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Summary

1. Geochemical and stable isotope tags are often used to attribute individual animals in a sample of mixed ori-

gins to distinct sources, be it spawning, overwintering or foraging habitats. In order for individuals to be uniquely

classified to one source, modelling approaches generally assume that all potential sources have been character-

ized in terms of their geochemical signature. This assumption is rarely met in applications of geochemistry in

environments where species distributions and spawning grounds are poorly known; statistical methods that can

accommodate this problem are therefore essential.

2. We develop nonparametric Bayesian mixture models for geochemical signatures that estimate the most likely

number of sources represented in amixed sample, both in the absence and presence of baseline data.We then use

amarginal clustering framework to evaluate the probability that a fish comes from a particular source.

3. Using both simulations and a previously analysed data set, we illustrate the method and highlight the poten-

tial merits and difficulties. These examples reveal how our interpretations of geochemistry data sets can change

when potentially un-sampled sources are taken into account.
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Introduction

Geochemical tags are routinely used to reconstruct migrations

and estimate demographic connectivity of populations in both

terrestrial and marine systems (Rubenstein & Hobson 2004;

Elsdon et al. 2008). Trace element tags as well as stable iso-

topes contained within inert structures, such as fish otoliths,

mollusc statoliths or bird feathers, have been used to quantify

connectivity on ecological time-scales and study migratory

pathways of a number of organisms including fish (Thorrold

et al. 2001), birds (Rubenstein et al. 2002) and mammals

(Burton&Koch 1999).

Inferences about geographical origins or migratory path-

ways from geochemical tags generally involve initial sampling

of individuals from potential sources of interest (i.e. spawning,

foraging or overwintering grounds) to establish a geographical

baseline or reference atlas. Individuals of unknown origin are

then assigned to one of the sources in this reference atlas based

on their geochemical signature. The identifiability of potential

sources is, intuitively, a major determinant of the success of

such studies (Rubenstein & Hobson 2004; Elsdon et al. 2008).

Furthermore, this approach generally requires, or at least

(implicitly) assumes, that all potential sources have been

sampled in order to determine geographical origins of individ-

uals in the mixed sample. Omission of potential source sites

can limit the inferences one can make regarding dispersal in a

given system, since the assignment of individuals to a finite set

of sources may be erroneous if one does not have a complete

atlas. Because comprehensive sampling is often not feasible,

the utility of this approach may be limited in many marine

environments (Campana et al. 2000), although this may be of

lesser concern if there is strong spatial covariation in signatures

such that misassignments are made to spatially neighbouring

sources (Pella &Masuda 2006;Munch&Clarke 2008).

Bayesian tools have gained considerable ground in the anal-

ysis of samples of mixed origin (i.e. stock mixtures in fisheries

or individuals of unknown origin in connectivity and migra-

tion studies), in part, because they enable practitioners to

define realistic and probabilistically sound models that can

incorporate uncertainty at various levels of an analysis (Pella

& Masuda 2006; Munch & Clarke 2008; Smith & Campana

2010; Pflugeisen & Calder 2012). In particular, Bayesian meth-

ods have been employed in an attempt to provide an answer to

the problem of an unknown number of sources in a mixture.

Pella & Masuda (2001) proposed posterior predictive checks

for an unconditional (sensu Koljonen, Pella & Masuda 2005)

Bayesianmixturemodel from genetic characteristics to identify

potential mismatches between the baseline and the mixed

source sample, which may indicate the presence of unsampled

sources in themixed sample (see also Smith &Campana 2010).
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It does not, however, provide a way to estimate the nature and

number of such extra-baseline populations. White et al. (2008)

proposed Bayesian model selection to find the most likely

number of sources in a mixed stock, but this model does not

explicitly connect the baseline with themixed sample.

A Bayesian method to directly identify the contribution of

extra-baseline sources to a mixture is provided by Pella &

Masuda (2006). The use of a prior which has support over a

theoretically infinite number of possible sources yields a mar-

ginal distribution over the number of sources in themixed sam-

ple, thus eliminating the problem of model selection. Here, our

aim is to develop and extend analogous models that directly

infer the presence and contribution of extra-baseline sources,

while following the distributional assumptions commonly

employed for geochemical data. Statistical models are imple-

mented in a new (open-source) package for Bayesian analysis

of population structure implemented R (R Development Core

Team 2007) and using the Julia language for technical comput-

ing to efficiently implementMarkov ChainMonte Carlometh-

ods for parameter estimation. The proposed models are tested

on simulations as well as a well-known data set (weakfish:

Thorrold et al. 2001), which has previously been evaluated by

other authors to illustrate Bayesian methods for geochemistry

data (Munch&Clarke 2008;White et al. 2008).

Statisticalmodels

A DIR ICHLET PROCESS MIXTURE MODEL FOR

CLUSTERING

When the number of sources in a mixed sample is itself uncer-

tain, identifying the (natal) origin of individuals becomes a dif-

ficult statistical problem: any classification will be biased by a

priori exclusion of potential sources. The goal of the Dirichlet

process mixture (DPM) introduced in this section is similar to

the approach of White et al. (2008) in that we aim to infer the

most parsimonious number of source populations in the sam-

ple. It represents a straightforward Bayesian extension of the

finite mixture model that is commonly employed for classifica-

tion in mixed sample analyses, whereby an analytical integra-

tion stepmakes it possible to circumvent the problem of model

selection in mixture models (Celeux et al. 2006) and to infer

the number of potential sources directly.

Practitioners working with geochemical tags commonly

measure a suite of elements that are thought to be useful in

discriminating potential sources. We assume that the p-

dimensional vector of geochemistry data, denoted yi = yi,1,…,

yi,p, for fish i in a mixed sample y = yi,…, yn of i = 1,…, n fish

(all subsequent indexing proceeds in the same manner), is

drawn from a multivariate normal distribution that character-

izes the source of this individual (note that other distributions

could be used here). Furthermore, a total ofK separate sources

are potentially represented in the mixed sample y. In the case

of a complete baseline reference atlas (hereafter, ‘baseline’), a

natural way to model these data is the finite mixture model,

whichmodels the joint density of the data y obtained from all n

fish, each having originated from one ofK sources.

fðyjh; pÞ ¼
Yn
i¼1

XK
k¼1

pkfðyijhkÞ eqn 1

The set hk = {lk,Σk} includes the mean vector and covariance

matrix of the multivariate normal distribution, and f (yi|hk) is
thus the (p-dimensional) multivariate normal likelihood for yi
given the source parameters hk. A fish in themixed sample thus

originated from source k with probability pk = P(si = k),

where si is a categorical variable assigning fish i to source k.

Often, it is these probabilities that are of interest, for instance,

when the focus is on stock mixing proportions in a fisheries

context.

In a Bayesian context, one can conveniently write this model

in a hierarchical fashion which directly illustrates conditional

dependencies:

yijh; si �MVNðhsiÞ
sijp�MNðpÞ
p�Dirichlet

c
K

� �

hsi �G0

eqn 2

Here, | denotes a conditional statement (a|b reads ‘a given

b’) and ~ reads as ‘is distributed as’.MN is themultinomial dis-

tribution andG0 is the prior for the parameters of themultivar-

iate normal (MVN) density in the first line, for instance a

conjugate normal-inverse-Wishart prior (see, for instance, Gel-

man et al. 2003). For details about this prior and its parame-

ters, see the Appendix S1 (Supporting Information). The

Dirichlet distribution is the conjugate (natural) prior for the

multinomial distribution, with concentration parameter c.
When a complete baseline is unavailable or the assumption

thereof is questionable, K will be unknown, and from a Bayes-

ian perspective, K should then be treated as an uncertain

parameter to be estimated. From the above hierarchical for-

mulation, it is evident that only p depends explicitly on the

choice of K, all other parameters, such as s, only indirectly

depend onK via p. Neal (1992) showed that, given a symmetri-

cal Dirichlet prior for source probabilities p, one can integrate

(1) with respect to p and take the limit of K ? ∞ to obtain a

conditional prior for s that does not depend on K. The new

prior, replacing lines two and three in the hierarchical formula-

tion in eqn (2), can be written as follows:

Pðsi ¼ kjs�iÞ ¼ n�1
k

n� 1þ c

Pðsi 6¼ k for all keKjs�iÞ

where s-i is the vector of all source assignments, excluding indi-

vidual i; n�i
k is the number of individuals attributed to source k

excluding individual i, or formally Σj 6¼ id(sj = k), with d(x) a
pointmass at x. Analogously to estimation of source probabili-

ties p in the finite mixture model (c.f. Munch & Clarke 2008),

this prior states that with a probability proportional to the

number of individuals attributed to a given source, any individ-

ual of unknown origin will also have originated from that

source. However, with a probability proportional to c, this
individual will have come from a previously uncharacterized
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source. This model is often referred to as the infinite mixture

model or aDirichlet process mixture (DPM). To obtain Bayes-

ian posterior source assignments, the prior that is formulated

above is combined with the likelihood of belonging to a previ-

ously characterized or new source to give a posterior probabil-

ity (after normalization in Bayes theorem). Specifically, the

likelihood of belonging to a characterized source is MVN [as

in (1)], with h estimated from all n�i fish.

The prior for the concentration parameter c determines how

many sources are a priori expected to be sampled in the data

set. A flat (uninformative) prior for c would thus suggest that

any number of sources from 1 to n are equally likely. Other

priors may, however, be useful if the number of sources can be

reduced to a range, or a ‘best guess’. In this instance, some

appropriate probability distribution that is defined on the posi-

tive real line (e.g. Poisson), or a specified vector of prior proba-

bilities may be used. Since, however, a gamma distribution is

the most natural prior for the concentration parameter c,
Dorazio (2009) suggested to use the Kullback-Leibler distance

to match, as closely as possible, the parameters of the gamma

distribution such that the resulting prior over the number of

sources reflects the desired prior distribution. We implemented

this approach to specify priors for the number of sources in the

data set.

Further details about our implementation and Markov

Chain Monte Carlo sampling algorithms can be found in the

Appendix S1. A toolbox implemented in R implements (1)

previously described (finite) Bayesian mixture analyses, (2) the

new methods, and includes (3) pre- (e.g. priors) and postpro-

cessing steps that are outlined below. This toolbox is available

at http://github.com/Philipp-Neubauer/PopR, and readers are

encouraged to contribute to this open-source software, to facil-

itate the eventual development of a comprehensive R toolbox

for Bayesian analysis of population structure.

Visualizingmodel results

To visualize patterns in the mixed sample, we applied the exact

linkage algorithm of Dawson & Belkhir (2009), which con-

structs a tree (akin to a hierarchical clustering tree) based on

estimates of marginal co-assignment probability. This quantity

expresses the probability that two individuals (or a set thereof)

are assigned to the same source, given the uncertainty about

the number and nature of these sources. It is a marginal proba-

bility: it integrates over the posterior distribution of model

parameters and thereby takes into account the uncertainty

inherent in their posterior distributions. This probability is also

invariant to the label switching that accompanies iterative mix-

ture model estimation and makes traditional (e.g. confusion

matrix) representations difficult (Dawson&Belkhir 2009).

The node height of any node in the constructed tree is equal

to the estimated posterior co-assignment probability of the

individuals or sets of individuals which are merged by that

node. It is worthwhile to note that the number of clusters sepa-

rated by very low co-assignment probabilities (say Pc < 0.05)

in the co-assignment tree is only expected to equal the most

likely number of sources inferred by the model when there is

no uncertainty in the marginal posterior distribution over the

number of sources. To clarify this, one can imagine two of indi-

viduals from the mixed sample that are attributed to separate

clusters when two sources are drawn in the model (during an

MCMC iteration), but these sets aremergedwhen only a single

source is drawn (Fig. 1).

If it is twice as likely that the data originated from two

sources as opposed to a single one, such that (K = 2) = 2/3

and P(K = 1) = 1/3, then the co-assignment probability Pc of

these sets is 1/3. Thus, even though there are most likely two

sources, the separation in terms of co-assignment probabilities

is only 2/3. The co-assignment thus integrates over uncertainty

in the number of sources to give a measure of separation of

groups of fish (see Fig. 2 for an example of a tree constructed

from a simulated data set).

If a baseline is present, this probability measures the mar-

ginal assignment probability of a fish or set of fish to a baseline

source. The average co-assignment probability of a set of fish

with a baseline or another set of individuals gives an estimate

of the expectation ofPc.

Applications

We first conducted simulations to examine the properties of

the DPM models in different idealized situations, as well as to

test its robustness (see also the Appendix S1). We then tested

the model on a data set of weakfish (Cynoscion regalis) otolith

geochemistry, which was originally investigated by Thorrold

et al. (1998, 2001). The premise of the original study was to

investigate natal homing to five estuaries along the east coast

of the United States (from north to south): New York (NY),

Fig. 1. Illustration of co-assignment probabilities fromMarkov Chain

Monte Carlo estimation of mixture models. At each draw, individuals

are attributed to a source (green or red), according to posterior assign-

ment probabilities. For each sample (1–9), their source is either identi-
cal (=) or they are attributed to distinct sources (6¼). In this case, the

probability that the two individuals belong to the same source is

Pc = 3/9 = 1/3, and the probability that the two individuals come from

distinct sets is 1-Pc = 6/9 = 2/3.

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution
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Delaware Bay (DE), Chesapeake Bay (CB), North Carolina

(NC) and Georgia (GA). The authors used otolith core geo-

chemistry of adult weakfish which were compared with a base-

line of geochemical signatures collected from juvenile weakfish

2 years earlier. A discriminant analysis was used to assign

adults to natal estuaries, thus assuming that (i) adult fish were

spawned in one of five baseline estuaries and (ii) that these estu-

aries were sufficiently characterized by the data collected from

juvenile fish to allow for such a classification.

There are a number of motivations for using DP models for

a re-analysis of this data set. (i) Recent models developed for

assigning natal origins (or estimating source proportions)

based on otolith geochemistry have used this data set for illus-

trative purposes (Munch&Clarke 2008;White et al. 2008), (ii)

While the original study notes that the five estuaries under

investigation account for 90% of commercial weakfish catch,

other estuaries along the east coast could have potentially

accounted for some of the adult fish in this study, (iii) Some of

these estuaries are relatively large (i.e. CB is the largest estuary

in the USA), and large variation in otolith geochemistry can

often be found even on small scales within estuaries (Thorrold

et al. 1998; Gillanders & Kingsford 2000; Miller 2007). Since

fish in the mixed sample may originate from unsampled

locations within these estuaries, this could lead to uncertainty

in inferences about the strength of natal homing as derived

from geochemical tags.

Clustering fishwithout a baseline

In the absence of a baseline, the DPMmodel could, in theory,

be used to estimate the number of distinct sources that make

up the mixed samples. In that case, the likelihood for yi is sim-

ply the likelihood used in (1), with h estimated from the mixed

sample itself. Since we estimate source parameters from data,

posterior source distributions have heavier tails than a normal

distribution [namely, the posterior source distributions are

generalized (multivariate) Student’s t-distributions, see also

(Munch & Clarke 2008)], and the procedure should thus be

robust to deviation from the normal assumption in that sense.

In practice, estimating the number of sources in a multivari-

ate data set is a difficult task at best and is only a sensible thing

to do if sources are rather well separated in parameter space –

in which case source partitioning should be rather obvious

from, say, a plot of the principle components of the data (see

Fig. 2 for a simple, illustrative simulation example).More real-

istic simulations show that it is difficult to obtain interpretable
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Fig. 2. Simulated example illustrating an application of the DPMwithout a baseline for a data set drawn from four well-separated sources. Panels

a-d illustrate (a) the data (colour-coded throughout to represent individual source) projected on the first two principal components, (b) a hierarchical

clustering of the data, (c) the posterior distribution of the number of sources and (d) tree of posterior co-assignment probabilities. In exact linkage

tree (d), the centre of the circular tree suggests a co-assignment probability of zero, with co-assignment increasing concentrically towards the

periphery, where the co-assignment probability is 1. Individuals (circles on tree leaves) mainly group into the correct sources, separated by low

co-assignment probabilities. Only for the source that is intermediate in terms of its signatures (yellow source) is there greater uncertainty reflected by

low co-assignments within the source relative to the other sources.
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results without a baseline. In the Appendix S1, we provide

more details about simulations and discussion about the diffi-

culty in estimating the number of sources in realistic settings

and aim to briefly describe the nature of the problem here.

The difficulty of identifying the number of sources increases

with the dimensionality of the data: whereas a higher number

of (informative) geochemical signatures (chemical elements)

facilitates discrimination among sources (e.g. Neubauer et al.

2010), it also leads to an exponentially sparser distribution of

the samples in multivariate space [the well-known Curse of

Dimensionality, e.g. Bishop (2007)]. Thus, in order to maintain

a sample that adequately characterizes the (multivariate nor-

mal) distribution of sources in the data set, the number of indi-

vidual samples needs to increase exponentially with an

increasing number of signatures. Such a concomitant increase

in sample size is generally not feasible in practice. If a low num-

ber of principal axes account for most of the variability in the

data, statistical approaches (e.g. principal component analysis)

may be implemented to reduce dimensionality and increased

performance of the DPM for the identification of individual

sources. In other instances, informative priors [e.g. describing

source (co)variances] may be used to help characterize the nat-

ure of the source-specific distributions. In practice, however,

this approachwould normally require an informative baseline.

Using theDPMwith a baseline of normally
distributed sources

This application uses the DPM in a set-up similar to that of a

classical finite mixture model, in which geochemical signatures

from each source are assumed to be normally distributed. In

contrast to the classical mixture model, however, we do not

need to assume that only the sampled sources contribute to the

mixed sample. The vector of source parameters h is now esti-

mated from the baseline alone (conditional, e.g. Munch &

Clarke 2008) or jointly from the baseline and the mixed sample

(unconditional, e.g. Smith &Campana 2010). The latter case is

generally preferred (Koljonen, Pella & Masuda 2005) and is

implemented here. The new likelihood for yi being attributed

to source k is then conditional on the baseline samples x (and

y�i
k for unconditional classification) and can be written as fol-

lows:

f yijhk; x; y�i
k

� �� � ¼ pðyijhkÞp hkjx; y�i
k

� �� �
:

Again, an explicit integration over h yields

f yijshi ¼ k; x y�i
k

� �� � ¼
Z

pðyijhkÞp hkjx; y�i
k

� �� �
dhk;

an expression for the likelihood that integrates over uncer-

tainty in h, resulting in a density with larger tails. Further

details about the nature and parameters of this predictive

density can be found in theAppendix S1.

In the presence of a baseline, we have information about the

parameters of the normal distributions that characterize the

sampled baseline. Thus, as long as the distributional assump-

tions hold approximately and sources are reasonably well

resolved by the geochemistry, one should expect the model to

assign fish to a characterized or an uncharacterized baseline

source according to the posterior probability of each. The sec-

ond difference with respect to the first application is that, in this

case, we can more reliably estimate the parameters of G0 (the

prior for source characteristics) since we now have information

about the characteristics of at least some sources and can for-

mulate our prior accordingly. Since the probability that an

individual comes from a previously uncharacterized source is

directly linked to G0, this will be crucial to making reasonable

inference about the presence of extra-baseline sources.

A simulated example (Fig. 3a) illustrates how the model

classifies individuals to baseline (i.e. sources identified in a ref-

erence atlas) and extra-baseline sources (i.e. sources that are

not represented in the reference atlas), in a relatively realistic

setting (simulated sources overlap in parameter space, but

remain relatively well discriminated – Fig. 3a). Since we have

sampled a baseline of four sources, we hypothesize that there

are around four sources in ourmixed sample: after all, the sam-

pling effort for the baseline shouldmimic our hypothesis about

dispersal/migrations. We thus emulate (via the prior on c, as
discussed above) a Poisson distributed prior for the number of
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Fig. 3. (a) Simulated baseline, with colours indicating source membership, diamonds indicating the four sampled baseline sources and triangles

depicting the mixed sample, including individuals from two extra-baseline sources (grey and red) that appear only in the mixed sample. (b) Original

Poisson (4) prior (green triangles) and the induced prior on the number of sources (blue circles) by using a Gamma (a,b) distribution prior on the

DPMconcentration parameter c to reflect the original (explicit) prior, with parameters a and b optimized tomatch the original and induced distribu-

tions as closely as possible.
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sources with mean 4 (and hence variance 4 – Fig. 3b) that puts

most of the prior weight on observing 4 or fewer sources [P

(K ≤ 4) = 0.63], but allows, with probability P(K > 4) = 0.37,

formore sources to be observed.

The priors for source parameters given by G0 are set to the

harmonic mean of the source covariance matrices for the prior

covariance matrix, and we set the prior degrees of freedom

(reflecting certainty about this value) to the (algebraically)

allowed minimum of p + 1, thus expressing relatively low con-

fidence in this value. The prior mean and a scaling parameter

for the covariance (k0 – see the Appendix S1 for details) are

estimated from the baseline and mixed sample, using a flat

prior for the former and a Gamma distribution with scale 1

and shape 1 as hyperparameters for the latter.

Model results suggest that, given a reasonably resolved base-

line as in this example, the model can recover extra-baseline

sources and provide reasonable assignment success even under

only vaguely informative priors (Fig. 4). The two simulated

extra-baseline sources have a co-assignment probability of 0

with the baseline sources and a probability of 0.07 of belonging

to the same source. Some misclassification is nonetheless obvi-

ous: mixed samples from the black source are assigned to their

baseline with an average Pc of only 0.15. Some of these mixed

samples are attributed to an extra-baseline source, showing

that theDPMmethod can have a drawback in thatmixed sam-

ples coming from baseline sources may be erroneously attrib-

uted to extra-baseline if they fall within the tails of a

distribution. This should be especially prevalent if sources are

not adequately sampled, and their estimated variance for each

element is lower than the actual variance.

We conducted another set of simulations to test our meth-

ods on the weakfish data set. For these, we used the baseline to

conduct two relevant tests. Specifically, we asked (1) whether

sources are omitted from the baseline and treated as a mixed

sample, are these consistently assigned to an extra-baseline

source and (2) do random samples from the baseline get

assigned to their respective source, and not to extra-baseline

samples. To test (1), we omitted each source in turn from the

baseline and computed the co-assignment probabilitiesPSwith

each remaining source for all samples, which allowed us to cal-

culate the probability of coming from an extra-baseline source

as PEB = 1 - PS. To investigate question (2), we used 20 cross-

validation trials of 30 random samples from the baseline as a

mixed sample, and the remainder of the baseline was kept as

the new baseline. For each trial, we calculated the proportion

of individuals correctly assigned to their respective sources, as

well as the probability that any of them originate from an

extra-baseline source. The prior emulated a negative binomial

distribution with mean 4 (5) and rate 4 (5) as the prior for the

number of sources in the mixed sample for test i (ii), leading to

P [K ≤ 4(5)] = 0.64 (0.62). All other priors were calculated as

for the simulated example.We lastly compared these cross-val-

idations to finite mixtures, using both conditional assignment

(Munch&Clarke 2008) and unconditional assignments (Smith

& Campana 2010), using the same prior as for the DPM

model.

The tests confirm that the model performs well when assign-

ing samples to extra-baseline sources in test (i), with very few

samples having co-assignment probabilities PEB < 1 (Fig 5).

The DPM generally assigned individuals to their correct estu-

aries in test (ii), albeit with lower probabilities than the condi-

tional and unconditional assignments. This was due to

nonzero probabilities that individuals originated from extra-

baseline sources (Fig. 5). This uncertainty is obviously elimi-

nated in finite mixtures by the strong hypothesis that we know

the number of sources. Probabilities for extra-baseline sources

were, however, generally low enough (and well below co-

assignment probabilities with baseline sources) such that very

low proportions of samples were erroneously assigned to

extra-baseline sources.Nevertheless, it is useful to note that the

possibility of observing extra-baseline sources generally leads

to lowered assignment probabilities overall unless the proba-

bility of additional sources is very low.

To analyse the weakfish data set, we initially used the same

priors as above, this time emulating a negative binomial distri-

bution with mean 5 and rate 5 as the prior for the number of

sources in the mixed sample (Fig. 6a), leading to P

(K ≤ 5) = 0.62. This seems both flexible and reasonable since a
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high degree of natal homingwas previously found, but straying

between estuaries was also inferred from the geochemistry.

Nevertheless, the majority of Weakfish spawners are likely

found within the sampled estuaries, warranting a high proba-

bility thatK ≤ 5.

Our analysis of the adult weakfish data set strongly suggests

that the juvenile weakfish baseline does not provide a sufficient

basis to assign weakfish adults to spawning estuaries in many

cases (Fig 6): all but one of the North Carolina samples

(Fig. 6e) and the majority of New York samples (Fig. 6f)

group away from the baseline as extra-baseline sources. The

expected co-assignment of adults collected in these estuaries

with the corresponding juvenile signatures is thus 0 and 0.15,

respectively, suggesting that we cannot reliably conclude that

natal homing is prevalent among adults that are found in these

estuaries. For the remaining three estuaries, the majority of

adult fish group most closely with their respective baseline.

Nevertheless, in both Chesapeake and Delaware Bay (Fig. 6b,

c), the expected assignment probabilities to the baseline remain

relatively low, with 0.55 and 0.43, respectively. Only inGeorgia

(Fig. 6d) do we see a clear association of the weakfish adults

collected in that estuary with the corresponding baseline sam-

ples, with Pc = 0.88. Our analysis provides only very limited

support for the straying or dispersal among estuaries that was

suggested by the previous analyses of this data set. In fact, only

in North Carolina and Georgia do we find individual fish (1

and 4 fish, respectively) that group more closely with other

baselines thanwith their own or with extra-baseline samples.

Discussion

We have developed a modelling approach that addresses a

long-standing challenge associated with the application of geo-

chemical signatures to estimate dispersal and migration,

namely the uncertainty in the number of contributing sources.

Clustering and classification procedures based on our methods

may thus provide considerable insight into patterns in geo-

chemical data, both at the level of the baseline and the mixed

sample. Since these methods can be directly derived from finite

mixtures (Neal 1992), classification of individuals to specific

sources will be the same (with same accuracy) as in a finitemix-

ture model when the baseline is complete and representative of

themixed sample. However, the possibility for recruits to come

from un-sampled sites makes the DPM approach an excellent

tool for exploring and inferring connectivity based on geo-

chemical tracers in geographically and chemically complex

landscapes. The DPMmodel is thus a more realistic procedure

inmost applications of geochemical tags in themarine environ-

ment, where the requirement of a complete baseline can rarely

be achieved.

Our re-analysis of the weakfish data set fromThorrold et al.

(2001) provides an illustration of such challenges in a coastal

environment. We find evidence for extra-baseline sources in all

mixed samples except those collected in GA. In NC and NY,

the majority of fish group in such extra-baseline clusters, and

we can conclude very little about natural homing from these

two estuaries. While for GA there is little uncertainty about

natal homing, there is considerably greater uncertainty about

this process for both the CB and DE estuaries despite the

majority ofmixed grouping with the baseline of their collection

estuary. As for our trials with the weakfish analysis, this was

due to the possibility for extra-baseline sources in both cases,

and the co-probabilities with the collection estuary’s baseline

were not far below those found in cross-validation trials.

There are at least three (nonexclusive) possible explana-

tions for the lack of association between baseline and

mixed sample in both NC and NY, as well as DE and CB

to a lesser degree. The first is that this pattern is indicative

of extra-baseline sources that could not be found with tra-

ditional analysis methods. However, the authors of the ori-

ginal study point out that over 90% of weakfish are

caught in one of these five estuaries, and it is thus unlikely

P
c

CB DE GA NC NY

0·
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0·
2

0·
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1·
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Fig. 5. Testing the DPM model with the weakfish baseline samples from different estuaries (CB = Chesapeake Bay, DE = Delaware Bay (DE);

GA = Georgia; NC = North Carolina; NY = New York). For each estuary, four types of information are shown. (i) Leftmost boxplots for each

focal estuary (in black, error bars obscured by most boxes) give the estimated probability of coming from an extra-baseline source, when the focal

estuary was excluded from the analysis (the coloured lines beneath these boxplots give the proportion of individuals that were assigned to an extra-

baseline source in this scenario). The second, third and fourth boxplots for each focal estuary give the assignment probabilities to the correct

baselines for (ii) the DPM, (iii) conditional and (iv) unconditional finite mixtures. The last two columns of the figure show boxplots of individuals’

assignment probabilities (yellow) and actual assigned proportion (blue) of samples to extra-baseline sources in Trial 2.
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(though no impossible) that most individuals in major estu-

aries are spawned in other minor estuaries.

A second possibility is that geochemical signatures are

spatio-temporally heterogeneous within estuaries, and the

baseline sample from each estuary is not entirely represen-

tative of the variability of signatures therein, meaning that

extra-baseline sources are likely to originate from unsam-

pled locations within one of the sampled estuaries. Indeed,

earlier studies reported significant differences between loca-

tions within estuaries (Thorrold et al. 1998), and signifi-

cantly different source locations within each estuary may

have contributed to the actual mixed sample, increasing

overall source variances relative to the baseline. Temporal

variability in signatures may have further contributed to

the lack of association.

A third and entirely different potential reason for the low

co-assignment of mixed and source samples is the different

sampling methods used to collect chemical signatures for the

juvenile baseline and the adult mixed sample (solution-based

ICPMS for the juvenile baseline and laser ablation ICPMS for

adult samples). Though the data were standardized to make

baseline and mixed samples comparable, this procedure may

introduce a bias that is important enough to drive the DPM

model to consider extra-baseline sources as the most likely ori-

gin for themajority of mixed samples.

Regardless of the explanation for this pattern, mixed sample

signatures for both NC and NY in our analysis were suffi-

ciently different from any juvenile samples, and previous classi-

fications using assumptions of known baselines may have

resulted in a misclassification of these individuals by assigning
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Fig. 6. (a) Example prior for weakfish analysis using a negative binomial distribution. (b–f) Adult weakfish exact linkage trees from the DPMwith

baseline (juvenile weakfish) for each collection estuary: (b) Chesapeake Bay, (c) Delaware Bay, (d) Georgia, (e) North Carolina and (f) New York.

Rounds on leaves aremixed sample individuals (adult weakfish), and crosses on the leaves designate the (collapsed) baseline (see Fig. 4 for detail).
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them to the ‘nearest’ source in parameter space. This example

thus aptly illustrates how the assumption of a complete base-

line canmask uncertainty in the inference of natal homing. For

strong inference of natal homing, one could aim for more

extensive sampling to ensure that the baseline variability is rep-

resentative of the variability found over the geographical

extent defined as a ‘source’.

Our simulations and trials with real data show that the num-

ber of sources in a sample can often be estimated using the

DPM when a baseline is present to estimate source-specific

parameters (and when assumptions are approximately met).

Yet, it is also evident that this task is increasingly difficult with-

out a baseline or when the baseline sources are not entirely rep-

resentative of source locations, either because they are

undersampled (e.g. significant within source variation and few

baseline samples) or due to methodological discrepancies. As

with the weakfish data, it may often be difficult to know with

certainty if inferred extra-baseline sources are real or due to

insufficiently sampled variability at the baseline level.

The DPM performs a clustering of the data while building a

distribution over the number of sources. Without a baseline, it

is difficult to ensure that the geographical scale of a source cor-

responds to a unimodal (normal) distribution that is the basis

for clusters formed in the DPMand that individual sources are

well separated (see also the Appendix S1). The biggest limita-

tion of the DPM and any clustering method without a baseline

is thus the interpretability of results on a geographical scale

(see White et al. 2008 for a detailed discussion). Nevertheless,

the DPM modelling approach has several advantages over

existing methods for discovering structure in a recruit pool

based on geochemistry. Current methods that use geochemis-

try to uncover the number of sources in a recruit data set or a

mixed fishery use model selection or resampling criteria to pro-

duce a single best model (White et al. 2008; Fontes et al. 2009;

Shima& Swearer 2009). TheDPMmodel produces amarginal

distribution over the number of sources, the direct probabilistic

interpretation of which is more natural than that of arbitrarily

scaled model selection criteria such as the AIC or DIC, and

allows for estimation of marginal quantities such as P

(K+ > S|M), the probability that there are more sources in the

mixed sample than in the baseline S, given the specified model

M. Furthermore, no previous approaches for eliciting the

number of sources explicitly incorporate the baseline into the

analysis – for the Bayesian clustering model of White et al.

(2008), the geographical origin of clusters needs to be deter-

mined by comparison of cluster means of mixed sample and

baseline fish. TheDPMapproach on the other hand can incor-

porate the baseline directly, while allowing for additional

extra-baseline sources. The marginal description of relatedness

of individual fish and clusters, expressed by the co-assignment

probabilities, integrates over this uncertainty in the number of

contributing sources and allows for a more thorough explora-

tion of the structure of themixture and the baseline.

The methods developed in this study can be extended to

include genetic characters by combining it with the model pro-

posed by Pella&Masuda (2006) [i.e. the likelihood for a source

becomes the product of genetic and geochemistry likelihoods

(Smith & Campana 2010)]. They can also be extended to

many-to-many analyses as detailed in Bolker et al. (2007),

which simultaneously models multiple mixed samples in an

unconditional analysis. Finally, the DPM model could be

applied to other types of geochemical tracers, such as stable

isotopes, and other forms of data that are assumed to follow a

normal distribution.

Like any modelling approach, the insights that can be

gained from this method are only as good as the data itself and

the model’s appropriateness for this data. We encourage prac-

titioners to compare results from our proposed approach to

those from conditional and unconditional versions of the finite

mixture model, which are supplied with the DPM software,

and to critically evaluate discrepancies between outcomes,

which may point to future research needs. Thinking carefully

about the assumptions in each framework will allow practitio-

ners to make sensible inferences in the light of assumptions

deemed most appropriate for a particular data set. With a rea-

sonable prior and assumptions holding approximately, our

approach is shown to perform well with regard to estimating

missing sources in the presence of a baseline data set, which to

date, has been a significant limitation for the interpretation of

otolith geochemical signatures in complex environments. The

DPMmethods, in concert with previous Bayesian methods for

geochemistry data provided with our software, provide a con-

siderable step towards a more flexible and realistic approach

for analysing geochemistry data in studies of dispersal and

migration.
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