idea that
spatially structured interactions could promote cooperative
behavior, even without reciprocity. Their model consists of
an array of sites, each of which is occupied by either a co-
operator or a defector. The individual at each site is assumed
to interact with each of its immediate neighbors and itself,
thereby accruing a total payoff. Once these have been found,
the individual with the highest payoff invades the central site.

Nowak and May showed that for a range of payoff values,
cooperators (C) could coexist indefinitely with defectors (D).
While a C player, which is surrounded by D players, is invaded,
a cluster of C players can fend off invasion because they accu-
mulate payoffs from one another. With deterministic dynamics,
fractal patterns of cooperators and defectors are seen while non-
determinism in the form of noise leads to spatial chaos. The
basic result was very striking: even naïve cooperators have a
chance against defectors in a spatially organized system. In ad-
dition, the makeup of the population remained nontrivial with
two strategies persisting indefinitely rather than degenerating
into a monoculture. Many studies have explored this model fur-
ther, also showing that spatial structure enhances cooperation
[6]–[13].

This paper investigates an alternative model for the spatial
PD. The rules we use are as follows: at each time-step, a site is
chosen at random from an array of strategies. This site encoun-
ters one of its immediate neighbors (chosen at random) and the
two strategies play a PD game. With a probability that increases
with its payoff1 from the interaction, the strategy in the first site
then spreads to occupy the second. This process can be viewed
as either the invasion of the second site by the occupant of the
first or as the original occupant of the second site surviving, but
adopting what appears to be the more successful strategy. Of
course, the effect is the same: the strategy of the first spreads to
that of the second. Because at any time-step this model only in-
volves two players, it is a natural way of embedding PD games
onto a grid.

The rules described above are equivalent to one of a family of
voter models [14], [15]. These have been used to model situa-
tions as diverse as the spread of human voter preferences or the
spread of biological species where space is a finite resource and
have received considerable attention from theorists because of
their generality and simplicity [16]–[18]. In the simplest voter
model, each species has a given probability of invading each
other species and sites are chosen at random, exactly as above.
In our case, the matrix of invasion probabilities is determined
by the payoffs the PD strategies accrue when they play one an-
other, given the usual payoffs.

1The particular mapping from payoffs to invasion rates does not play a sig-
nificant role, so long as it is monotonic.

III. SIMPLE LINEAR STRATEGIES

Several results from the voter model are useful here. If there
are just two species present and they invade one another at dif-
ferent rates, the species with the higher invasion probability will
eventually drive the other to extinction2 [16]. In this case, the
model is said to cluster. If neither is dominant because they in-
vade one another at the same rate, the eventual outcome is still
the extinction of one species rather than stable coexistence [17],
provided the dimensionality of the grid is one or two. If the grid
is three-dimensional or more coexistence of multiple species
is possible due to a result concerning random walks [18]: two
random walkers will eventually hit each other with complete
certainty in one or two dimensions, whereas they can perma-
nently avoid this (with some nonzero probability) in three or
more dimensions. If more than two species are initially present,
then, provided there are no cycles in the dominance relations
between species pairs, one species will eventually take over the
entire domain.

Consider the PD game with players having a fixed degree of
cooperation . In this case, a lower degree of co-
operation always means a higher payoff and the higher payoff
translates into a higher rate of invasion. It follows that there is a
clear hierarchy of strategies, with the least cooperative ( )
at the top and the most cooperative at the bottom. Of any pool
of fixed strategies present in equal amounts initially, the least
cooperative is most likely to drive all the others to extinction.
Alternatively, if we begin with a population of pure cooperators
and allow to mutate a small amount upon each successful inva-
sion, the lowest -valued players spread the fastest in any given
population. Evolution will drive the mean level of cooperation
down to its minimal value of zero.

Unlike the model considered by Nowak and May, space is
not sufficient for fixed cooperators to persist. We next consider
the outcome if simple linear strategies for the iterated prisoner’s
dilemma (IPD) are allowed. These strategies take account of
their coplayer’s previous move and their degree of cooperation
in the next iteration is a linear function of their coplayer’s move.
Each strategy can be drawn as a straight line crossing the unit
square whose axes are the degrees of cooperation adopted by
two players, as the example in Fig. 2 shows. For strategy, the
degree of cooperation is , where the
parameters and are the levels of cooperation takes
for and . For example, if was “always defect,” it
would be a horizontal line at the bottom of the square. The rising
diagonal corresponds to tit-for-tat. When iterated, the joint state
of the two players rapidly approaches the intersection of the two
lines over successive iterations [19] independently of whether or
not players make their decisions at the same time [20]. The value
of a long iterated game for either party is the value of its payoff
at this intersection point. The square shown in Fig. 2 is the base
upon which the payoff surface shown in Fig. 1 is plotted. Along
the diagonal , both players adopt the same degree of co-
operation and the game is a draw. From Fig. 1, if the point of in-
tersection of the two lines is below the diagonal,gets a higher

2If the array is small, it is possible for the slower invader to prevail against
the odds by chance alone.
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Fig. 2. Simple linear players in the IPD. StrategyY takes the currentx value
(the degree of cooperation of its opponent) and outputs a new levely. Likewise,
X takes the currenty value and returns a newx. Hence, every update by the
players moves the joint state(x; y) closer to the intersection of the two lines. For
simplicity, we ignore the transient and give the agents their payoffs according
to the position of the intersection point alone.

payoff than and wins the game. Conversely, if the intersec-
tion is above the diagonal, wins. Of particular importance is
the intersection of a strategy line with the rising diagonal: this is
the outcome of a game in which the strategy plays another copy
of itself. Since tit-for-tat lies along the diagonal it neither wins
nor loses, but draws every contest.

Simple linear strategies lead to identical outcomes (both dy-
namical and evolutionary) to the more familiar case of proba-
bilistic all-or-nothing cooperation [19]. Nonspatial populations
playing IPD become dominated by generous tit-for-tat: reci-
procity results in cooperation. Incorporating spatial effects with
the IPD leads, as a general rule, to greater levels of generosity
than the IPD on its own [9]–[13]. In the case of the voter model,
however, we next show that space, even with reciprocity, is still
insufficient for cooperation to be sustainable.

As before, the strategies present at any one time have pair-
wise dominance relationships and the most important property
is whether the graph so defined contains a cycle or consists of
a clear hierarchy. It can be shown geometrically that no cycles
of the form or
are possible, where , , and are simple linear strategists
and the arrows indicate either dominance or a draw. To show
this, consider a strategy that wins against a strategy. This
means the intersection of the two lines when drawn as in Fig. 2 is
below the diagonal . Denote the value at which the line
crosses the diagonal by . Clearly, the line must intersect
the diagonal at a point . Thus, there is an order on the
linear strategies defined by where they cross the diagonal, which
is the outcome of the self-game. From this, it can be seen that
there can be no cycles involving any number of players. Because
invasion probability is a monotonically increasing function of
payoff, this rules out intransitivity in the matrix of dominances
and the clustering result holds: after sufficient time, only a single
strategy will remain. All strategies with draw with one
another and defeat those with ; so, if initially present,
one of these will be the eventual winner. Apart from tit-for-tat
( , ), all these strategies defect against them-
selves and the end result is likely to be a population trapped in

Fig. 3. Evolution of simple linear strategies under voter model dynamics. A
50� 50 array of sites was initialized with random strategies by choosingY 0
andY 1 randomly between zero and one, independently for each site. The model
was then run for 1000 epochs, where one epoch corresponds to choosing 2500
pairs of sites, as dictated by the voter model dynamics. For each pair, the payoffs
that result from a long IPD game are calculated and an invasion occurs with a
probability given by the payoff for the first site. The graph shows the time course
of the population averages of parametersY 0 andY 1. To allow new strategies
to enter, each invasion is accompanied by the addition of 1% random noise to
the parameters and, on average, 0.1% of invasions result in a totally new random
strategy. All the cooperative strategies are wiped out over time.

perpetual defection. If the linear strategies are subject to muta-
tion as they invade, then the system evolves, becoming increas-
ingly defective over time (Fig. 3).

IV. CYCLIC COMPETITION AMONG IPD STRATEGIES

Although linear strategies do not allow cooperation to persist,
a simple nonlinearity suffices to allow cycles (intransitive rela-
tionships) between strategies. Consider the following, for ex-
ample.

1) cooperates at a level of 80%, regardless of the other
player’s behavior.

2) cooperates at a level of 20%, regardless of the other
player’s behavior.

3) cooperates fully if the other player is above 50% and
otherwise not at all, making it a highly “opinionated”
form of tit-for-tat.

gains a higher payoff than , exploiting its cooperative
nature. beats because cooperates the least of the two
when they play one another. Despite this,loses to because

does not cooperate fully when does. No doubt, there are
many ways cycles could be constructed given flexible strategies,
but this is perhaps the simplest possible: two of the strategies
are unreactive players and the third has only a trivial nonlin-
earity. Converting these payoffs into invasion rates3 shows that
the strategies form a competitive loop.

In its general form in the voter model, such loops have been
shown to have some interesting properties. First, the voter model
permits multiple species to coexist indefinitely if they are in a
cycle of three [16]. This is most easily shown by considering the
same system without any spatial component to the dynamics.

3A minor technicality is that we must assume some noise to findZ ’s payoff
against itself: twoZ players spend half their time in mutual full cooperation and
the other half in mutual defection.
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Fig. 4. Simulation of IPD with three strategies that form a competitive cycle.
StrategiesX , Y , andZ are soft cooperators, soft defectors, and opinionated
tit-for-tat. They are shown by white, black, and grey, respectively.

In the limit of infinite system size, the mean-field theory or-
dinary differential equation (ODE) yields a family of periodic
orbits around a fixed point, which means there are regular os-
cillations in the proportion of each species. However, without
spatial structure, the magnitude of these oscillations increases,
leading inevitably to extinction of two out of the three species
[21]. By contrast, Durrett and Levin [16] showed that the spatial
case exhibits stable coexistence. When viewed at a local scale,
there are semiregular oscillations, well separated regions oscil-
late out of phase, and the result is a stable equilibrium for each
of the three types at large scales. This dynamical coexistence of
multiple species cannot occur at all without a loop and cannot
persist indefinitely if the system is not spatially structured.

Fig. 4 shows the spatial distribution of strategies on the lattice
for the competitive cycle formed by the IPD strategies, , and

given above. A lattice of 256256 sites was initialized ran-
domly with these three behavioral rules and run for 2000 epochs.
The three strategies continually invade one another, forming a
fragmented pattern of clumps and clusters. With the particular
strategies and payoffs used here, opinionated tit-for-tat succeeds
in occupying the largest proportion of the grid. Most of the sites
which are occupied by opinionated tit-for-tat form a large con-
nected cluster that spans the domain.

V. EVOLUTION

We have shown that there are sets of strategies, cluding co-
operative ones, that are dynamically stable in a spatial system,
but not otherwise. An additional question is whether such be-
haviors are evolutionarily stable. For instance, what happens if
the parameters determining these behaviors suffer mutations as
they spread into new sites?

In the cyclic voter model, if each species has control over how
quickly it invades the species it dominates, evolutionary pres-
sures strongly reinforce such cycles [22]. An initially sluggish
cycle will tend to accelerate under the influence of natural se-
lection because it pays each member of a species to invade more

aggressively. In an intriguing echo of the PD, this acceleration
occurs despite the fact that it is more advantageous for the pop-
ulation as a whole to invade less aggressively.

In the case of the IPD however, the invasion rate is not a trait
of the player alone but of the interaction between two players
since it depends on both their levels of cooperation. It is not dif-
ficult to see that this interaction is enough to make the above
example of a competitive loop , , and unstable under evo-
lution because all three strategies will become less cooperative
over time. For example, individual mutants of the partial co-
operator would be more successful in encounters both with

and if they cooperated at a lower value (but still above
50%). would similarly be better off against both and
by cooperating less than 20%. There are two ways thatcan
be less cooperative: by setting a higher threshold in deciding
whether to cooperate or by being less cooperative above the ex-
isting threshold. Both of these lead to higher payoffs against
without changing those against, so mutants with these quali-
ties will be favored by evolution. All these tendencies reduce the
level of cooperation and the end result is that all three strategies
converge on unconditional defection.

More generally, it is enough to note that no strategy, no
matter how complex, can outscore pure defection (“AllD”) in
a one-to-one game. Any strategy which cooperates with AllD
gets a lower payoff and, hence, is dominated by it. Among a
set of strategies that do not cooperate at all with AllD, there
may be dominance relationships, however, leaving a reduced
set of strategies that draw with AllD and with each other.
Evolution will always tend to favor these strategies over their
more cooperative counterparts.

VI. DISCUSSION

To be successful in a spatial competition system, a strategy
must be able to invade others. The probability of a successful
invasion naturally depends on the payoff the individual at a
given site obtains through its interactions with its neighbors. The
voter model explicitly requires the payoff from a given site to be
“spent” on the invasion of that same site—it is not possible for
an individual to use this payoff against another neighbor, for in-
stance. We have seen here that while cooperation may persist
through the occurrence of cycles of nonlinear strategies, evolu-
tion will lead to the prevalence of defecting strategies. By con-
trast, in spatial models that do give rise to sustained levels of
cooperation, we always find some form of transfer of payoff
between where it is obtained and where it is “spent” as an in-
vasion. Nearly all the work on spatial PD allows payoffs to be
accrued by playing games with a number of sites. This cumula-
tive payoff is then used to invade a single other site, implying a
transfer of payoffs. With these rules, cooperation may persist as
the higher payoff obtained from playing a cooperative site may
be used to invade a defecting one.

If the payoff from interacting with a site must be spent against
that same site, only the relative gain—the difference between the
two payoffs—matters. The remainder of the payoff leads to an
equal expected number of invasions in either direction. On the
other hand, if an individual can spend a locally obtained payoff
on some third party, it is the overall value that matters. These
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Fig. 5. Evolution of simple linear strategies under modified voter model
dynamics. Figure shows the same simulation as that in Fig. 3, but run with the
slightly altered dynamics as described in the text. The result is evolution of
generous tit-for-tat.

two can be markedly different motivations. Indeed, it is almost
a defining characteristic of the PD that cooperators forego the
relative gain in favor of a higher absolute gain for both parties.

A straightforward way to test this idea is to make a slight
change to the voter-IPD model dynamics. As before, a site is
chosen at random from the array and a second is chosen from
its immediate neighborhood. A game of the IPD is then played
and the payoff used to determine the ability of the first site to in-
vade. However the site that is actually invaded is not necessarily
the same as that played against, being chosen insteadat random
from the immediate neighborhood of the first site. In all other
respects, the dynamics are the same. Fig. 5 shows the outcome
of such a simulation for the same class of simple linear strategies
discussed earlier. The result is now the rapid rise of the coop-
erative strategy of generous tit-for-tat, the same behavior which
prevails in a randomly-mixed “soup” model [4], [19].

In general, spatial effects are thought to enhance the prospects
of cooperative behaviors. With the voter model rules, coopera-
tive and defecting strategies can coexist indefinitely provided
there are competitive cycles, but once evolution is included, de-
fecting strategies prevail. The spatial clustering of strategies is
not sufficient to favor the survival of cooperation. The study of
the voter model shows that without transferability of payoffs,
spatial effects do not, on their own, result in the promotion of
cooperation.
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