

Patterns and drivers of resilience in over-fished populations

Philipp Neubauer

Research interest in the ecology of exploited marine populations and ecosystems

- PostDoc @ Rutgers Uni, NJ, US Recovery of collapsed stocks
- Marsden FS Resilience of fished ecosystems to climate change

Fisheries ecologist/data analyst @ Dragonfly

Sustainable fisheries in NZ: Abalone, Cockle, Pipi, fisheries impacts on marine mammals

Bayesian methods in ecology and fisheries

- Estimating predator diet composition composition (PeerJ April 23^{rd,}, Github for R package)
- Inferring dispersal of marine organisms from geochemical markers using Dirichlet Process & Hidden Markov models (MEPS 2010, MiEE 2013 & forthcoming)

1. Introduction to fisheries

- 2. Global trends in fisheries
- 3. Recovering over-fished stocks
- 4. Patterns and drivers of resilience
- 5. (Some) Limits of resilience
- 6. Resilient fisheries

(A short and rather incomplete) Introduction to **fisheries**

Some places were intensely fished by the early 1800s

- the North Sea
- Mediterranean
- New England

By the late 19th/early 20th century, some stocks were already heavily exploited:

- North Sea herring
- Atlantic Halibut & Cod

Fisheries science

"...provide for the utilisation of fisheries resources while ensuring sustainability" NZ Fisheries act, 1996

Two aspects:

- 1. Food Security
- 2. Sustainability

Management strategies = stock assessment + harvest strategy attempt to address both

Fisheries 101

Impacts of fishing

Fishing reduces biomass: 40% of virgin biomass is a common target

Fishing alters the age/size structure of fished populations

Impacts of fishing

Fishing reduces biomass: 40% of virgin biomass is a common target

Fishing alters the age/size structure of fished populations

Impacts of fishing

Fishing reduces biomass: 40% of virgin biomass is a common target

Fishing alters the age structure of fished populations

Fished populations are more variable than unfished ones¹⁻³

Fishing exerts selective pressure & reduces genetic diversity – a Darwinian debt?^{4,5}

¹ Hsieh et al 2006 – Nature, ²Anderson et al 2008 – Nature, ³ Shelton & Mangel 2011 – PNAS,
⁴ Jorgensen et al. 2007 – Science, ⁵ Pinsky & Palumbi, in press – Molecular Evolution

Global trends in fisheries

...to global

Worm et al. 2009 -Science

Costello et al. 2012 - Science

More worrying yet...

of fish to man is appreciably greater than 100 million tons. - Ryther 1969, Science

FAO – The State of World Fisheries and Aquaculture

Where are we today?

Fishing mortality (F) is declining in many parts of the world, but often still too high

Around 2/3 of global fisheries are below target biomass levels¹

An estimated 15% of fished stocks are collapsed¹ (<0.2x Target Biomass (@MSY))

Recovering over-fished stocks

What does it take to recover stocks?

Biomass, B

Resilience: Ability of populations to recover from low biomass

Many well known depletions and subsequent recoveries: e.g., North Sea Herring

ICES advice 2013

Many well known depletions and subsequent recoveries: e.g., North Sea Herring

Many well known depletions and subsequent recoveries: e.g., North Sea Herring

Local depletions and subsequent recoveries: Western Hoki

A notorious depletions without recovery: North West Atlantic Cod

...too simplistic?

Hutchings 2000 – Nature Hutchings 2001 – J.Fish.Bio

What could be missing?

Allee effects/depensation

Cultivation/Depensation

Walters & Kitchell 2001 - CJFAS

A) Atlantic cod

Predator trap

Swain & Benoit 2015 – MEPS

How resilient are fish stocks to over-fishing?

or

How predictable are recoveries?

Data

RAM Legacy Stock Assessment Database: over 360 stock assessments from around the globe

Ricard et al. 2012 - Fish & Fisheries

Data

RAM Legacy Stock Assessment Database: over 360 stock assessments from around the globe

153 stocks that had been depleted at least once to below 0.5x target (MSY)

Survival analysis of overfished stocks: Does overfishing reduce population resilience?

Stocks as sick patients

Bayesian **survival-analysis** regression model of **time-torecovery**:

Assumes that biomass dynamics is a stochastic process

$$dB_t = \varphi_t B_t dt + \sigma B_t dW_t$$

Which leads to in inverse-Gaussian model for recovery times

$$f_{IG}(t) = \frac{c'}{\sigma\sqrt{2\pi}} t^{-3/2} \exp\left[-\frac{(c'-\nu't)^2}{2\sigma^2 t}\right]$$
$$c' = f(B_{\min},...)$$
$$\nu' = f(F/F_{msy},....)$$

Stock as sick patients

Bayesian survival-analysis regression model of time-torecovery.

Survival analysis: Will the patient (stock) survive the illness (collapse), how long will he take to heal (recover) and why?

Stocks as sick patients

Bayesian **survival-analysis** regression model of **time-torecovery**

Survival analysis: Will the patient (stock) survive the illness (collapse), how long will he take to heal (recover) and why?

Includes covariates for management, life-history and exploitation history

Allowed us to estimate the effect of covariates on median recovery times and the probability of recovery within a given timeframe

Patterns and drivers of resilience

Drivers of resilience

Responsible and responsive management is key to building resilience and recovering overfished populations

Adapted from Neubauer et al. 2013 Science

Examples

Drivers of resilience

Recovery is accelerated for moderately high historical fishing regimes

Negative impacts of fishing only for very long and intense fishing regimes

Adapted from Neubauer et al. 2013 Science

Explanations?

Phenotypic plasticity and fishery induced evolution can increase the productivity of fished populations

Explanations?

Phenotypic plasticity and fishery induced evolution can increase the productivity of fished populations

Adapted from Eikeset et al. 2013 – PNAS,

(Some) Limits of resilience

Importance of age/size structure

Intense harvest leads to capture of young (and immature) individuals

Age composition needs to 'fill in' again after very intense harvest

Importance of age/size structure

Shelton et al. 2010 - CJFAS

Adverse environments

Over-fished stocks can fall into the *environmental trap*

Vert-Pre et al. 2013 – PNAS

Limits of resilience

Increases in productivity can lead to unstable (nonlinear) population dynamics

Anderson et al 2008 - Nature

Resilient Fisheries

Building resilience

Precautionary fishing mortality rates limit ecosystem wide risks of over-fishing

Building resilience

Precautionary fishing mortality rates limit ecosystem wide risks of over-fishing

Adapted from Worm et al. 2009 – Science

Building resilience

Precautionary fishing mortality rates limit ecosystem wide risks of over-fishing

Maintaining age/size structure to maintain reproductive and adaptive potential

Acknowledging environmentally/climate driven variability in demographic rates, adjust management advice accordingly

ICES Journal of Marine Science

ICES Journal of Marine Science (2012), 69(2), 145-150. doi:10.1093/icesjms/fsr207

Food for Thought

Feeding the world: what role for fisheries?

Chris L. J. Frid^{1*} and Odette A. L. Paramor²

¹School of Environmental Sciences, University of Liverpool, Brownlow Street, Liverpool L69 3GP, UK ²Environmental Sciences, University of Nottingham Ningbo, China, 199 Taikang East Road, Ningbo, Zhejiang 315100, China

ICES Journal of Marine Science (2011), 68(6), 1343-1353. doi:10.1093/icesjms/fsr041

Fisheries, food security, climate change, and biodiversity: characteristics of the sector and perspectives on emerging issues

Jake C. Rice^{1*} and Serge M. Garcia²

¹Department of Fisheries and Oceans, Ottawa, ON, Canada K1A 0E6

²Former Director, FAO Fisheries Management Division, Rome, Italy

Marsden Questions

How resilient are ecosystems to over-fishing?

How does fishing alter ecosystem responses and resilience to climate change?

MARSDEN FUND

TE PŪTEA RANGAHAU A MARSDEN

Acknowledgements

• NSF/NOAA CAMEO grant

• Olaf Jensen, Jensen lab group, Malin Pinsky

• Mike Plank

Environmental costs per 40g protein

	Water (L)	Fertilizer (g)	Pesticides (mg)	Antibiotics (mg)	Soil Loss (kg)
Beef	2200	50	494	21	16
Chicken	1331	18	163	55	3
Pork	1331	46	422	53	8
Dairy	1178	34	299	50	7
Capture fisheries	low	0	0	0	0

Courtesy of R. Hilborn

Where will the protein come from?

Unless we cut down more forests for beef and soy, it will have to be:

- Well managed fisheries
- Aquaculture of herbivorous fish and bivalves

