

### **Fisheries New Zealand**

Tini a Tangaroa

# Estimated capture of seabirds in New Zealand trawl and longline fisheries, to 2016–17

New Zealand Aquatic Environment and Biodiversity Report 226

E. R. Abraham and Y. Richard

ISSN 1179-6480 (online) ISBN 978-1-99-000815-3 (online)

August 2019



New Zealand Government

and then Zemilli

Requests for further copies should be directed to:

Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140

Email: brand@mpi.govt.nz Telephone: 0800 00 83 33 Facsimile: 04-894 0300

This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-and-resources/publications http://fs.fish.govt.nz go to Document library/Research reports

#### © Crown Copyright - Fisheries New Zealand

#### TABLE OF CONTENTS

| ECU                                                                        | TIVE SUMMARY                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INTF                                                                       | RODUCTION                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>MET</b> 2.1 2.2                                                         | <b>THODS</b> Data preparation         2.1.1       Observed trips         2.1.2       Seabird captures and the PSC dataset         2.1.3       Seabird identification         2.1.4       Seabird bycatch estimation dataset         2.1.5       Distribution of observed captures during 2016–17         Estimating seabird captures                                          | <b>2</b><br>3<br>3<br>4<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>RES</b><br>3.1<br>3.2                                                   | Bults         Estimation model fitting         Estimated seabird captures                                                                                                                                                                                                                                                                                                     | <b>11</b><br>11<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>DISC</b><br>4.1<br>4.2<br>4.3                                           | CUSSION         Comparison with the previous estimation model         Model structure and future developments         Observer coverage                                                                                                                                                                                                                                       | <b>20</b><br>20<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ACK                                                                        | NOWLEDGMENTS                                                                                                                                                                                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| REF                                                                        | ERENCES                                                                                                                                                                                                                                                                                                                                                                       | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PEN<br>A.1<br>A.2<br>A.3<br>A.4<br>A.5<br>A.6<br>A.7<br>A.8<br>A.9<br>A.10 | DIX A SUMMARIES OF MODELS USED FOR THE SEABIRD ESTIMATION White-capped albatross Salvin's albatrosses Uther albatrosses Other albatrosses White-chinned petrel Black petrel Grey petrel Sooty shearwater Flesh-footed shearwater Other birds                                                                                                                                  | <b>26</b><br>29<br>32<br>35<br>38<br>41<br>44<br>47<br>50<br>53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>РЕМ</b><br>В.1<br>В.2                                                   | DIX B       SUMMARIES OF CAPTURES BY SPECIES AND FISHERY         All birds captures                                                                                                                                                                                                                                                                                           | <b>56</b><br>56<br>56<br>57<br>58<br>59<br>60<br>61<br>62<br>62<br>63<br>64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                            | <ul> <li>(ECU</li> <li>INTE</li> <li>MET</li> <li>2.1</li> <li>2.2</li> <li>RES</li> <li>3.1</li> <li>3.2</li> <li>DISO</li> <li>4.1</li> <li>4.2</li> <li>4.3</li> <li>ACH</li> <li>REF</li> <li>PEN</li> <li>A.1</li> <li>A.2</li> <li>A.3</li> <li>A.4</li> <li>A.5</li> <li>A.6</li> <li>A.7</li> <li>A.8</li> <li>A.9</li> <li>A.10</li> <li>PEN</li> <li>B.1</li> </ul> | RECUTIVE SUMMARY         INTRODUCTION         METHODS         2.1       Data preparation         2.1.1       Observed trips         2.1.2       Seabird deptires and the PSC dataset         2.1.3       Seabird identification         2.1.4       Seabird deptires and the PSC dataset         2.1.5       Distribution of observed captures during 2016–17         2.2       Estimation model fitting         3.1       Estimation model fitting         3.2       Estimated seabird captures         DISCUSSION       4.1         4.1       Comparison with the previous estimation model         4.2       Model structure and future developments         4.3       Observer coverage         ACKNOWLEDGMENTS         REFERENCES         PPENDIX A SUMMARIES OF MODELS USED FOR THE SEABIRD ESTIMATION         A.1       White-capped albatross         A.3       Buller's albatrosses         A.4       Other albatrosses         A.5       White-chinned petrel         A.6       Back petrel         A.7       Grey petrel         A.8       Soloty shearwater         A.9       Plesh-folded sharawater         A.10       Other birds     < |

|             | B.3.2<br>B 3 3 | Salvin's albatross captures in small-vessel ( $< 28$ m length) trawl fisheries Salvin's albatross captures in small-vessel ( $< 28$ m length) bottom-longline fish- | 66  |
|-------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|             | <b>D</b> .5.5  | eries                                                                                                                                                               | 67  |
| R 4         | Buller'        | s albatrosses captures                                                                                                                                              | 68  |
| D. 1        | B 4 1          | Buller's albetrosses captures in large-vessel (> 28 m length) trawl fisheries                                                                                       | 68  |
|             | B.4.2          | Buller's albatrosses captures in small-vessel ( $< 28$ m length) surface-longline                                                                                   | 00  |
|             |                | fisheries                                                                                                                                                           | 69  |
| B.5         | Other a        | lbatrosses captures                                                                                                                                                 | 70  |
|             | B.5.1          | Other albatrosses captures in small-vessel (< 28 m length) bottom-longline fish-                                                                                    |     |
|             |                | eries                                                                                                                                                               | 70  |
|             | B.5.2          | Other albatrosses captures in small-vessel (< 28 m length) surface-longline fish-                                                                                   |     |
|             |                | eries                                                                                                                                                               | 71  |
| B.6         | White-o        | chinned petrel captures                                                                                                                                             | 72  |
|             | B.6.1          | White-chinned petrel captures in large-vessel ( $\geq 28$ m length) trawl fisheries                                                                                 | 72  |
|             | B.6.2          | White-chinned petrel captures in large-vessel ( $\geq 28$ m length) bottom-longline                                                                                 |     |
|             |                | fisheries                                                                                                                                                           | 73  |
|             | B.6.3          | White-chinned petrel captures in small-vessel (< 28 m length) bottom-longline                                                                                       |     |
|             |                | fisheries                                                                                                                                                           | 74  |
| B.7         | Sooty s        | hearwater captures                                                                                                                                                  | 75  |
|             | B.7.1          | Sooty shearwater captures in large-vessel ( $\geq 28$ m length) trawl fisheries                                                                                     | 75  |
|             | B.7.2          | Sooty shearwater captures in small-vessel (< 28 m length) trawl fisheries                                                                                           | 76  |
| B.8         | Black p        | etrel captures                                                                                                                                                      | 77  |
|             | B.8.1          | Black petrel captures in small-vessel (< 28 m length) bottom-longline fisheries                                                                                     | 77  |
|             | B.8.2          | Black petrel captures in small-vessel (< 28 m length) surface-longline fisheries                                                                                    | 78  |
| B.9         | Grey pe        | etrel captures                                                                                                                                                      | 79  |
|             | B.9.1          | Grey petrel captures in small-vessel (< 28 m length) bottom-longline fisheries .                                                                                    | 79  |
| B.10        | Flesh-f        | boted shearwater captures                                                                                                                                           | 80  |
|             | B.10.1         | Flesh-footed shearwater captures in small-vessel (< 28 m length) trawl fisheries                                                                                    | 80  |
|             | B.10.2         | Flesh-footed shearwater captures in small-vessel (< 28 m length) bottom-longline                                                                                    | 0.1 |
|             | -              | fisheries                                                                                                                                                           | 81  |
|             | B.10.3         | Flesh-footed shearwater captures in small-vessel (< 28 m length) surface-longline                                                                                   | ~   |
| <b>D</b> 44 |                | fisheries                                                                                                                                                           | 82  |
| B.11        | Other b        | irds captures                                                                                                                                                       | 83  |
|             | B.II.I         | Other birds captures in large-vessel ( $\geq 28$ m length) trawl fisheries                                                                                          | 83  |
|             | B.11.2         | Other birds captures in small-vessel ( $< 28$ m length) trawl fisheries                                                                                             | 84  |
|             | B.11.3         | Other birds captures in small-vessel ( $< 28$ m length) bottom-longline fisheries .                                                                                 | 85  |

#### **EXECUTIVE SUMMARY**

## Abraham, E.R.; Richard, Y. (2019). Estimated capture of seabirds in New Zealand trawl and longline fisheries, to 2016–17. *New Zealand Aquatic Environment and Biodiversity Report No. 226.* 85 p.

A wide range of seabird species are caught in New Zealand commercial fisheries. Managing the impacts of fisheries on seabird populations requires understanding what species are being caught and in which fisheries the captures are occurring. When government fisheries observers are onboard commercial fishing vessels, they record the seabird captures that occur, and these records may be used to estimate total seabird captures.

This study presents the most recent annual assessment of seabird captures, including the 2016–17 fishing year. The assessment used statistical models to obtain estimates of total seabird captures across all commercial trawl and longline fisheries. The time periods covered in this estimation were the 2002–03 to 2016–17 fishing years for trawl fisheries, and the 1998–99 to 2016–17 fishing years for longline fisheries.

The present assessment used a unified modelling framework to estimate incidental captures of seabirds for ten species and species groups: New Zealand white-capped albatross (*Thalassarche steadi*), Salvin's albatross (*Thalassarche salvini*), Buller's albatross (*Thalassarche salvini*), Salvin's *b. bulleri* and northern *T. b. platei* subspecies), white-chinned petrel (*Procellaria aequinoctialis*), black petrel (*Procellaria parkinsoni*), grey petrel (*Procellaria cinerea*), sooty shearwater (*Puffinus griseus*), and flesh-footed shearwater (*Puffinus carneipes*). Estimates were also derived for seabirds grouped as either "other albatrosses" or "other birds".

There were a total of 4210 (95% c.i.: 3508–5296) estimated seabird captures in trawl and longline fisheries (c.i., credible interval, the 95th quantile range of the posterior distribution) in 2016–17. The total estimate included 1767 (95% c.i.: 1493–2145) seabird captures in trawl fisheries, 1869 (95% c.i.: 1286–2909) captures in bottom-longline fisheries, and 573 (95% c.i.: 426–789) captures in surface-longline fisheries.

White-chinned petrel had the highest number of total estimated captures in 2016–17, with 995 (95% c.i.: 557–1882) captures of this species. The second highest estimate was 448 (95% c.i.: 349–574) captures of New Zealand white-capped albatross, followed by 435 (95% c.i.: 293–670) captures of flesh-footed shearwater. Capture estimates for other species included 451 (95% c.i.: 272–810) captures of Salvin's albatross, 286 (95% c.i.: 189–442) captures of black petrel, 226 (95% c.i.: 157–326) captures of Buller's albatrosses, 398 (95% c.i.: 276–615) captures of sooty shearwater and 176 (95% c.i.: 67–465) captures of grey petrel. In addition to estimates for individual species, there were 563 (95% c.i.: 376–859) captures of other birds and 228 (95% c.i.: 148–362) captures of other albatrosses.

Considering capture estimates over time, there was a decrease in the total number of estimated captures for seven of the ten modelled species groups between 2002–03 and 2016–17. This decrease largely corresponded with decreases in fishing effort over this period. For three species, Salvin's albatross, white-chinned petrel and grey petrel, there was no distinct decrease in total captures over the assessment period; only white-chinned petrel had higher mean estimated captures in 2016–17 than in 2002–03.

Among different fisheries, large-vessel fisheries had sufficient number of captures to examine temporal trends. In large-vessel squid trawl fisheries, there was an initial decrease in albatross captures after the introduction of mandatory warp mitigation in January 2006, but capture rates of albatrosses have not clearly decreased since the 2006–07 fishing year. Capture rates of petrels in large-vessel squid trawl fisheries showed a distinct pattern of higher captures in alternate years. The reasons for this distinct fluctuation are unknown.

When the model was updated, captures were estimated for all previous years. Comparison of estimates between the current and previous models for the 2015–16 fishing year showed some changes, including a decrease in the mean estimated captures of black petrel in small-vessel longline fisheries. Overall, however, there was agreement between the estimates from the two models.

The estimation of seabird bycatch relies on observer data. Between 2002–03 and 2016–17, around 50%, 60%, and 40% of small bottom-longline, surface-longline and trawl vessels, respectively, had no observers placed on them for any fishing during the 14 years. The observer coverage across these fisheries was also low (at around 2%, 6% and 2%, respectively). With a core of vessels that had no observer coverage, and with low observer coverage overall, bycatch in the small-vessel fleet may not be adequately represented in the observer data. Increasing observer coverage in small-vessel fisheries, and ensuring that observers are placed across the fleet so that all vessels have at least some observer coverage, would help to ensure that estimates based on observer data reliably reflect protected species bycatch across New Zealand's trawl and longline fisheries.

#### 1. INTRODUCTION

Interactions with commercial fisheries can lead to the incidental capture of protected species, including seabirds. In New Zealand waters, fisheries observers on-board commercial fishing vessels document the incidental captures of seabirds (and other non-target species), including their number and identification. These observer data provide an independent and systematic record, which can be used in bycatch assessments that estimate the total number of incidental seabird captures in commercial fisheries within New Zealand's Exclusive Economic Zone.

These bycatch assessments are regularly carried out for fisheries with sufficient observer coverage, including trawl, surface-longline and bottom-longline fisheries. The most recent analysis of incidental seabird captures included data up to the 2015–16 fishing year (Abraham & Richard 2019). The current assessment provides an update of this analysis by including observer records of seabird captures from the 2016–17 fishing year. The time periods covered in the present estimation were from 2002–03 to 2016–17 for trawl fisheries, and from 1998–99 to 2016–17 for longline fisheries.

The present assessment followed the same approach as recent bycatch assessments, using a unified modelling framework, allowing more direct comparisons across species (Abraham & Richard 2017, 2018, 2019). This modelling is based on a hierarchical mixed-effects generalised linear model (GLM) that is fitted using Bayesian methods.

Specifically, the current study assessed how many seabirds would be reported caught if every trawl and longline vessel had an observer onboard. The impact of these captures on seabird populations was not considered. Furthermore, seabird mortalities that would not be reported by observers were also excluded from the assessment. For example, birds may get hooked but fall off the line before they are brought onboard the vessel, and seabird captures may occur while the observer is not on duty. These additional fatalities were not considered in the present study.

#### 2. METHODS

The current estimation of seabird captures in New Zealand fisheries followed methods used in previous bycatch assessments, based on a unified modelling framework (Abraham & Richard 2017, 2018, 2019). The current assessment extended the range of data included in the modelling to the 2016–17 fishing year, with the data preparation and statistical modelling following the previous estimation methods.

#### 2.1 Data preparation

The estimation of seabird captures uses observed seabird captures and effort data from the Centralised Observer Database (COD; Sanders & Fisher 2010), which is maintained by the National Institute of Water and Atmospheric Research (NIWA) on behalf of Fisheries New Zealand (FNZ; previously Ministry for Primary Industries). Fisher-reported information on fishing effort is also used (in order to estimate captures on unobserved fishing). These data were obtained from the Warehou database maintained by FNZ. These datasets are prepared for the purpose of protected species information. They are stored in the Protected Species Capture (PSC) database, with summaries available through the PSC website

#### (https://psc.dragonfly.co.nz).

The preparation of the protected species capture data is described by Thompson et al. (2017), with changes and updates in preparation of the PSC data for the 2016–17 fishing year detailed by Abraham & Berkenbusch (2019). Several key discrepancies that potentially impact on the seabird bycatch estimation were addressed in this most recent data preparation (see Abraham & Berkenbusch 2019). First, observer data from handheld electronic (Nomad) devices were included directly in COD, whereas they were not previously. During the development of the use of these devices by observers, Nomad data were not included in COD, so that observer effort data were generated using fisher effort data for this period. The effort was generated on the assumption that all fishing effort between the start and finish of an observer trip was observed. However, in small fisheries, it was found that observers sometimes leave the vessel and return later, without the trip number being updated. Because of this, the direct inclusion of the data from Nomad devices in COD resulted in a decrease in the recorded observed effort in small inshore fisheries where these devices were used.

Second, the updated data preparation detected discrepancies in a small number of vessel identifiers (vessel keys) in COD, which in turn meant that some observed captures had incorrect vessel and area data associated. Third, all captures that had been added to COD during the data preparation were reviewed by FNZ staff (for example, seabird captures reported in observer photographs, but without a corresponding record in COD). In addition to these changes, some of the linking and data preparation methods were updated.

#### 2.1.1 Observed trips

The reconciliation of observer trips between the final PSC dataset and the administrative record of observer trips maintained by FNZ is part of ensuring the integrity of the final dataset (Abraham & Berkenbusch 2019). There was a total of 302 observed fishing trips that started during the 2016–17 fishing year. Of this total, 276 trips were included in the reporting of protected species captures. Trips that were excluded were mostly extra-territorial trips, i.e., they were entirely outside New Zealand's Exclusive Economic Zone. Captures from these trips are reported through the relevant Regional Fisheries Management Organisations (RFMOs). Of the remaining trips that were excluded, two trips were cancelled, one trip had no fishing activity, and four trips were included in the trip register, but had no records in COD (this lack of records may occur if, for example, paperwork from the trip is incomplete or missing).

The observed trips were mainly trawl trips. Of the trips in the PSC database that started during 2016–17, there were 203 trawl trips, 26 bottom-longline trips, 22 surface-longline trips, 15 set-net trips, three purse-seine trips, one Danish seine trip and six trips that used multiple methods (including trolling and dahn line). Of the observed trips, 50 trips were on vessels that were less than 17 m in length, 76 trips were on vessels between 17 and 28 m in length and 150 trips were on vessels that were over 28 m long.

#### 2.1.2 Seabird captures and the PSC dataset

During 2016–17, a total of 736 seabird captures were recorded by observers across all fishing methods.

Of the observed captures, 205 captures were regarded as not fishing captures, and were excluded from the dataset used for estimation (Table 1). The excluded captures were mainly deck captures or landings (190 deck captures or landings during 2016–17), where the birds landed on the vessel or struck the vessel, but the incident was not associated with fishing. Of the deck captures that were excluded from the estimation dataset, 186 were of live birds, and four birds were killed. The species that was most commonly reported from deck landings were New Zealand white-faced storm petrel (*Pelagodroma marina maoriana*; 36 incidents) and common diving petrel (*Pelecanoides urinatrix*; 27 incidents). There were four incidents where more than ten deck captures were reported on the same vessel and date: 30 deck captures on a vessel targeting snapper while bottom longlining on the west coast of North Island; 23 deck captures on a vessel trawl fishing for trevally on the west coast of North Island; 20 captures on the same trawl vessel

Table 1: Records of observed seabird captures in New Zealand commercial fisheries that were excluded from the final dataset during data preparation, by fishing year for the period between 2002–03 and 2016–17. Exclusions included records of seabirds landing on the deck or colliding with vessel structures ("Deck"), captures recorded during mitigation research trips ("Research"), animals in a decomposed state at the time of capture ("Decomposed"), seabirds caught on trawl warps but not brought onboard the vessel ("Warp lost"), records that were determined from observer remarks to not be bycatch events ("Not bycatch"), records that could not be linked to fishing effort ("No station"), records of land birds ("Land birds"), and captures in extra-territorial waters ("ET"). For each fishing year, the table also indicates the number of seabird captures remaining in the database.

| Fishing year |       |          |            |           |             |            | Exclu      | sions | Final |
|--------------|-------|----------|------------|-----------|-------------|------------|------------|-------|-------|
| 8,5          | Deck  | Research | Decomposed | Warp lost | Not bycatch | No station | Land birds | ET    |       |
| 2002-03      | 176   | 0        | 1          | 5         | 37          | 0          | 0          | 1     | 633   |
| 2003-04      | 58    | 58       | 3          | 8         | 1           | 0          | 1          | 0     | 379   |
| 2004-05      | 106   | 61       | 6          | 31        | 1           | 0          | 0          | 1     | 505   |
| 2005-06      | 63    | 73       | 1          | 6         | 3           | 0          | 0          | 0     | 427   |
| 2006-07      | 41    | 0        | 3          | 3         | 0           | 0          | 0          | 0     | 467   |
| 2007-08      | 77    | 4        | 8          | 4         | 0           | 0          | 0          | 0     | 317   |
| 2008-09      | 67    | 0        | 4          | 9         | 4           | 0          | 0          | 0     | 577   |
| 2009-10      | 229   | 0        | 1          | 1         | 1           | 0          | 0          | 0     | 475   |
| 2010-11      | 92    | 0        | 12         | 1         | 0           | 1          | 0          | 1     | 431   |
| 2011-12      | 84    | 0        | 0          | 0         | 2           | 0          | 2          | 0     | 321   |
| 2012-13      | 119   | 0        | 4          | 0         | 2           | 0          | 1          | 0     | 739   |
| 2013-14      | 120   | 0        | 1          | 8         | 1           | 2          | 0          | 0     | 631   |
| 2014-15      | 82    | 0        | 2          | 2         | 1           | 0          | 0          | 1     | 686   |
| 2015-16      | 402   | 0        | 4          | 0         | 6           | 0          | 0          | 0     | 712   |
| 2016-17      | 190   | 0        | 7          | 3         | 5           | 0          | 0          | 0     | 531   |
| All years    | 1 906 | 196      | 57         | 81        | 64          | 3          | 4          | 4     | 7 831 |

fishing for tarakihi in the Northland-Hauraki area; and 11 captures on a vessel bottom longlining for ling in Stewart-Snares shelf area. The captures by the same trawl vessel are likely to have happened during the same night (with some birds being found the following day). These captures were also reported by the fisher, and they reported the captures as a single event.

Of the 15 other seabird captures during 2016–17 that were excluded from the dataset used for estimation, there were seven captures that were reported as decomposing. For this reason, the mortality of the birds was assumed to not have been associated with fishing by that vessel. There were five records that were treated as not bycatch (one record where the bird was found after the set, but the observer considered that it was not associated with fishing, and four birds that struck the warps, but flew away, with the observer noting that they "appeared uninjured"). There were also three birds that were recorded as captures, but were lost before being brought onboard the vessel. These records included a cape pigeon that was caught on paravane and became dislodged as the paravane was raised, a white-capped albatross that fell off the hook while being hauled on a snood line, and an albatross that was caught in the winch chain and then fell into the water. Birds that are not retrieved on the vessel are not included in the estimation, as the observation of these incidents is not systematic.

Following these exclusions, there remained 531 observed seabird captures during 2016–17. Of these, three captures (Stewart Island shag *Leucocarbo chalconotus*; sooty shearwater, *Puffinus griseus*; cape pigeon, *Daption* spp.) were in South Island set-net fisheries, and were not included in the estimation. When restricted to trawl and longline fisheries, there were 528 observed seabird captures during 2016–17 that were included in the model dataset.

#### 2.1.3 Seabird identification

Information provided by Wildlife Management International (WMIL), from necropsies and from photographs, was used to identify the species captured (to the species or sub-species level, where possible). During preparation of the data used in this analysis, records from COD were merged with seabird necropsy and photo-identification records provided by WMIL (Abraham & Berkenbusch 2019). For the 2016–17 fishing year, WMIL provided expert identification for 427 seabird captures (from 186 necropsies and 242 photographic identifications, with one capture having both a necropsy and a photograph identification). At the time of the data extract from COD in April 2018, only 141 captures had the associated expert identification recorded in COD.

For all seabird captures that had not been identified by WMIL, an imputation process was used to infer the identification (Thompson et al. 2017). After the imputation was applied, there were only four remaining seabird captures in 2016–17 that could only be identified to a generic level.

#### 2.1.4 Seabird bycatch estimation dataset

During the 2016–17 fishing year, there were 528 observed seabird captures in trawl and longline fisheries that were included in the model dataset (Table 2). Observed captures in these fisheries were of a wide range of seabird taxa, with 19 different species (or sub-species) being reported. Of all the seabird captures, 393 captures were seabirds that were dead when they were brought onboard the vessel (or that died before being released). The other captured birds were released alive, but their post-capture survival was unknown. About three-quarters (73.5%) of the captured birds had their identity confirmed, either from necropsy or from a photograph.

The species that was most frequently observed caught was white-chinned petrel with 173 recorded captures, 32.8% of all observed seabird captures. Of all observed captures of this species, 93 captures were in squid trawl fisheries, and 30 captures were in ling bottom-longline fisheries. Other species with more than ten observed captures were sooty shearwater, New Zealand white-capped albatross, Southern Buller's albatross, black petrel, Salvin's albatross, and Westland petrel (Table 2).

#### 2.1.5 Distribution of observed captures during 2016–17

During 2016–17, seabird captures in trawl and longline fisheries occurred throughout the New Zealand region, with clear patterns in the distribution of species (Figure 1). Among the albatrosses, white-capped albatross and Buller's albatross were mainly observed caught in the west and to the south of South Island, whereas Salvin's albatross was mainly observed caught on Chatham Rise, to the east of South Island. There was also a capture of white-capped albatross reported from the north of New Zealand in bigeye surface longline; however, the identity of this capture was not confirmed. Among the shearwaters, there were captures of sooty shearwater in the western Chatham Rise area and to the south of South Island. The capture of *Procellaria* petrels reflected their breeding locations, with capture records of white-chinned petrel largely to the south and east of South Island, of black petrel on the north-eastern coast of North Island, and observed captures of Westland petrel from the west of South Island. There were few seabird captures during observed fishing on the west coast of North Island.

The distribution of observed captures reflected both seabird distributions and the distribution of observer coverage. In general, observer coverage was concentrated on offshore fisheries, with little observer coverage in trawl or longline fisheries around the coast of South Island or lower North Island (Figure 1).

#### 2.2 Estimating seabird captures

The methods used for the estimation of total captures followed methods used by Abraham & Richard (2019), with the exception that the date range was extended to cover the periods 1998–99 to 2016–17 for longline fisheries and 2002–03 to 2016–17 for trawl fisheries. Earlier observer records of seabird captures in trawl fisheries were not included in the estimation as they were considered incomplete, due to observers on trawl vessels not focusing on seabird captures during that period.

Generalised linear models (GLMs) were fitted to the observed fishing effort and capture data, and then used to estimate the observable captures on unobserved fishing effort. The model structure was the same as used previously (Abraham & Richard 2019), and is only briefly outlined here. Models were fitted



Figure 1: Captures of seabirds recorded during the 2016–17 fishing year in trawl, surface-longline, and bottom-longline fisheries in New Zealand's Exclusive Economic Zone. Shown are also total fishing effort and the amount of effort observed (as number of fishing events).

Table 2: Number of observed seabird captures during the 2016–17 fishing year, in trawl and longline fisheries, that were included in the model dataset to estimate the capture of seabirds in New Zealand fisheries. Shown for each species group are the total number of captures, the number of captures with a confirmed identification by experts (either through necropsy or photograph), and the numbers of captures that were dead when brought onboard the vessel.

| Common name                              | Scientific name                      | Captures | Confirmed | Dead |
|------------------------------------------|--------------------------------------|----------|-----------|------|
| White-chinned petrel                     | Procellaria aequinoctialis           | 173      | 133       | 136  |
| Sooty shearwater                         | Puffinus griseus                     | 133      | 115       | 115  |
| New Zealand white-capped albatross       | Thalassarche cauta steadi            | 98       | 64        | 63   |
| Southern Buller's albatross              | Thalassarche bulleri bulleri         | 36       | 22        | 23   |
| Black petrel                             | Procellaria parkinsoni               | 27       | 11        | 12   |
| Salvin's albatross                       | Thalassarche salvini                 | 26       | 18        | 19   |
| Westland petrel                          | Procellaria westlandica              | 10       | 8         | 10   |
| Grey petrel                              | Procellaria cinerea                  | 5        | 5         | 5    |
| Southern royal albatross                 | Diomedea epomophora                  | 4        | 4         | 3    |
| Flesh-footed shearwater                  | Puffinus carneipes                   | 3        | 2         | 2    |
| Royal albatrosses                        | Diomedea sanfordi, and D. epomophora | 2        | 0         | 0    |
| Campbell black-browed albatross          | Thalassarche impavida                | 2        | 2         | 2    |
| Southern black-backed gull               | Larus dominicanus dominicanus        | 2        | 0         | 0    |
| Common diving petrel                     | Pelecanoides urinatrix               | 1        | 1         | 1    |
| Northern giant petrel                    | Macronectes halli                    | 1        | 0         | 0    |
| Fulmars, petrels, prions and shearwaters | Procellariidae                       | 1        | 0         | 0    |
| Snares Cape petrel                       | Daption capense australe             | 1        | 0         | 0    |
| New Zealand white-faced storm petrel     | Pelagodroma marina maoriana          | 1        | 1         | 0    |
| Gibson's albatross                       | Diomedea antipodensis gibsoni        | 1        | 1         | 1    |
| Grey-backed storm petrel                 | Garrodia nereis                      | 1        | 1         | 1    |
| Total                                    |                                      | 528      | 388       | 393  |

for ten species and species groups: New Zealand white-capped albatross (*Thalassarche steadi*), Salvin's albatross (*Thalassarche salvini*), Buller's albatross (*Thalassarche bulleri*, combining both southern *T. b. bulleri* and northern *T. b. platei* subspecies), white-chinned petrel (*Procellaria aequinoctialis*), black petrel (*Procellaria parkinsoni*), grey petrel (*Procellaria cinerea*), sooty shearwater (*Puffinus griseus*), and flesh-footed shearwater (*Puffinus carneipes*). Estimates were also derived for seabirds grouped as either "other albatrosses" or "other birds".

For each model, data were grouped by fishing method, target fishery, vessel size class, spatial area, fishing year, and quarter of the year. Data on the use of integrated weight line (a mitigation measure used in bottom longline (BLL) fisheries) were also included in the modelling. The capture rate (number of captures per unit fishing effort) was estimated within each of these strata from the observed captures. The capture rate was then applied to unobserved fishing effort to estimate the number of total captures.

To standardise the models, a single structure was used for all species and species groupings, combining all trawl, surface-longline, and bottom-longline fisheries. Observed captures were assumed to follow a negative binomial distribution. This distribution provides an adequate representation of capture data, characterised by many zeros and occasional large values. The negative binomial distribution is parametrised by a mean,  $\mu$ , and an overdispersion,  $\phi$ . The variance is given by  $\mu + \mu^2/\phi$ . As the overdispersion increases to infinity, the variance nears the mean, and the negative binomial distribution becomes increasingly peaked at zero and becomes right-skewed (i.e., it develops a long right-hand tail). The negative binomial distribution is also negative-binomially distributed, with mean  $n\mu$  and overdispersion  $n\phi$ . This characteristic of the negative binomial distribution allowed the model to be applied to grouped event-level data (multiple fishing events reported as a single record).

The mean catch rate for a single fishing event was assumed to vary with:

•  $M_{m,v}$ : combination of fishing method (*m*; either trawl, surface longline or bottom longline), and vessel class (*v*; "large" for vessels with a length over 45 m, 34 m, or 28 m, respectively for surface-

longline, bottom-longline and trawl fishing, "small" otherwise),

- F: target fishery,
- A: area (see Figure 2),
- *R*: region ("north" or "south", with "north" being the region including Kermadec Islands, west coast North Island, east of North Island, and north-east areas; (see Figure 2),
- S: season (period of four months, starting with January–April considered to be summer),
- $Y_{m,v,y}$ : year.

(Note that no event level information was used, so that data could be aggregated by summing the number of fishing events and the number of observed captures by fishing method, target fishery, vessel class, region, area, fishing year and season.)



### Figure 2: Areas used for the estimation of the number of incidental captures of seabirds in commercial fisheries in New Zealand's Exclusive Economic Zone (EEZ). The shading shows the division of the EEZ in to north and south regions.

The mean catch rate for a single fishing event in the group i of events was assumed to be the product of the effects:

$$\mu_i = \alpha M_{m,v,i} F_i A_i R_i S_i Y_{m,v,y,i},\tag{1}$$

where  $\alpha$  is the intercept, with a log-normal prior, defined with a mean of -3 and a standard deviation of 5 on the log scale.

The area, region and season effects were assumed to apply to all fisheries, irrespective of the fishing method, fishery or vessel class. Under this assumption, spatial and temporal effects are primarily determined by the ecology of the species, not by the fishing practices. In contrast, the year effect was

estimated independently for each combination of method and vessel class, recognising that inter-annual variations may occur not only due to the ecology of species, but also due to changes in fishing practices.

The main effects of the combination of fishing method and vessel class, and the season and region effects, were modelled as fixed effects, relative to the base case, taken as the combination of method, vessel class, region and season with the highest number of observed captures, different for each species (see Table 3 for the base levels of these factors for each species). The prior of these fixed effects was a log-normal distribution, having a mean of 0 and a standard deviation of 5 on the log scale.

The effects of area, fishery and year were modelled as random effects, with the prior being a gamma distribution. The year effect was only applied to large vessels, because the number of observations in the small-vessel fleet was insufficient to fit a random variable. For each random effect, the shape and rate of the gamma distribution were set to be the same, so that the mean was 1 for each random effect, and set so that the standard deviation of the random effect was drawn from a log-normal distribution (the standard deviation of a gamma-distributed random variable with mean 1 is the inverse of the square-root of the shape). The prior of the standard deviation was a log-normal distribution (with a mean of 0 and a standard deviation of 1, on the log scale), and was truncated to be between  $10^{-8}$  and 5. The random effects were truncated to between  $10^{-8}$  and 10. This truncation assumed that large deviations from the mean (a multiplier over 10) would not be plausible, preventing limitations caused by occasional samples with exceedingly high values affecting the capture estimates; the quantiles of the posterior distributions were assessed to ensure they remained different from this limit.

The overdispersion parameter  $\phi$  had a log-normal prior (with mean 0 and standard deviation 1 on the log scale), truncated to be within the range 1/400 to 400.

Target fisheries were the same as those used previously (Abraham & Richard 2017, 2018, 2019) (see Table 4). They included the split of bottom-longline fisheries targeting ling into three different target fisheries, including small vessels, large vessels using integrated weight lines, and large vessels not using integrated weight lines. This split was prompted by a proportion of large-vessel bottom-longline fisheries using integrated weight lines as a mitigation measure to reduce the capture rate of seabirds. This weighting of lines has been shown to be effective in minimising the time that baited hooks are available to seabirds, and was previously found to significantly reduce capture rates in models used for estimating seabird captures (Abraham et al. 2016).

Each model was fitted with the software package Stan (Carpenter et al. 2015), using Markov chain Monte Carlo (MCMC) methods. The model code is presented by Abraham & Richard (2019). Three chains were fitted to each model, with the output including samples of the posterior distribution from each chain. Model convergence was assessed with diagnostics provided by the CODA package for the R statistical system (Plummer et al. 2006), including the criteria of Heidelberger & Welch (1983) and Geweke (1992). The models were run for 2 000 updates during burn-in, and then run for up to a further 40 000 updates, with every 30th sample retained for analysis (i.e., 1334 samples were retained from each chain).

Traces from the posterior chains for the model parameters provide a visual assessment of the performance of the Bayesian model, and indicate parameters that had limited convergence, possibly resulting in unreliable estimates. For each parameter, diagnostics also included testing the number of chains that failed half-width (Heidelberger & Welch 1983) and their convergence (Geweke 1992). In addition, the sample size adjusted for autocorrelation was calculated, and the percentage of samples lost due to autocorrelation in the chains was included in the diagnostics.

Table 3: Base levels for fishing method, vessel class, region, and season, for which the number of observed seabirds captures was highest, for the ten models used to estimate the number of incidental captures of ten species groups in commercial trawl, bottom-longline (BLL), and surface-longline (SLL) fisheries. For each model, the effects were estimated relative to these base levels. Cut-off lengths for the large-vessel size class were 45 m, 34 m, and 28 m, for surface-longline, bottom-longline, and trawl fishing, respectively.

| Model                   | Method - vessel class | Region | Season |
|-------------------------|-----------------------|--------|--------|
| White-capped albatross  | Trawl - Large vessels | South  | Summer |
| Salvin's albatross      | Trawl - Large vessels | South  | Spring |
| Buller's albatrosses    | SLL - Large vessels   | South  | Autumn |
| Other albatrosses       | SLL - Small vessels   | North  | Spring |
| White-chinned petrel    | Trawl - Large vessels | South  | Summer |
| Black petrel            | BLL - Small vessels   | North  | Summer |
| Grey petrel             | BLL - Large vessels   | South  | Winter |
| Sooty shearwater        | Trawl - Large vessels | South  | Autumn |
| Flesh-footed shearwater | SLL - Small vessels   | North  | Summer |
| Other birds             | Trawl - Large vessels | South  | Autumn |

Table 4: Summary of total effort, observed effort, proportion of effort observed by modelled fishery, which consisted of a combination of fishing method, vessel class, and target fishery. Also shown are the fishing years during which the fisheries were active, between 2002–03 and 2014–15 for trawl, and between 1998–99 and 2014–15 for bottom-longline (BLL) and surface-longline (SLL) fisheries. Cut-off lengths for the large-vessel size class were 45 m, 34 m, and 28 m, for surface-longline, bottom-longline, and trawl fishing, respectively. IWL: integrated weight line. Fisheries with fewer than 1000 events in the model dataset are not shown.

| Method | Vessel class  | Target fishery  | Fishin | g years |         |          | Fishing events |
|--------|---------------|-----------------|--------|---------|---------|----------|----------------|
|        |               |                 | First  | Last    | Total   | Observed | Proportion (%) |
| Trawl  | Large vessels | Hoki            | 2003   | 2017    | 180 624 | 38 025   | 21.1           |
|        | -             | Deepwater       | 2003   | 2017    | 79 941  | 21 297   | 26.6           |
|        |               | Squid           | 2003   | 2017    | 68 814  | 24 675   | 35.9           |
|        |               | Middle depths   | 2003   | 2017    | 45 435  | 11 566   | 25.5           |
|        |               | Inshore         | 2003   | 2017    | 33 879  | 983      | 2.9            |
|        |               | Mackerel        | 2003   | 2017    | 33 879  | 15 123   | 44.6           |
|        |               | Hake            | 2003   | 2017    | 15 516  | 5 199    | 33.5           |
|        |               | S. blue whiting | 2003   | 2017    | 11 996  | 6 652    | 55.5           |
|        |               | Ling            | 2003   | 2017    | 11 370  | 2 045    | 18.0           |
|        |               | Scampi          | 2003   | 2017    | 9 690   | 973      | 10.0           |
|        | Small vessels | Inshore         | 2003   | 2017    | 479 047 | 10 699   | 2.2            |
|        |               | Flatfish        | 2003   | 2017    | 292 640 | 1 674    | 0.6            |
|        |               | Middle depths   | 2003   | 2017    | 67 317  | 798      | 1.2            |
|        |               | Scampi          | 2003   | 2017    | 59 156  | 4 506    | 7.6            |
|        |               | Hoki            | 2003   | 2017    | 18 836  | 1 005    | 5.3            |
|        |               | Ling            | 2003   | 2017    | 6 449   | 170      | 2.6            |
|        |               | Deepwater       | 2003   | 2017    | 6 157   | 263      | 4.3            |
|        |               | Squid           | 2003   | 2017    | 4 642   | 8        | 0.2            |
| SLL    | Large vessels | Bluefin         | 1999   | 2015    | 4 357   | 3 828    | 87.9           |
|        | Small vessels | Bigeye          | 1999   | 2017    | 44 161  | 1 018    | 2.3            |
|        |               | Bluefin         | 1999   | 2017    | 19 692  | 1 440    | 7.3            |
|        |               | Albacore        | 1999   | 2017    | 4 044   | 32       | 0.8            |
|        |               | Swordfish       | 1999   | 2017    | 3 358   | 244      | 7.3            |
|        |               | Minor species   | 1999   | 2017    | 1 606   | 42       | 2.6            |
| BLL    | Large vessels | Ling, no IWL    | 1999   | 2017    | 34 423  | 5 147    | 15.0           |
|        |               | Ling, with IWL  | 2003   | 2017    | 11 072  | 2 824    | 25.5           |
|        | Small vessels | Snapper         | 1999   | 2017    | 153 920 | 1 822    | 1.2            |
|        |               | Ling            | 1999   | 2017    | 55 843  | 1 078    | 1.9            |
|        |               | Bluenose        | 1999   | 2017    | 51 934  | 385      | 0.7            |
|        |               | Hāpuku          | 1999   | 2017    | 36 516  | 224      | 0.6            |
|        |               | Minor species   | 1999   | 2017    | 31 804  | 528      | 1.7            |

#### 3. RESULTS

#### 3.1 Estimation model fitting

All model parameters, across all ten models, passed convergence and half-width tests for most chains (there were twelve cases where one of the three chains failed the convergence test). There were no chains where autocorrelation led to a reduction in the effective length of the chains to below 10% of the initial length (see Appendix A for diagnostics for each of the ten models, and details of each model by region, fishery, vessel size, area and season strata).

The model was an update of the same model framework applied previously to the data to the 2015–16 fishing year (Abraham & Richard 2019). When the model parameters were compared between the two years, for all 115 parameters and for all 10 species or species groups, the mean value of the parameters from this model remained within within the 95% c.i. of the parameters from the 2015–16 model. The single exception was the standard deviation of the overdispersion in surface-longline fisheries for black petrel, which decreased from 6.876 (95% c.i.: 4.641-9.707) in the model to 2015-16 to 4.172 (95% c.i.: 1.626-6.798) in the model to 2016-17. One of the changes between the two years was correcting a discrepancy with vessel keys that had resulted in observer effort being allocated to the incorrect fishing vessel (Abraham & Berkenbusch 2019). For black petrel, this correction changed the location of 27 captures from the eastern North Island area to the Northland-Hauraki area. There was a corresponding shift in the model covariates. The area effect for the eastern North Island area decreased from 0.97 (95% c.i.: 0.14-2.71) to 0.15 (95% c.i.: 0.01-0.53) between the two models, whereas the area effect for Northland-Hauraki increased from 2.48 (95% c.i.: 0.41-6.64) to 3.29 (95% c.i.: 0.3-8.33). Because of the wide uncertainty in these parameters, the mean estimates did not change to values outside the ranges from the 2015–16 model, but the changes were in the direction expected from this change in the data.

As a test of the model fit, the models were used to estimate captures on the observed fishing, and the comparison of these estimates with the observed captures provided a model diagnostic. For example, in the model of white-capped albatross, the ten strata (where the strata were defined by region, fishery, vessel size, area and season) with the highest estimated captures on observed fishing all included the observed captures within the 95% credible interval (see Appendix A, Figure A-1). Overall, for white-capped albatross, there were six strata where the observed captures were outside the 95% credible interval of the estimates, but these strata all had relatively low numbers of captures (Appendix A, Table A-3).

Nevertheless, not all models performed well. For example, the model of other albatrosses indicated there were an estimated 22 (95% c.i.: 0–40) captures in observed fishing in the Kermadec Islands area (small-vessel surface longline, spring stratum), but a total of 56 captures were observed (Appendix A, Table A-12). These captures occurred during only 22 observed fishing events, and were outside of the credible interval predicted by the model when all data were taken into account. Across all the models, white-chinned petrel had the highest number of strata (twelve) where the observed captures were outside the credible interval of the estimated captures on observed fishing (Appendix A, Table A-15).

Within fishery, vessel size, season and area strata, the observer data can be used to define a ratio estimate of the number of seabird captures. As an assessment that the estimates from the models are reasonable, this ratio estimate was compared with the model estimate in the same strata. For example, in squid trawl fisheries on the Stewart-Snares shelf, there was a total of 428 observed captures by vessels over 28 m in length in the period from 2002–03 to 2016–17 (Appendix A, Table A-1). These captures were based on observer coverage of 37.7% (10 155 observed tows). The ratio estimate of the observed captures (obtained by dividing the number of observed captures by the observer coverage) was 1136 seabird captures. This estimate was within the range estimated by the model of 1277 (95% c.i.: 1029–1573) captures (over the entire 15-year period).

Discrepancies between the ratio estimate and the model estimate are often associated with low observer coverage. For example, there have been no observed captures of Buller's albatross in small-vessel bigeye surface-longline fisheries in the North Island east coast area in the summer quarter; however, the model estimated that there were 747 (95% c.i.: 268 to 1667) captures over the 19-year period covered by the

 Table 5: Number of estimated captures (mean and 95% credible interval, c.i.) for each seabird species group in trawl, bottom-longline (BLL), and surface-longline (SLL) fisheries for the 2016–17 fishing year.

| Species grouping        |       | Trawl       |      | SLL      |       | BLL         |       | Total       |
|-------------------------|-------|-------------|------|----------|-------|-------------|-------|-------------|
| Species grouping        | Mean  | 95% c.i.    | Mean | 95% c.i. | Mean  | 95% c.i.    | Mean  | 95% c.i.    |
| White-capped albatross  | 308   | 234-404     | 106  | 58-185   | 32    | 11–67       | 448   | 349-574     |
| Salvin's albatross      | 284   | 184-432     | 3    | 0–9      | 162   | 40-513      | 451   | 272-810     |
| Buller's albatrosses    | 84    | 54-127      | 112  | 61-200   | 29    | 10-65       | 226   | 157-326     |
| Other albatrosses       | 33    | 18-57       | 97   | 56-164   | 97    | 36-212      | 228   | 148-362     |
| White-chinned petrel    | 284   | 219-384     | 25   | 4-86     | 686   | 261-1 578   | 995   | 557-1 882   |
| Black petrel            | 36    | 22-54       | 63   | 30-136   | 186   | 104-326     | 286   | 189-442     |
| Grey petrel             | 9     | 4-21        | 23   | 8-54     | 144   | 39-432      | 176   | 67–465      |
| Sooty shearwater        | 378   | 260-588     | 0    | 0–4      | 18    | 2-52        | 398   | 276-615     |
| Flesh-footed shearwater | 85    | 39-182      | 104  | 27-269   | 244   | 154-396     | 435   | 293-670     |
| Other birds             | 261   | 131–510     | 36   | 22-58    | 265   | 158–439     | 563   | 376-859     |
| All birds               | 1 767 | 1 493–2 145 | 573  | 426–789  | 1 869 | 1 286–2 909 | 4 210 | 3 508-5 296 |

longline models (Appendix A, Table A-9). The observer coverage in this stratum was only 2.1%. Another example of this kind of mismatch was the model estimate for grey petrel (also highlighted previously by Abraham & Richard 2019). For this species, the model estimated that over the 19-year period, there was a total of 1085 (95% c.i.: 304–2760) captures by snapper bottom-longline vessels less than 34 m long, in the North East area during winter (Appendix A, Table A-21). As there have been no observations of snapper bottom-longline fishing during winter, there have been no observed captures (during the 2016 calendar year there were 48 seabird captures reported by fishers in this fishery, with 12 of those captures being reported during July, August, and September).

#### 3.2 Estimated seabird captures

There was an estimated total of 4210 (95% c.i.: 3508–5296) seabirds captured during the 2016–17 fishing year, including 1767 (95% c.i.: 1493–2145) seabirds in trawl fisheries, 1869 (95% c.i.: 1286–2909) seabirds in bottom-longline fisheries, and 573 (95% c.i.: 426–789) seabirds in surface-longline fisheries (Table 5, and see Appendix B for detailed estimates for each modelled species group, for the fishing method and vessel classes that had a mean of over 50 estimated captures between 2002–03 and 2016–17). Detailed data on fisheries captures, including the location and identification of each observed capture, and estimates by fishery, area and year are available from the protected species capture website (ht-tps://data.dragonfly.co.nz/psc/).

White-chinned petrel had 995 (95% c.i.: 557–1882) estimated captures during the 2016–17 fishing year, the highest estimate of any of the modelled species groups. These captures were estimated to have mainly occurred in trawl and bottom-longline fisheries (Table 5). Other species groups with mean estimated captures of over 400 birds during the 2016–17 fishing year were white-capped albatross, flesh-footed shearwater, Salvin's albatross, and the other birds group.

During the 2016–17 fishing year, seabird captures occurred in a wide range of fisheries—there was a mean of over 100 seabird captures for 14 different seabird group and fishing method combinations (Table 5). When grouped by target fishery, there was an estimated mean of more than 100 seabird captures in 13 of the 20 defined target fisheries (Table 6). The target fisheries within each method that had the highest estimated mean seabird captures during the 2016–17 fishing year were trawl fisheries targeting inshore species, with 362 (95% c.i.: 256–496) estimated seabird captures, ling target bottom-longline fisheries, with 873 (95% c.i.: 471–1688) estimated seabird captures, and southern bluefin tuna surface-longline fisheries, with 275 (95% c.i.: 198–382) estimated seabird captures.

For seven of the ten modelled species groups, the total number of estimated captures decreased between 2002–03 and 2016–17 (where the decrease was sufficient for the upper credible interval in 2016–17 to be lower than the mean in 2002–03) (Figure 3). Only Salvin's albatross, white-chinned petrel and grey petrel

Table 6: Number of estimated seabird captures in different trawl, bottom-longline (BLL), and surfacelongline (SLL) target fisheries for the 2016–17 fishing year. Mean and 95% credible interval (c.i.) of the posterior distribution of total seabird captures, summed over all modelled species groups.

| Method | Target fishery  | Mean | 95% c.i. |
|--------|-----------------|------|----------|
| Trawl  | Inshore         | 362  | 256-496  |
|        | Squid           | 353  | 302-439  |
|        | Hoki            | 279  | 215-372  |
|        | Flatfish        | 259  | 128-509  |
|        | Middle depths   | 259  | 167–438  |
|        | Scampi          | 168  | 110-256  |
|        | Ling            | 59   | 33-111   |
|        | Deepwater       | 10   | 5-19     |
|        | Mackerel        | 6    | 4-12     |
|        | S. blue whiting | 6    | 6–7      |
|        | Hake            | 1    | 1–5      |
| BLL    | Ling            | 873  | 471-1688 |
|        | Snapper         | 399  | 288-549  |
|        | Minor species   | 281  | 122-656  |
|        | Hāpuku          | 168  | 50-515   |
|        | Bluenose        | 146  | 65-309   |
| SLL    | Bluefin         | 275  | 198-382  |
|        | Bigeye          | 192  | 104–367  |
|        | Swordfish       | 96   | 41-197   |
|        | Minor species   | 6    | 0-30     |
|        | Albacore        | 2    | 0–16     |

did not show a clear decrease in total captures over this time period, and only white-chinned petrel had higher mean estimated captures in 2016–17 than in 2002–03. When captures in 2016–17 were compared with captures in 2006–07, the changes were considerably less clear, with many species showing similar total numbers of captures during 2016–17 than in 2006–07. When all species were combined, the total estimated number of seabird captures showed a clear decrease over the assessment period, with the mean number of seabird captures in 2016–17 being the lowest of any of the 15 years, at about half the number of estimated seabird captures in 2002–03.

In the small-vessel fisheries, the models had no year effect, and so changes in the estimated number of captures in small-vessel fisheries corresponded with changes in fishing effort (either in the total fishing effort, or shifts by area or season, or between target species). In large-vessel fisheries, changes in the estimated number of seabird captures also corresponded with changes in fishing effort.

There were marked declines in fishing effort in New Zealand trawl and surface-longline fisheries over the reporting period, and the declines in estimated captures largely corresponded with changes in fishing effort (see Appendix B for time series of total seabird captures and of fishing effort in each of the six vessel-class fishing-method groups, excepting large-vessel surface-longline fisheries data which are restricted by confidentiality requirements). The number of tows in trawl fisheries in 2016–17 was 69% and 48% of the effort in 2002–03 for small-vessel and large-vessel trawl fisheries, respectively.

Large surface-longline vessels stopped fishing in 2015–16, due to changes in the regulation of foreign vessels in New Zealand waters. The number of hooks set in small-vessel surface-longline fisheries in 2016–17 was 24% of the number of hooks set in 2002–03. Across all surface-longline fishing, the number of hooks set in 2016–17 was 19% of the number of hooks set during 2002–03. In bottom-longline fisheries, the number of hooks set during 2016–17 was 123% and 124% of the number of hooks set during 2002–03, for small- and large-vessel fisheries, respectively.

For the large-vessel fisheries that have had sufficient records of seabird captures, changes in capture rate (birds per unit fishing effort) showed different patterns over time (Figure 4). In large-vessel squid trawl fisheries, a decrease in albatross captures was evident following the introduction of mandatory warp mitigation in January 2006, before the 2005–06 fishing season. Albatross capture rates decreased



Figure 3: Time series of the number of estimated captures for the seabird species groups and for all birds for the 2002–03 to 2016–17 fishing years. Estimates are shown by fishing method and vessel size class. Cut-off lengths for small and large vessel size classes were 45 m, 34 m, and 28 m, for surface-longline (SLL), bottom-longline (BLL), and trawl fishing, respectively. Coloured bars indicate the mean number of captures, error bars are the 95% credible interval in the total number of estimated captures within each fishing year. (Note different y-axis scales.)

in 2016–17, relative to 2015–16, but there has been no clear trend in capture rates over the 10-year period 2007–08 to 2016–17. Capture rates of petrels in the squid trawl fishery have shown a distinct pattern of higher captures in alternate years, with a lower capture rate in each of 2009–10, 2011–12, 2013–14, and 2015–16 than in the preceding year. This pattern was continued, with a higher capture rate during 2016–17 than in 2015–16. This fluctuation is related to inter-annual variation in the behaviour or distribution of white-chinned petrel and sooty shearwater, which both show this variation (Appendix B, Figure B-27, Figure B-30).

In large-vessel hoki trawl fisheries, there was a marked decrease in albatross capture rates following the introduction of mandatory warp mitigation in January 2006. Capture rates of albatross then gradually increased between 2007–08 and 2011–12. There were no clear patterns in the capture rate of petrels in large-vessel hoki trawl fisheries. Nevertheless, the capture rates of both petrels and albatrosses decreased over the four-year period from 2013–14 to 2016–17.

In large-vessel ling bottom-longline fisheries, capture rates peaked in 1999–2000 for albatrosses and in 2000–01 for petrels. Integrated weight line was introduced to ling autoliners in 2002–03, and capture rates have remained relatively stable since then. In 2014–15, all observations were made on vessels without integrated weight line, and in 2015–16, 94% of observed sets were without integrated weight line. There was an increase in the observed capture rates of petrels and other birds in both of those fishing years. The observed capture rate of petrels and other birds in large-vessel ling bottom-longline fisheries decreased in 2016–17, when all observations of large-vessel bottom-longliners were on vessels with integrated weight line.

In large-vessel surface-longline fisheries targeting bluefin tuna, the highest capture rates were of albatrosses. Capture rates varied widely. The capture rates often had no or low uncertainty, due to high observer coverage in these fisheries, which was frequently 100%. There were no large vessels in this fishery during 2015–16 or 2016–17, and so the time series does not continue.

Capture rates in trawl fisheries targeting middle-depth species were lower during 2016–17 than in the previous five years, although there have not been consistent changes in capture rates over a longer time period.

Many fisheries caught a range of seabird species or species groups in 2016–17 (Figure 5). As in 2015–16, white-chinned petrel was the species with the highest mean estimated captures in ling bottom-longline, squid trawl, minor-species bottom-longline and hāpuka bottom-longline fisheries in 2016–17. In snapper bottom-longline fisheries, the highest estimated captures were of flesh-footed shearwater and other birds, followed by black petrel and grey petrel. In inshore trawl fisheries, the highest estimated mean captures were of white-capped and Salvin's albatrosses.

Seabird captures showed clear spatial patterns (Figures 6, 7). Patterns of captures reflect both the distribution of fishing and the distribution of seabirds. Black petrel mainly breed on Great Barrier Island, in the Hauraki Gulf region. Estimated captures of black petrel are in the north-eastern region, close to this breeding site. Estimated captures of flesh-footed shearwater also primarily occurred in north and eastern areas, where this species breeds. Flesh-footed shearwater also breed in the Cook Strait area, and there were estimated captures of flesh-footed shearwater on the North Island west coast. White-chinned petrel and sooty shearwater are both caught in the south of New Zealand, in the subantarctic area and on the east coast of South Island, with white-chinned petrel captures extending further east along the Chatham Rise. Grey petrel breed on subantarctic islands, and there are some estimated captures in subantarctic waters; however, the highest estimated capture densities were on the east coast of North Island. The other birds group was caught in small-vessel inshore fisheries, and the estimated captures had a coastal distribution, with captures of a range of other bird species also occurring in all fisheries.

Among the three albatross species, estimated mean captures of white-capped albatrosses were highest on the South Island west coast, and to the south of New Zealand; estimated mean captures of Salvin's albatross were higher on the South Island east coast and on Chatham Rise; and Buller's albatrosses were caught in surface longline fisheries on both the South Island west coast, and the North Island east coast



Figure 4: Capture rates (captures per 100 fishing events) of two seabird groupings in selected large-vessel target fisheries, for fishing years between 2002–03 and 2016–17 for trawling, and between 1998–99 and 2016–17 for bottom and surface longlining. Cut-off lengths for the large vessel size class were 45 m, 34 m, and 28 m, for surface-longline, bottom-longline, and trawl fishing, respectively. Lines show the mean estimated capture rate per fishing year, error bars indicate the 95% credible interval of the estimates, and symbols mark observed capture rates. Observed captures are not shown in years with fewer than ten capture events. (Note different y-axis scales.)



Figure 5: Number of estimated captures for the modelled seabird species groups for the 2016–17 fishing year. For each species group and target fishery, the bars show mean captures and the 95% credible interval. The y-axis is on the log plus one scale. Shown are only fisheries that were estimated to have caught a mean

White-capped albatross (WCA)

Salvin's albatross (SAL) Buller's albatrosses (BUA) Other albatrosses (OAL) White-chinned petrel (WCP) Black petrel (BPE) Grey petrel (GPE) Sooty shearwater (SSH) Flesh-footed shearwater (FFS) Other birds (OBD)

of more than 50 birds.



Figure 6: Estimated captures of petrels and other birds in New Zealand's Exclusive Economic Zone in the 2016–17 fishing year. For each of the modelled species groups, colour indicates the number of model-estimated captures in 0.1 degree cells. Shown is the mean value from the model applied to all fishing effort (observed captures not included).



Figure 7: Estimated captures of albatrosses and of all birds in New Zealand's Exclusive Economic Zone in the 2016–17 fishing year. For each of the modelled species groups, colour indicates the number of modelestimated captures in 0.1 degree cells. Shown is the mean value from the model applied to all fishing effort (observed captures not included). The map of all birds is the total of the estimated captures of all species and species groups.

(Figure 7). The two subspecies of Buller's albatross (southern Buller's albatross, *Thalassarche bulleri bulleri*, and northern Buller's albatross, *Thalassarche bulleri platei*) breed mainly on Snares Islands and Chatham Islands, respectively. The subspecies are difficult to distinguish, even during necropsy, and these two areas may reflect the different foraging distributions of the two subspecies. Captures of other albatrosses (which include all the great albatrosses, *Diomedea* spp.) primarily occurred in north-eastern surface-longline fisheries.

When grouped together, captures of all albatrosses and all seabirds occurred throughout the New Zealand region, where commercial trawl or longline fishing occurred (Figure 7). Estimated captures of seabirds were highest in the North-East, and Chatham Rise areas (Table 7). Captures in the north-eastern area were primarily in bottom-longline fisheries, while captures in the eastern and western Chatham Rise areas were primarily in bottom-longline and trawl fisheries, respectively.

Table 7: Number of estimated seabird captures by model area and fishing method in the 2016–17 fishing year (SLL, surface longline; BLL, bottom longline). Mean and 95% credible interval (c.i.) of the posterior distribution of total estimated seabird captures, summed across all modelled species groups. Areas are sorted in decreasing order of the mean number of estimated captures.

| Area                    |      | Trawl    |      | SLL      |      | BLL       |      | Total     |
|-------------------------|------|----------|------|----------|------|-----------|------|-----------|
| licu                    | Mean | 95% c.i. | Mean | 95% c.i. | Mean | 95% c.i.  | Mean | 95% c.i.  |
| North East              | 103  | 65-175   | 212  | 121-393  | 585  | 429–799   | 901  | 699–1 184 |
| Eastern Chatham Rise    | 155  | 112-218  | 0    | 0        | 537  | 236-1 183 | 692  | 381-1 341 |
| Western Chatham Rise    | 451  | 315-660  | 0    | 0        | 224  | 83-572    | 676  | 452-1 063 |
| Stewart-Snares Shelf    | 499  | 408-629  | 0    | 0        | 41   | 7-187     | 540  | 431-730   |
| West Coast South Island | 182  | 117-292  | 228  | 150-349  | 72   | 41-132    | 483  | 365-660   |
| East of North Island    | 75   | 41-132   | 107  | 61-176   | 155  | 65-385    | 338  | 211-587   |
| Auckland Islands        | 192  | 146-265  | 0    | 0        | 0    | 0         | 192  | 146-265   |
| Cook Strait             | 53   | 28-93    | 0    | 0        | 114  | 40-307    | 167  | 82-360    |
| West Coast North Island | 31   | 13-67    | 18   | 5-44     | 51   | 25-93     | 101  | 59–164    |
| Fiordland               | 13   | 7–28     | 6    | 3-25     | 45   | 11-170    | 65   | 26-196    |
| South Subantarctic      | 8    | 8-12     | 0    | 0        | 24   | 3-103     | 33   | 11-112    |
| East Subantarctic       | 0    | 0–0      | 0    | 0        | 16   | 4-59      | 16   | 4–59      |
| Kermadec Islands        | 0    | 0        | 1    | 0-8      | 0    | 0         | 1    | 0–8       |

#### 4. DISCUSSION

Seabird bycatch is a persistent issue that occurs in a range of commercial fisheries throughout the New Zealand region. In this assessment, estimates of total seabird bycatch in commercial trawl and longline fisheries were updated to include data from the 2016–17 fishing year. In addition, the current estimation incorporated recent changes and updates in the preparation of the source data (Abraham & Berkenbusch 2019).

#### 4.1 Comparison with the previous estimation model

When the model was updated, the estimates were recalculated for all previous years, which allowed a comparison between the models fitted to the different data (Figures 8, 9). Overall, the comparison between the current model and the model to the 2015–16 fishing year found that capture estimates were similar. Mean values estimated for 2015–16 in one model were within the corresponding credible intervals of estimates derived with the other model for this fishing year.

The general outcome of the comparison between the models fitted to the different data sets gives confidence that the overall results from these models are robust. Nevertheless, there were some marked changes in the estimates at a finer scale.



#### --- Model up to 2015/16 --- Model up to 2016/17

Figure 8: Comparison of the number of estimated seabird captures in 2015–16 derived from the current model (data to 2016-17) and the previous model (data to 2015–16) (Abraham & Richard 2019). Shown are for each species or species group, fishing method (trawl, SLL: surface longline, BLL: bottom longline) and vessel size class, the mean and 95% credible interval of the estimated captures during 2015–16. Cut-off lengths for small and large vessel size classes were 45 m, 34 m, and 28 m for surface-longline (SLL), bottom-longline (BLL), and trawl fishing, respectively. Lines and symbols indicate mean captures, error bars are the 95% credible interval for the total number of estimated captures. (Note different x-axis scales.)

Correcting a vessel key during data preparation moved the location of 27 observed captures from the East Cape to the Hauraki Gulf area. This correction also resulted in a change in fishing method associated with the captures from a mix of bottom-longline and surface-longline fisheries to bottom-longline fisheries only. The number of observed black petrel captures in east coast North Island fisheries decreased from 13 to no observed captures. Correspondingly, the number of estimated captures of black petrel in east coast North Island bottom-longline fisheries during the 2015–16 fishing year decreased between the two versions of the models, from 60 (95% c.i.: 9–201) to 5 (95% c.i.: 0–18) estimated captures. Similarly, the number of observed captures of black petrel in surface-longline fisheries in the east coast North Island area decreased from 11 to one observed capture; the corresponding capture estimates decreased from 24 (95% c.i.: 3 - 88) to 1 (95% c.i.: 0-5) estimated capture of this species. In New Zealand seabird risk assessments, black petrel has been identified as the species at highest risk from fisheries mortality (e.g., see Richard et al. 2017). It will be necessary to update the seabird risk assessment with the most recent data to assess the impact of these changes on the risk of this species.

#### 4.2 Model structure and future developments

The current model used the same code used previously (Abraham & Berkenbusch 2019), but was built with updated data. One limitation of this model structure was that the frequency distribution of estimated captures was broader than the distribution of observed captures (i.e., the model predicted capture events with a higher number of captured animals than were observed) (Figure 9). When grouped by fishing method and fishery, the 90th percentile of the number of birds caught, given that a capture event occurred, was less than eight for all species and methods. In the model estimates, however, there were many cases where the 90th percentile of the number of seabirds caught was over ten; and for many species and fisheries, the observed 90th percentile was below the range predicted from the model. Within the models, the shape of the distribution of the number of animals caught per capture event was determined by an overdispersion parameter. It seems that this parameter is insufficient for covering the wide range of capture rates that were encountered in the data. The same limitation was recently found in a model with a similar structure used to estimate the bycatch of New Zealand fur seal (Abraham et al. 2019). When this limitation was addressed in the fur seal model, the credible interval in the estimated captures decreased.

For this reason, it is recommended that the parameterisation of the capture distribution is further explored in future developments of the seabird estimation model to ensure that the distribution of captures agrees between the model and the observations. It is anticipated that addressing this aspect will reduce the uncertainty in the estimates, especially in bottom-longline fisheries, where the model predicted capture events with a high number of captures.

In the models to date, a simple approach to spatial modelling was used, dividing the New Zealand region into areas and allowing the model to separately estimate captures rates within each area. For the different species and species groups, there has been sufficient captures to allow the fitting of spatial models, where the capture rate varied at scales chosen within the model. We anticipate that a more advanced spatial model (such as a conditional autoregressive model (Gelfand & Vounatsou 2003, Jin et al. 2005)) would allow for variation of capture rates near breeding colonies. For example, black petrel breed on Great Barrier and Little Barrier Islands, but the locations of the breeding colonies are not represented in the current model, which treats the Northland-Hauraki area as having the same base capture rate.

#### 4.3 Observer coverage

The estimation of seabird captures depends on data from observers. An implicit assumption in the modelling is that the observed fishing effort is representative of the unobserved fishing effort. Most large vessels that were active for three or more years (and that reported at least 100 fishing events) have been observed (Table 8). In longline fisheries, the number of active vessels during the period 2002–03 to 2015–16 was small, and there was only one large bottom longline vessel that was not observed during this period. Over 90% of active trawl vessels over 28 m were observed at least once during the 14-year



Figure 9: Comparison of the 90th percentile between the observed and estimated non-zero captures of seabirds. Shown are for each species or species group and fishing method (trawl, SLL: surface longline, BLL: bottom longline), the mean and 95% credible interval of the 90th percentile of estimated non-zero captures (horizontal line and vertical bars) and the 90th percentile of observed non-zero captures (filled circle).

Table 8: Observed fishing effort between 2002–03 and 2016–17. For each method and vessel size class, the table shows the number of vessels, the percentage of vessels that had any observer effort within the period, and the percentage of the total effort that has been observed. Data are restricted to fishing by vessels that fished in three or more fishing years, for at least 100 fishing events. Cut-off lengths for the large-vessel size class were 45 m, 34 m, and 28 m, for surface-longline, bottom-longline, and trawl fishing, respectively.

| Method           | Vessel size | Number of vessels | Observed vessels (%) | Observed fishing effort (%) |
|------------------|-------------|-------------------|----------------------|-----------------------------|
| Bottom longline  | Large       | 8                 | 87.5                 | 14.1                        |
|                  | Small       | 214               | 47.2                 | 1.8                         |
| Surface longline | Large       | 5                 | 100.0                | 89.3                        |
|                  | Small       | 73                | 58.9                 | 6.0                         |
| Trawl            | Large       | 61                | 91.8                 | 27.5                        |
|                  | Small       | 262               | 41.2                 | 2.1                         |

period.

In contrast, there were many small vessels fishing during the 2002–03 to 2016–17 period. Around 50%, 60%, and 40% of small bottom-longline, surface-longline and trawl vessels, respectively, had no observers placed on them for any fishing during the 14-year period. The observer coverage across these fisheries was also low (at around 2%, 6%, and 2% respectively; Table 8). With a core of vessels that had no observer coverage, and with low observer coverage overall, seabird bycatch in the small-vessel fleet may not represented in the observer data. For example, if vessels with observers placed on them are also more compliant with the use of seabird bycatch mitigation, then seabird capture rates may be higher in the unobserved component of the fleet.

Increasing observer coverage in small-vessel fisheries, and ensuring that observers are placed across the fleet so that all vessels have at least some observer coverage, would help to ensure that estimates based on observer data reliably reflect protected species bycatch across New Zealand's trawl and longline fisheries.

#### 5. ACKNOWLEDGMENTS

Data for this project were collected by government fisheries observers. We are grateful for their ongoing work to collect the independent information that enhances our understanding of interactions between New Zealand fisheries and protected species.

The current study was funded by Fisheries New Zealand project PRO2016-03, which has the objective to estimate "the nature and extent of incidental captures of seabirds, marine mammals, and turtles in New Zealand commercial fisheries". We are grateful to Nathan Walker at Fisheries New Zealand, and to members of the Aquatic Environment Working Group, for their help and advice.

#### 6. REFERENCES

- Abraham, E.R.; Berkenbusch, K. (2019). Preparation of data for protected species capture estimation, updated to 2016–17. Draft AEBR, held by Fisheries New Zealand, Wellington.
- Abraham, E.R.; Richard, Y. (2017). Summary of the capture of seabirds in New Zealand commercial fisheries, 2002–03 to 2013–14. *New Zealand Aquatic Environment and Biodiversity Report No. 184.* 88 p.
- Abraham, E.R.; Richard, Y. (2018). Estimated capture of seabirds in New Zealand trawl and longline fisheries, 2002–03 to 2014–15. 97 p. Retrieved from https://www.mpi.govt.nz/dmsdocument/ 27588/.
- Abraham, E.R.; Richard, Y. (2019). Estimated capture of seabirds in New Zealand trawl and longline fisheries, 2002–03 to 2015–16. New Zealand Aquatic Environment and Biodiversity Report 211. 99 p.

- Abraham, E.R.; Richard, Y.; Berkenbusch, K.; Thompson, F. (2016). Summary of the capture of seabirds, marine mammals, and turtles in New Zealand commercial fisheries, 2002–03 to 2012–13. New Zealand Aquatic Environment and Biodiversity Report No. 169. 205 p. Retrieved from http://mpi. govt.nz/document-vault/12180.
- Abraham, E.R.; Tremblay-Boyer, L.; Berkenbusch, K. (2019). Estimated captures of New Zealand fur seal, common dolphin, and turtles in New Zealand commercial fisheries, to 2015–16. New Zealand Aquatic Environment and Biodiversity Report. Draft AEBR, held by Fisheries New Zealand, Wellington.
- Carpenter, B.; Gelman, A.; Hoffman, M.; Lee, D.; Goodrich, B.; Betancourt, M.; Brubaker, M.A.; Guo, J.; Li, P.; Riddell, A. (2015). Stan: A probabilistic programming language. *Journal of Statistical Software*. Retrieved May 18, 2016, from http://www.demonish.com/cracker/1431548798\_9226234ebe/stan-resubmit-jss1293.pdf.
- Gelfand, A.E.; Vounatsou, P. (2003). Proper multivariate conditional autoregressive models for spatial data analysis. *Biostatistics 4 (1)*: 11–15.
- Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. *Bayesian Statistics 4*: 169–194.
- Heidelberger, P.; Welch, P.D. (1983). Simulation run length control in the presence of an initial transient. *Operations Research 31*: 1109–1144.
- Jin, X.; Carlin, B.P.; Banerjee, S. (2005). Generalized hierarchical multivariate CAR models for areal data. *Biometrics 61 (4)*: 950–961.
- Plummer, M.; Best, N.; Cowles, K.; Vines, K. (2006). CODA: Convergence diagnosis and output analysis for MCMC. *R News* 6: 7–11.
- Richard, Y.; Abraham, E.R.; Berkenbusch, K. (2017). Assessment of the risk of commercial fisheries to New Zealand seabirds, 2006–07 to 2014–15. New Zealand Aquatic Environment and Biodiversity Report No. 191. 133 p.
- Sanders, B.M.; Fisher, D.O. (2010). Database documentation for the Ministry of Fisheries Centralised Observer Database. *NIWA Fisheries Data Management Database Documentation Series*.
- Thompson, F.N.; Abraham, E.R.; Berkenbusch, K. (2017). Preparation of data on observed protected species captures, 2002–03 to 2014–15. *New Zealand Aquatic Environment and Biodiversity Report No. 192.* 24 p.

#### APPENDIX A: SUMMARIES OF MODELS USED FOR THE SEABIRD ESTIMATION

#### A.1 White-capped albatross

Table A-1: Model strata with the highest number of estimated captures of white-capped albatross in each of trawl, surface-longline (SLL), and bottom-longline (BLL) fisheries. Only the 15 strata with the most estimated captures are shown, sorted in decreasing order of mean estimated captures. The strata were defined as combinations of fishery, vessel size, area, and season. The number of observed captures between the fishing years 1998–99 and 2016–17 for bottom- and surface-longline fisheries, and between 2002–03 and 2016–17 for trawl fisheries are shown, along with the number of fishing events observed, the proportion of fishing events observed (observer coverage), the associated ratio estimate of the total number of captures, and the mean and 95% credible interval of the total estimated number of captures.

| Fishery                     | Vessel size                 | Area                    | Season | Observations |        | Estin    | nated captures |      |           |
|-----------------------------|-----------------------------|-------------------------|--------|--------------|--------|----------|----------------|------|-----------|
|                             |                             |                         |        | Captures     | Events | Coverage | Ratio est.     | Mean | 95% c.i.  |
| Trawl                       |                             |                         |        |              |        |          |                |      |           |
| Squid trawl                 | Vessels $\geq 28$ m         | Stewart Snares Shelf    | Summer | 428          | 10155  | 0.377    | 1136           | 1277 | 1029-1573 |
| Squid trawl                 | Vessels $> 28 \text{ m}$    | Auckland Islands        | Summer | 329          | 7259   | 0.488    | 673            | 604  | 471-759   |
| Squid trawl                 | Vessels $\ge 28 \text{ m}$  | Stewart Snares Shelf    | Autumn | 109          | 2918   | 0.324    | 336            | 402  | 287-547   |
| Squid trawl                 | Vessels $\ge 28 \text{ m}$  | Auckland Islands        | Autumn | 91           | 2969   | 0.379    | 240            | 295  | 205-404   |
| Inshore trawl               | Vessels $\leq 28 \text{ m}$ | Stewart Snares Shelf    | Summer | 2            | 155    | 0.019    | 105            | 254  | 127-453   |
| Flatfish trawl              | Vessels $< 28 \text{ m}$    | Stewart Snares Shelf    | Summer | 0            | 527    | 0.020    | 0              | 196  | 52-466    |
| Inshore trawl               | Vessels $< 28 \text{ m}$    | West Coast South Island | Summer | 12           | 439    | 0.038    | 317            | 187  | 95-319    |
| Inshore trawl               | Vessels $< 28 \text{ m}$    | Stewart Snares Shelf    | Autumn | 0            | 0      | 0.000    |                | 161  | 75-297    |
| Inshore trawl               | Vessels $< 28 \text{ m}$    | West Coast South Island | Autumn | 2            | 30     | 0.003    | 636            | 145  | 73-250    |
| Flatfish trawl              | Vessels $< 28 \text{ m}$    | Stewart Snares Shelf    | Autumn | 3            | 51     | 0.003    | 1016           | 124  | 32-297    |
| Inshore trawl               | Vessels $< 28 \text{ m}$    | Western Chatham Rise    | Summer | 0            | 438    | 0.018    | 0              | 123  | 57-224    |
| Inshore trawl               | Vessels $< 28 \text{ m}$    | Western Chatham Rise    | Autumn | 0            | 77     | 0.004    | 0              | 105  | 46-194    |
| Inshore trawl               | Vessels $< 28 \text{ m}$    | Stewart Snares Shelf    | Spring | 0            | 22     | 0.003    | 0              | 101  | 44-192    |
| Inshore trawl               | Vessels $< 28 \text{ m}$    | West Coast South Island | Spring | 1            | 94     | 0.008    | 129            | 98   | 44-181    |
| Scampi trawl                | Vessels $< 28 \text{ m}$    | Auckland Islands        | Autumn | 9            | 603    | 0.112    | 80             | 97   | 47-173    |
| Surface longline            |                             |                         |        |              |        |          |                |      |           |
| Southern bluefin SLL        | Vessels $< 43 \text{ m}$    | West Coast South Island | Autumn | 80           | 326    | 0.118    | 679            | 647  | 365-1076  |
| Southern bluefin SLL        | Vessels $< 43 \text{ m}$    | East of North Island    | Autumn | 4            | 372    | 0.045    | 89             | 108  | 41-211    |
| Southern bluefin SLL        | Vessels $\geq$ 43 m         | Fiordland               | Autumn | 81           | 3057   | 0.900    | 89             | 103  | 64-150    |
| Southern bluefin SLL        | Vessels $< 43 \text{ m}$    | West Coast South Island | Summer | 0            | 0      | 0.000    |                | 96   | 39-188    |
| Southern bluefin SLL        | Vessels $< 43$ m            | Fiordland               | Autumn | 10           | 12     | 0.032    | 310            | 87   | 31-185    |
| Southern bluefin SLL        | Vessels $< 43 \text{ m}$    | West Coast South Island | Winter | 0            | 46     | 0.057    | 0              | 57   | 25-111    |
| Swordfish SLL               | Vessels $< 43 \text{ m}$    | West Coast South Island | Summer | 1            | 20     | 0.044    | 22             | 47   | 8-144     |
| Swordfish SLL               | Vessels $< 43 \text{ m}$    | West Coast South Island | Autumn | 2            | 37     | 0.136    | 14             | 27   | 4-83      |
| Bigeye SLL                  | Vessels $< 43 \text{ m}$    | East of North Island    | Summer | 0            | 161    | 0.026    | 0              | 25   | 3-73      |
| Bigeye SLL                  | Vessels $< 43$ m            | East of North Island    | Autumn | 0            | 96     | 0.021    | 0              | 18   | 2-50      |
| Bigeye SLL                  | Vessels $< 43$ m            | North East              | Summer | 0            | 160    | 0.029    | 0              | 16   | 2-46      |
| Bigeye SLL                  | Vessels $< 43 \text{ m}$    | West Coast North Island | Summer | 0            | 60     | 0.023    | 0              | 14   | 1-42      |
| Bigeye SLL                  | Vessels $< 43 \text{ m}$    | North East              | Autumn | 0            | 56     | 0.012    | 0              | 13   | 1-37      |
| Southern bluefin SLL        | Vessels $> 43 \text{ m}$    | West Coast South Island | Autumn | 4            | 333    | 0.915    | 4              | 11   | 3-24      |
| Albacore SLL                | Vessels $\leq$ 43 m         | East of North Island    | Autumn | 0            | 23     | 0.015    | 0              | 10   | 0-44      |
| Bottom longline             |                             |                         |        |              |        |          |                |      |           |
| Ling BLL – vessels $< 34$ m | Vessels $< 34 \text{ m}$    | West Coast South Island | Autumn | 4            | 35     | 0.014    | 279            | 62   | 18-136    |
| Ling BLL – vessels $< 34$ m | Vessels $< 34 \text{ m}$    | West Coast South Island | Summer | 2            | 23     | 0.010    | 199            | 62   | 18-138    |
| Ling BLL – vessels $< 34$ m | Vessels $< 34 \text{ m}$    | West Coast South Island | Spring | 0            | 2      | 0.001    | 0              | 38   | 10-86     |
| Ling BLL – vessels $< 34$ m | Vessels $< 34 \text{ m}$    | West Coast South Island | Winter | 0            | 6      | 0.002    | 0              | 24   | 6-54      |
| Ling BLL – vessels $< 34$ m | Vessels $< 34 \text{ m}$    | Cook Strait             | Autumn | 0            | 4      | 0.003    | 0              | 17   | 3-45      |
| Ling BLL - vessels < 34 m   | Vessels $< 34 \text{ m}$    | Western Chatham Rise    | Autumn | 0            | 55     | 0.031    | 0              | 14   | 3-33      |
| Ling BLL – vessels $< 34$ m | Vessels $< 34 \text{ m}$    | Cook Strait             | Spring | 0            | 0      | 0.000    |                | 13   | 2-36      |
| Ling BLL – vessels $< 34$ m | Vessels $< 34 \text{ m}$    | Western Chatham Rise    | Spring | 0            | 66     | 0.022    | 0              | 13   | 3-30      |
| Ling BLL – vessels $< 34$ m | Vessels $< 34 \text{ m}$    | Cook Strait             | Summer | 0            | 11     | 0.014    | 0              | 12   | 2-34      |
| Snapper BLL                 | Vessels $< 34 \text{ m}$    | North East              | Summer | 0            | 743    | 0.020    | 0              | 12   | 0-47      |
| Ling BLL – vessels $< 34$ m | Vessels $< 34 \text{ m}$    | Fiordland               | Winter | 0            | 3      | 0.002    | 0              | 11   | 2-29      |
| Snapper BLL                 | Vessels $< 34$ m            | North East              | Autumn | 0            | 508    | 0.014    | 0              | 11   | 0-42      |
| Hāpuku BLL                  | Vessels $< 34 \text{ m}$    | West Coast South Island | Summer | 0            | 0      | 0.000    |                | 10   | 0-41      |
| Ling BLL – vessels $< 34$ m | Vessels $< 34 \text{ m}$    | Western Chatham Rise    | Summer | 0            | 2      | 0.002    | 0              | 10   | 2-23      |
| Minor targets BLL           | Vessels $< 34 \text{ m}$    | Cook Strait             | Summer | 0            | 0      | 0.000    |                | 9    | 0-42      |

Table A-2: Summary of model parameters, for white-capped albatross capture in New Zealand commercial trawl, bottom-, and surface-longline fisheries. For each parameter, the table gives summary statistics of the posterior distribution (mean, median, and 95% credible interval, based on the 2.5% and 97.5% quantiles), and diagnostics (the number of chains that fail convergence and half-width tests (Heidelberger & Welch 1983), and the effective length of the chains (without autocorrelation). Trace plots of the chains are also shown. Base levels of the factor covariates are: Large trawl for method, South for region, and Summer (Jan-Mar) for season. Model strata included different different areas, seasons, years, target fisheries and areas for trawling, surface-longline (SLL), and bottom-longline (BLL) fisheries. IWL, integrated weight line.

| Parameter                                      |         |        | Statistic                       |       |      | Dia              | gnostics                                 |
|------------------------------------------------|---------|--------|---------------------------------|-------|------|------------------|------------------------------------------|
|                                                | Mean    | Median | 95% c.i.                        | Conv. | H.W. | Effective length | Trace                                    |
| S.d.(Year)                                     |         |        |                                 |       |      |                  |                                          |
| BLL                                            | 1.145   | 1.091  | 0.218 - 2.305                   |       |      | 2791             | phone in the second                      |
| SLL                                            | 0.739   | 0.729  | 0.363 - 1.171                   |       |      | 4002             | (unitality)                              |
| Trawl                                          | 0.357   | 0.346  | 0.211 - 0.565                   |       |      | 4002             | Augster Ballet                           |
| S.d.(Area)                                     | 0.975   | 0.942  | 0.594 - 1.513                   |       |      | 3750             | sciencificaria                           |
| S.d.(Fishery)                                  | 0.909   | 0.881  | 0.562 - 1.388                   |       |      | 3879             | ant-nislasing                            |
| Overdispersion                                 |         |        |                                 |       |      |                  |                                          |
| BLL                                            | 1.256   | 1.082  | 0.369 - 3.085                   |       |      | 3816             | فالمصاغدي                                |
| SLL                                            | 5.070   | 4.984  | 3.637 - 6.962                   |       |      | 4002             | <b>Suburinets</b>                        |
| Irawi                                          | 7.942   | 7.919  | 6.468 - 9.588                   |       |      | 3945             | <b>Managara</b>                          |
| Intercept                                      | 0.009   | 0.008  | 0.003 - 0.022                   |       |      | 4008             | التصعيب                                  |
| Method / Vessel class                          |         |        |                                 |       |      |                  |                                          |
| BLL / vessels $\geq 34$ m                      | 0.401   | 0.252  | 0.044 - 1.708                   |       |      | 4002             |                                          |
| SLL / vessels $\geq 43$ m                      | 2.483   | 1.899  | 0.495 - 8.111                   | 2     |      | 4022             | سيباليط                                  |
| $1 \text{ rawi / vessels} \ge 28 \text{ m}$    | 1.000   | 1.000  | 1.000 - 1.000                   | 3     |      | 2965             |                                          |
| BLL / vessels < 54 III<br>SLL / vessels < 43 m | 18 020  | 1.430  | 0.518 - 5.551<br>3 889 - 53 307 |       |      | 3063             |                                          |
| Trawl / vessels < 28 m                         | 1 2 5 2 | 14.271 | 0.631 - 2.248                   |       |      | 4100             | ىر بىرىلىك لە<br>ھىقلارلىرى دە           |
|                                                | 1.232   | 1.100  | 0.051 - 2.240                   |       |      | 4100             | MARK CLUD                                |
| North                                          | 0.106   | 0.074  | 0.019 - 0.375                   |       |      | 28/1             |                                          |
| South                                          | 1.000   | 1.000  | 1.000 - 1.000                   | 3     |      | 5641             | o thanks is                              |
| Season                                         |         |        |                                 |       |      |                  |                                          |
| Autumn (Apr-Jun)                               | 0.951   | 0.944  | 0.756 - 1.187                   |       |      | 4002             | nivitidadas                              |
| Spring (Oct-Dec)                               | 0.505   | 0.497  | 0.345 - 0.712                   |       |      | 3882             | anasasish                                |
| Summer (Jan-Mar)                               | 1.000   | 1.000  | 1.000 - 1.000                   | 3     |      |                  |                                          |
| Winter (Jul-Sep)                               | 0.290   | 0.284  | 0.190 - 0.429                   |       |      | 4214             | <u>diminiki</u>                          |
| Fishery                                        |         |        |                                 |       |      |                  |                                          |
| Albacore SLL                                   | 0.837   | 0.635  | 0.018 - 2.851                   |       |      | 3808             | Manage and the                           |
| Bigeye SLL                                     | 0.599   | 0.496  | 0.083 - 1.739                   |       |      | 4115             | يتبا الارتيان                            |
| Bluenose BLL                                   | 0.713   | 0.551  | 0.020 - 2.371                   |       |      | 3879             | Benduckas                                |
| Deepwater trawl                                | 0.157   | 0.139  | 0.039 - 0.388                   |       |      | 3813             | distant to that                          |
| Flatfish trawl                                 | 0.370   | 0.314  | 0.081 - 0.992                   |       |      | 4002             | <b>And an address</b>                    |
| Hake trawl                                     | 0.664   | 0.623  | 0.251 - 1.296                   |       |      | 4002             | deviting the                             |
| Hapuku BLL                                     | 0.819   | 0.615  | 0.021 - 2.696                   |       |      | 4370             | خف مالنديات.                             |
| Hoki trawi                                     | 0.629   | 0.603  | 0.291 - 1.122                   |       |      | 4002             | Milliologiane.                           |
| Ling (no IWI ) PLL voscale $> 24$ m            | 1.497   | 1.393  | 0.307 - 3.023                   |       |      | 4002             | enderstellendet                          |
| $Ling$ (IWL) BLL = vessels $\geq 34$ m         | 0.492   | 0.333  | 0.270 - 4.230<br>0.008 - 1.848  |       |      | 4002             | the last of the                          |
| Ling BLL – vessels $< 34 \text{ m}$            | 2 128   | 1 828  | 0.544 - 5.324                   |       |      | 3814             | Actilization                             |
| Ling trawl                                     | 1.284   | 1.192  | 0.493 - 2.608                   |       |      | 4167             | and delivery                             |
| Mackerel trawl                                 | 0.661   | 0.623  | 0.253 - 1.291                   |       |      | 3650             | and different                            |
| Middle depths trawl                            | 1.691   | 1.635  | 0.812 - 2.905                   |       |      | 4002             | the stick option                         |
| Minor targets BLL                              | 0.601   | 0.457  | 0.011 - 2.009                   |       |      | 3806             | مسليهية                                  |
| Minor surface longline                         | 0.849   | 0.641  | 0.022 - 2.891                   |       |      | 3894             | in haddedd                               |
| Southern blue whiting trawl                    | 0.388   | 0.264  | 0.006 - 1.499                   |       |      | 4002             | an a |
| Scampi trawl                                   | 1.037   | 0.974  | 0.425 - 2.004                   |       |      | 3743             | ation/initials                           |
| Snapper BLL                                    | 0.601   | 0.447  | 0.011 - 2.110                   |       |      | 4002             | the second state of the                  |
| Squid trawl                                    | 2.445   | 2.356  | 1.186 - 4.258                   |       |      | 4002             | dissolution of the                       |
| Swordfish SLL                                  | 0.792   | 0.653  | 0.132 - 2.270                   |       |      | 4002             | يەلەلەت يەلەر<br>ئەمەلەلەت ئەت           |
| A.r.o.                                         |         |        |                                 |       |      |                  |                                          |
| Area<br>Auckland Islands                       | 2 198   | 2 074  | 0 948 - 4 099                   |       |      | 4002             |                                          |
| Cook Strait                                    | 0.741   | 0.665  | 0.216 - 1.714                   |       |      | 4734             |                                          |
| East of North Island                           | 1 046   | 0.897  | 0.182 - 2.772                   |       |      | 3761             | فيسادعهم                                 |
| Eastern Chatham Rise                           | 0.189   | 0.171  | 0.057 - 0.415                   |       |      | 3874             | ومربعه والمانيع                          |
| East Subantarctic                              | 0.258   | 0.164  | 0.001 - 1.036                   |       |      | 4002             | و المنابع                                |
| Fiordland                                      | 1.274   | 1.193  | 0.521 - 2.477                   |       |      | 4002             | مانتحافظه                                |
| Kermadec Islands                               | 0.782   | 0.558  | 0.008 - 2.745                   |       |      | 4257             | والمناسب                                 |
| North East                                     | 0.742   | 0.634  | 0.119 - 2.016                   |       |      | 3966             | Advertised                               |
| South Subantarctic                             | 0.193   | 0.147  | 0.014 - 0.627                   |       |      | 4002             | abilitation into                         |
| Stewart Snares Shelf                           | 2.489   | 2.365  | 1.075 - 4.544                   |       |      | 4002             | sidessesse                               |
| West Coast North Jaland                        | 0.417   | 0.395  | 0.162 - 0.814                   |       |      | 4002             | atan ana ana ana ana ana ana ana ana ana |
| West Coast North Island                        | 1.313   | 1.155  | 0.240 - 3.282<br>0.527 - 2.465  |       |      | 3810             | <u>kakinanin ni</u><br>Teattan           |
| west Coast South Island                        | 1.501   | 1.234  | 0.557 - 2.405                   |       |      | 413/             | AMERICANNES                              |



Figure A-1: Comparison between the observed and the predicted number of captures of white-capped albatross (represented by their mean and 95% credible interval), for each combination of region, fishery, vessel size, area, and season. The points were coloured according to the fishing method (BLL, bottom longline; SLL, surface longline).

Table A-3: List of strata, defined as combinations of region, fishery, vessel size, area, and season, for which the number of observed captures of white-capped albatross was outside the 95% credible interval (c.i.) of the estimated number of captures. There were six of these strata, representing 1.0% of all 620 strata. SLL, surface longline; BLL, bottom longline. Cut-off lengths between small and large vessels were 28 m for trawl, 34 m for BLL, and 45 m for SLL.

| Method | Fishery                   | Vessel size | Region | Area                    | Season           | Observations | Captures | Mean | 95% c.i. |
|--------|---------------------------|-------------|--------|-------------------------|------------------|--------------|----------|------|----------|
| SLL    | Southern bluefin SLL      | Large       | South  | Stewart Snares Shelf    | Autumn (Apr-Jun) | 98           | 20       | 5.14 | 0-15     |
| Trawl  | Squid trawl               | Large       | South  | Stewart Snares Shelf    | Winter (Jul-Sep) | 93           | 5        | 0.97 | 0-4      |
| BLL    | Ling BLL – vessels < 34 m | Small       | South  | West Coast South Island | Autumn (Apr-Jun) | 35           | 4        | 0.86 | 0-3      |
| Trawl  | Ling trawl                | Small       | South  | West Coast South Island | Autumn (Apr-Jun) | 37           | 4        | 0.50 | 0-3      |
| Trawl  | Inshore trawl             | Small       | North  | West Coast North Island | Winter (Jul-Sep) | 613          | 2        | 0.20 | 0-1      |
| Trawl  | Scampi trawl              | Small       | North  | North East              | Autumn (Apr-Jun) | 379          | 2        | 0.16 | 0-1      |

#### A.2 Salvin's albatross

Table A-4: Model strata with the highest number of estimated captures of Salvin's albatross in each of trawl, surface-longline (SLL), and bottom-longline (BLL) fisheries. Only the 15 strata with the most estimated captures are shown, sorted in decreasing order of mean estimated captures. The strata were defined as combinations of fishery, vessel size, area, and season. The number of observed captures between the fishing years 1998–99 and 2016–17 for bottom- and surface-longline fisheries, and between 2002–03 and 2016–17 for trawl fisheries are shown, along with the number of fishing events observed, the proportion of fishing events observed (observer coverage), the associated ratio estimate of the total number of captures, and the mean and 95% credible interval of the total estimated number of captures. IWL: Integrated weight line.

| Fishery                                 | Vessel size                 | Area                    | Season |          |        | Estima   | Estimated captures |      |          |
|-----------------------------------------|-----------------------------|-------------------------|--------|----------|--------|----------|--------------------|------|----------|
|                                         |                             |                         |        | Captures | Events | Coverage | Ratio est.         | Mean | 95% c.i. |
| Trawl                                   |                             |                         |        |          |        |          |                    |      |          |
| Inshore trawl                           | Vessels $< 28$ m            | Western Chatham Rise    | Spring | 4        | 155    | 0.008    | 472                | 630  | 263-1286 |
| Middle depths trawl                     | Vessels $< 28$ m            | Western Chatham Rise    | Spring | 0        | 63     | 0.010    | 0                  | 430  | 160-993  |
| Hoki trawl                              | Vessels $\geq 28 \text{ m}$ | Eastern Chatham Rise    | Spring | 75       | 2456   | 0.236    | 317                | 303  | 193-460  |
| Scampi trawl                            | Vessels $< 28$ m            | Eastern Chatham Rise    | Spring | 11       | 541    | 0.092    | 120                | 299  | 149-546  |
| Inshore trawl                           | Vessels $< 28$ m            | Western Chatham Rise    | Summer | 13       | 438    | 0.018    | 705                | 284  | 123-558  |
| Hoki trawl                              | Vessels $\geq 28 \text{ m}$ | Western Chatham Rise    | Spring | 33       | 2444   | 0.187    | 176                | 269  | 172-402  |
| Inshore trawl                           | Vessels $< 28$ m            | Western Chatham Rise    | Winter | 0        | 142    | 0.011    | 0                  | 214  | 81-454   |
| Middle depths trawl                     | Vessels $< 28$ m            | Western Chatham Rise    | Summer | 4        | 191    | 0.026    | 154                | 179  | 65-398   |
| Inshore trawl                           | Vessels $< 28$ m            | East of North Island    | Spring | 0        | 193    | 0.006    | 0                  | 128  | 36-307   |
| Middle depths trawl                     | Vessels $< 28$ m            | Western Chatham Rise    | Winter | 0        | 29     | 0.008    | 0                  | 118  | 40-281   |
| Hoki trawl                              | Vessels $\geq 28 \text{ m}$ | Eastern Chatham Rise    | Summer | 23       | 1663   | 0.137    | 167                | 116  | 69–179   |
| Flatfish trawl                          | Vessels $< 28$ m            | Western Chatham Rise    | Spring | 0        | 54     | 0.003    | 0                  | 113  | 0-472    |
| Hoki trawl                              | Vessels $\geq 28 \text{ m}$ | Western Chatham Rise    | Summer | 10       | 1890   | 0.138    | 72                 | 98   | 56-156   |
| Scampi trawl                            | Vessels < 28 m              | Eastern Chatham Rise    | Summer | 11       | 279    | 0.052    | 213                | 97   | 46-177   |
| Middle depths trawl                     | $Vessels \geq 28 \ m$       | Eastern Chatham Rise    | Spring | 9        | 291    | 0.109    | 82                 | 96   | 43-173   |
| Surface longline                        |                             |                         |        |          |        |          |                    |      |          |
| Bigeye SLL                              | Vessels $< 43 \text{ m}$    | East of North Island    | Summer | 7        | 161    | 0.026    | 266                | 162  | 65-309   |
| Bigeye SLL                              | Vessels $< 43$ m            | East of North Island    | Spring | 0        | 13     | 0.015    | 0                  | 66   | 24-132   |
| Bigeye SLL                              | Vessels $< 43 \text{ m}$    | North East              | Spring | 2        | 233    | 0.034    | 59                 | 45   | 10-111   |
| Bigeye SLL                              | Vessels $< 43 \text{ m}$    | East of North Island    | Autumn | 1        | 96     | 0.021    | 46                 | 32   | 10-69    |
| Bigeye SLL                              | Vessels $< 43$ m            | North East              | Winter | 0        | 102    | 0.013    | 0                  | 24   | 4-63     |
| Albacore SLL                            | Vessels $< 43 \text{ m}$    | East of North Island    | Summer | 0        | 7      | 0.011    | 0                  | 14   | 0-52     |
| Bigeye SLL                              | Vessels $< 43 \text{ m}$    | North East              | Summer | 0        | 160    | 0.029    | 0                  | 13   | 2-33     |
| Southern bluefin SLL                    | Vessels $< 43$ m            | East of North Island    | Winter | 0        | 212    | 0.116    | 0                  | 13   | 2-34     |
| Southern bluefin SLL                    | Vessels $< 43 \text{ m}$    | East of North Island    | Autumn | 0        | 372    | 0.045    | 0                  | 11   | 1-31     |
| Albacore SLL                            | Vessels $< 43 \text{ m}$    | East of North Island    | Autumn | 1        | 23     | 0.015    | 68                 | 9    | 0-38     |
| Minor surface longline                  | Vessels $< 43 \text{ m}$    | East of North Island    | Summer | 0        | 9      | 0.017    | 0                  | 8    | 0-37     |
| Bigeye SLL                              | Vessels $< 43 \text{ m}$    | East of North Island    | Winter | 0        | 1      | 0.007    | 0                  | 5    | 1-13     |
| Bigeye SLL                              | Vessels $< 43 \text{ m}$    | Eastern Chatham Rise    | Summer | 0        | 1      | 0.067    | 0                  | 5    | 0-18     |
| Bigeye SLL                              | Vessels $< 43 \text{ m}$    | West Coast North Island | Winter | 0        | 69     | 0.026    | 0                  | 5    | 0-20     |
| Albacore SLL                            | Vessels $< 43 \text{ m}$    | East of North Island    | Spring | 0        | 0      | 0.000    |                    | 4    | 0-16     |
| Bottom longline                         |                             |                         |        |          |        |          |                    |      |          |
| Ling BLL – vessels $< 34$ m             | Vessels $< 34 \text{ m}$    | Western Chatham Rise    | Spring | 1        | 66     | 0.022    | 46                 | 266  | 75–728   |
| Ling BLL – vessels $< 34$ m             | Vessels $< 34 \text{ m}$    | Eastern Chatham Rise    | Spring | 6        | 132    | 0.058    | 104                | 263  | 70–717   |
| Ling (no IWL) BLL – vessels $\geq$ 34 m | Vessels $\geq$ 34 m         | Eastern Chatham Rise    | Winter | 2        | 1018   | 0.142    | 14                 | 231  | 80-572   |
| Ling (no IWL) BLL – vessels $\geq$ 34 m | Vessels $\geq$ 34 m         | Eastern Chatham Rise    | Spring | 18       | 460    | 0.135    | 133                | 228  | 69–579   |
| Ling (no IWL) BLL – vessels $\geq$ 34 m | Vessels $\geq$ 34 m         | East Subantarctic       | Spring | 100      | 557    | 0.424    | 235                | 221  | 43-694   |
| Ling BLL – vessels $< 34$ m             | Vessels $< 34 \text{ m}$    | Eastern Chatham Rise    | Winter | 22       | 174    | 0.047    | 469                | 205  | 64-503   |
| Minor targets BLL                       | Vessels $< 34 \text{ m}$    | Eastern Chatham Rise    | Spring | 2        | 8      | 0.012    | 172                | 170  | 8-834    |
| Hāpuku BLL                              | Vessels $< 34 \text{ m}$    | Eastern Chatham Rise    | Spring | 0        | 24     | 0.015    | 0                  | 151  | 0-822    |
| Ling BLL – vessels $< 34$ m             | Vessels $< 34 \text{ m}$    | Western Chatham Rise    | Winter | 0        | 109    | 0.035    | 0                  | 131  | 37–344   |
| Ling (no IWL) BLL – vessels $\geq$ 34 m | Vessels $\ge 34 \text{ m}$  | Western Chatham Rise    | Spring | 0        | 58     | 0.024    | 0                  | 121  | 31-328   |
| Ling (no IWL) BLL – vessels $\geq$ 34 m | Vessels $\geq 34 \text{ m}$ | East Subantarctic       | Summer | 22       | 522    | 0.366    | 60                 | 116  | 22-332   |
| Minor targets BLL                       | Vessels $< 34 \text{ m}$    | Western Chatham Rise    | Spring | 0        | 2      | 0.003    | 0                  | 111  | 4–593    |
| Minor targets BLL                       | Vessels $< 34 \text{ m}$    | Eastern Chatham Rise    | Winter | 0        | 0      | 0.000    |                    | 78   | 3-370    |
| Hāpuku BLL                              | Vessels $< 34 \text{ m}$    | Eastern Chatham Rise    | Summer | 0        | 0      | 0.000    |                    | 76   | 0-408    |
| Bluenose BLL                            | Vessels $< 34 \text{ m}$    | Eastern Chatham Rise    | Spring | 0        | 0      | 0.000    |                    | 72   | 0-397    |

Table A-5: Summary of model parameters, for Salvin's albatross capture in New Zealand commercial trawl, bottom-, and surface-longline fisheries. For each parameter, the table gives summary statistics of the posterior distribution (mean, median, and 95% credible interval, based on the 2.5% and 97.5% quantiles), and diagnostics (the number of chains that fail convergence and half-width tests (Heidelberger & Welch 1983), and the effective length of the chains (without autocorrelation). Trace plots of the chains are also shown. Base levels of the factor covariates are: Large trawl for method, South for region, and Spring (Oct-Dec) for season. Model strata included different different areas, seasons, years, target fisheries and areas for trawling, surface-longline (SLL), and bottom-longline (BLL) fisheries. IWL, integrated weight line.

| Parameter                                                                |        |        | Statistic                         |       |      | Di               | agnostics                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------|--------|--------|-----------------------------------|-------|------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                          | Mean   | Median | 95% c.i.                          | Conv. | H.W. | Effective length | Trace                                                                                                                                                                                                                                                                                                                                |
| S.d.(Year)                                                               |        |        |                                   |       |      |                  |                                                                                                                                                                                                                                                                                                                                      |
| BLL                                                                      | 1.219  | 1.191  | 0.608 - 1.997                     |       |      | 4002             | and approximation                                                                                                                                                                                                                                                                                                                    |
| SLL                                                                      | 1.045  | 0.960  | 0.183 - 2.313                     |       |      | 2650             | to the design of the later                                                                                                                                                                                                                                                                                                           |
| Trawl                                                                    | 0.519  | 0.505  | 0.284 - 0.831                     |       |      | 4002             | lativisian                                                                                                                                                                                                                                                                                                                           |
| S.d.(Area)                                                               | 1.627  | 1.587  | 1.128 - 2.310                     |       |      | 4002             | à miditakan                                                                                                                                                                                                                                                                                                                          |
| S.d.(Fishery)                                                            | 1.054  | 1.028  | 0.662 - 1.586                     | 1     |      | 4002             | nonarteniala                                                                                                                                                                                                                                                                                                                         |
| Overdispersion                                                           |        |        |                                   |       |      |                  |                                                                                                                                                                                                                                                                                                                                      |
| BLL                                                                      | 12.173 | 11.992 | 8.652 - 16.603                    |       |      | 4028             | approximation and                                                                                                                                                                                                                                                                                                                    |
| SLL                                                                      | 1.384  | 1.184  | 0.413 - 3.478                     |       |      | 3865             | <u>يارنىغانىيى</u>                                                                                                                                                                                                                                                                                                                   |
| Irawi                                                                    | 10.164 | 10.147 | 8.388 - 12.073                    |       |      | 4392             | (diference)                                                                                                                                                                                                                                                                                                                          |
| Intercept                                                                | 0.024  | 0.017  | 0.005 - 0.085                     | 1     |      | 4080             | and the sector                                                                                                                                                                                                                                                                                                                       |
| Method / Vessel class                                                    |        |        |                                   |       |      |                  |                                                                                                                                                                                                                                                                                                                                      |
| BLL / vessels $\geq$ 34 m                                                | 2.246  | 1.179  | 0.211 - 11.031                    |       |      | 4002             | huster a                                                                                                                                                                                                                                                                                                                             |
| SLL / vessels $\geq 43 \text{ m}$                                        | 53.558 | 25.540 | 2.923 - 261.529                   | 2     |      | 4002             |                                                                                                                                                                                                                                                                                                                                      |
| $1 \text{rawl} / \text{vessels} \ge 28 \text{ m}$                        | 1.000  | 1.000  | 1.000 - 1.000                     | 3     |      | 4124             |                                                                                                                                                                                                                                                                                                                                      |
| BLL / vessels $< 34 \text{ m}$                                           | 0.144  | 3.303  | 0.019 - 20.305<br>3.194 - 103.802 |       |      | 4134             | يە بىيلىغاند.<br>بىر بايرا                                                                                                                                                                                                                                                                                                           |
| Trawl / vessels $< 28 \text{ m}$                                         | 2,281  | 2.056  | 0.914 - 4.954                     |       |      | 4241             | and and a second                                                                                                                                                                                                                                                                                                                     |
| Region                                                                   |        |        |                                   |       |      |                  |                                                                                                                                                                                                                                                                                                                                      |
| North                                                                    | 0 203  | 0.061  | 0.008 - 0.999                     |       |      | 4002             |                                                                                                                                                                                                                                                                                                                                      |
| South                                                                    | 1.000  | 1.000  | 1.000 - 1.000                     | 3     |      | 1002             |                                                                                                                                                                                                                                                                                                                                      |
| Season                                                                   |        |        |                                   |       |      |                  |                                                                                                                                                                                                                                                                                                                                      |
| Autumn (Apr-Jun)                                                         | 0.095  | 0.092  | 0.052 - 0.152                     |       |      | 4069             | ntelemetere                                                                                                                                                                                                                                                                                                                          |
| Spring (Oct-Dec)                                                         | 1.000  | 1.000  | 1.000 - 1.000                     | 3     |      | 2074             |                                                                                                                                                                                                                                                                                                                                      |
| Summer (Jan-Mar)                                                         | 0.357  | 0.351  | 0.243 - 0.504                     |       |      | 38/4             | Michaelen                                                                                                                                                                                                                                                                                                                            |
| winter (Jui-Sep)                                                         | 0.501  | 0.489  | 0.321 - 0.743                     |       |      | 3852             | M. Agront with day                                                                                                                                                                                                                                                                                                                   |
| Fishery                                                                  |        |        |                                   |       |      |                  |                                                                                                                                                                                                                                                                                                                                      |
| Albacore SLL                                                             | 1.353  | 1.072  | 0.122 - 4.430                     |       |      | 3788             | and and a                                                                                                                                                                                                                                                                                                                            |
| Bigeye SLL<br>Biyanasa BLI                                               | 0.569  | 0.251  | 0.392 - 5.193<br>0.002 - 2.375    |       |      | 3538             | abdecadada.                                                                                                                                                                                                                                                                                                                          |
| Deenwater trawl                                                          | 0.308  | 0.331  | 0.002 - 2.375<br>0.046 - 0.286    | 1     |      | 3897             | والمحمد والله                                                                                                                                                                                                                                                                                                                        |
| Flatfish trawl                                                           | 0.149  | 0.081  | 0.001 - 0.661                     |       |      | 4132             |                                                                                                                                                                                                                                                                                                                                      |
| Hake trawl                                                               | 1.613  | 1.460  | 0.500 - 3.631                     |       |      | 4002             | Action of the                                                                                                                                                                                                                                                                                                                        |
| Hāpuku BLL                                                               | 0.730  | 0.464  | 0.004 - 2.946                     |       |      | 4201             | وببالصيبية                                                                                                                                                                                                                                                                                                                           |
| Hoki trawl                                                               | 1.069  | 1.015  | 0.418 - 2.077                     |       |      | 3847             | ensistemet                                                                                                                                                                                                                                                                                                                           |
| Inshore trawl                                                            | 0.853  | 0.745  | 0.215 - 2.084                     |       |      | 3738             | to and the state of the state                                                                                                                                                                                                                                                                                                        |
| Ling (no IWL) BLL – vessels $\geq 34$ m                                  | 2.042  | 1./14  | 0.243 - 5.824                     |       |      | 4164             | (Addated)                                                                                                                                                                                                                                                                                                                            |
| Ling $(IWL)$ BLL – vessels $\geq 54$ m<br>Ling BLL – vessels $\leq 34$ m | 1 286  | 1.021  | 0.000 - 0.027<br>0.146 - 3.865    | 1     |      | 4002             | statistical.                                                                                                                                                                                                                                                                                                                         |
| Ling trawl                                                               | 1.757  | 1.578  | 0.552 - 3.947                     | •     |      | 3647             |                                                                                                                                                                                                                                                                                                                                      |
| Mackerel trawl                                                           | 0.479  | 0.398  | 0.096 - 1.307                     |       |      | 4002             | ماسطعانين                                                                                                                                                                                                                                                                                                                            |
| Middle depths trawl                                                      | 1.564  | 1.485  | 0.613 - 3.021                     |       |      | 3998             | <b>shilter</b>                                                                                                                                                                                                                                                                                                                       |
| Minor targets BLL                                                        | 1.705  | 1.388  | 0.232 - 5.206                     |       |      | 4162             | <b>Managina</b>                                                                                                                                                                                                                                                                                                                      |
| Minor surface longline                                                   | 0.815  | 0.553  | 0.008 - 3.146                     |       |      | 4115             | بعلياته المالية                                                                                                                                                                                                                                                                                                                      |
| Southern blue whiting trawl                                              | 0.453  | 0.385  | 0.101 - 1.191                     |       |      | 3912             | and the second s |
| Snapper BLI                                                              | 0.933  | 0.858  | 0.277 - 2.181<br>0.004 - 2.419    |       |      | 3999             | etentidada                                                                                                                                                                                                                                                                                                                           |
| Squid trawl                                                              | 1.608  | 1.491  | 0.585 - 3.290                     |       |      | 4002             |                                                                                                                                                                                                                                                                                                                                      |
| Southern bluefin SLL                                                     | 0.379  | 0.294  | 0.040 - 1.246                     |       |      | 4002             | andars                                                                                                                                                                                                                                                                                                                               |
| Swordfish SLL                                                            | 0.736  | 0.500  | 0.006 - 2.802                     |       |      | 4002             | والمستحدث                                                                                                                                                                                                                                                                                                                            |
| Area                                                                     |        |        |                                   |       |      |                  |                                                                                                                                                                                                                                                                                                                                      |
| Auckland Islands                                                         | 0.037  | 0.028  | 0.004 - 0.123                     |       |      | 4167             |                                                                                                                                                                                                                                                                                                                                      |
| Cook Strait                                                              | 0.416  | 0.341  | 0.065 - 1.194                     |       |      | 4254             | ينظير مايليد                                                                                                                                                                                                                                                                                                                         |
| East of North Island                                                     | 2.783  | 2.331  | 0.164 - 8.080                     |       |      | 3870             | 98440 (Dec)                                                                                                                                                                                                                                                                                                                          |
| Eastern Chatham Rise                                                     | 1.814  | 1.661  | 0.379 - 4.170                     |       |      | 4124             | مسيبلته                                                                                                                                                                                                                                                                                                                              |
| East Subantarctic                                                        | 4.426  | 4.183  | 1.031 - 9.058                     |       |      | 4002             | planet an                                                                                                                                                                                                                                                                                                                            |
| r toratana<br>Kermadeo Islande                                           | 0.034  | 0.023  | 0.002 - 0.134<br>0.000 - 1.520    |       |      | 4002             | hitana ka                                                                                                                                                                                                                                                                                                                            |
| North East                                                               | 0.225  | 0.055  | 0.000 - 1.029<br>0.010 - 0.965    |       |      | 3731             | فلكا والعامي                                                                                                                                                                                                                                                                                                                         |
| South Subantarctic                                                       | 0.159  | 0.130  | 0.025 - 0.469                     |       |      | 4034             | hereinen                                                                                                                                                                                                                                                                                                                             |
| Stewart Snares Shelf                                                     | 0.193  | 0.172  | 0.039 - 0.479                     |       |      | 3895             | and according                                                                                                                                                                                                                                                                                                                        |
| Western Chatham Rise                                                     | 1.377  | 1.240  | 0.283 - 3.307                     |       |      | 4002             | and a data                                                                                                                                                                                                                                                                                                                           |
| West Coast North Island                                                  | 0.136  | 0.071  | 0.002 - 0.645                     |       |      | 4392             | لمعد فيبتغ                                                                                                                                                                                                                                                                                                                           |
| west Coast South Island                                                  | 0.013  | 0.009  | 0.001 - 0.044                     |       |      | 4002             | and the second second                                                                                                                                                                                                                                                                                                                |



Figure A-2: Comparison between the observed and the predicted number of captures of Salvin's albatross (represented by their mean and 95% credible interval), for each combination of region, fishery, vessel size, area, and season. The points were coloured according to the fishing method (BLL, bottom longline; SLL, surface longline).

Table A-6: List of strata, defined as combinations of region, fishery, vessel size, area, and season, for which the number of observed captures of Salvin's albatross was outside the 95% credible interval (c.i.) of the estimated number of captures. There were three of these strata, representing 0.5% of all 620 strata. SLL, surface longline; BLL, bottom longline. Cut-off lengths between small and large vessels were 28 m for trawl, 34 m for BLL, and 45 m for SLL.

| Method | Fishery             | Vessel size | Region | Area                    | Season           | Observations | Captures | Mean | 95% c.i. |
|--------|---------------------|-------------|--------|-------------------------|------------------|--------------|----------|------|----------|
| Trawl  | Middle depths trawl | Large       | South  | Western Chatham Rise    | Winter (Jul-Sep) | 223          | 11       | 2.62 | 0–10     |
| Trawl  | Middle depths trawl | Small       | South  | West Coast South Island | Summer (Jan-Mar) | 79           | 1        | 0.01 | 0–0      |
| Trawl  | Middle depths trawl | Small       | South  | West Coast South Island | Autumn (Apr-Jun) | 6            | 1        | 0.00 | 0–0      |

#### A.3 Buller's albatrosses

Table A-7: Model strata with the highest number of estimated captures of Buller's albatrosses in each of trawl, surface-longline (SLL), and bottom-longline (BLL) fisheries. Only the 15 strata with the most estimated captures are shown, sorted in decreasing order of mean estimated captures. The strata were defined as combinations of fishery, vessel size, area, and season. The number of observed captures between the fishing years 1998–99 and 2016–17 for bottom- and surface-longline fisheries, and between 2002–03 and 2016–17 for trawl fisheries are shown, along with the number of fishing events observed, the proportion of fishing events observed (observer coverage), the associated ratio estimate of the total number of captures, and the mean and 95% credible interval of the total estimated number of captures. IWL: Integrated weight line.

| Fishery                                                              | Vessel size                            | Area                    | Season |          | Observations |          |            |      |          |
|----------------------------------------------------------------------|----------------------------------------|-------------------------|--------|----------|--------------|----------|------------|------|----------|
|                                                                      | vesser side                            |                         | Season | Captures | Events       | Coverage | Ratio est. | Mean | 95% c.i. |
| Trawl                                                                |                                        |                         |        |          |              |          |            |      |          |
| Squid trawl                                                          | Vessels > 28 m                         | Stewart Snares Shelf    | Autumn | 76       | 2918         | 0.324    | 234        | 183  | 119-266  |
| Hoki trawl                                                           | Vessels $\ge 28 \text{ m}$             | West Coast South Island | Winter | 41       | 14364        | 0 332    | 123        | 105  | 70-147   |
| Hoki trawl                                                           | Vessels $\ge 28 \text{ m}$             | Stewart Snares Shelf    | Autumn | 18       | 1782         | 0.250    | 72         | 74   | 42-118   |
| Squid trawl                                                          | Vessels $\ge 28 \text{ m}$             | Stewart Snares Shelf    | Summer | 25       | 10155        | 0 377    | 66         | 74   | 48 - 108 |
| Souid trawl                                                          | Vessels $\ge 28 \text{ m}$             | Auckland Islands        | Autumn | 36       | 2969         | 0 379    | 95         | 72   | 41-113   |
| Flatfish trawl                                                       | Vessels $\leq 28$ m                    | Stewart Snares Shelf    | Autumn | 0        | 51           | 0.003    | 0          | 56   | 0-222    |
| Hoki trawl                                                           | Vessels $> 28 \text{ m}$               | Eastern Chatham Rise    | Autumn | 1        | 864          | 0 143    | 7          | 56   | 28-98    |
| Hoki trawl                                                           | Vessels $\ge 28 \text{ m}$             | West Coast South Island | Autumn | 28       | 2444         | 0.360    | 77         | 56   | 32-88    |
| Middle depths trawl                                                  | Vessels $\geq 28$ m                    | Eastern Chatham Rise    | Autumn |          | 276          | 0.118    | 76         | 47   | 20-90    |
| Middle depths trawl                                                  | Vessels $\geq 28 \text{ m}$            | Stewart Snares Shelf    | Autumn | 23       | 868          | 0.409    | 56         | 46   | 22-81    |
| Hoki trawl                                                           | Vessels $\geq 28 \text{ m}$            | Western Chatham Rise    | Autumn |          | 2470         | 0.163    | 55         | 44   | 21-74    |
| Souid trawl                                                          | Vessels $\geq 28 \text{ m}$            | Fiordland               | Autumn | 8        | 296          | 0.216    | 37         | 43   | 16-87    |
| Flatfish trawl                                                       | Vessels < 28 m                         | West Coast South Island | Autumn | õ        | 13           | 0.001    | 0          | 33   | 0-127    |
| Middle depths trawl                                                  | Vessels < 28 m                         | West Coast South Island | Autumn | Ő        | 6            | 0.003    | Ő          | 30   | 6-88     |
| Scampi travi                                                         | Vessels < 28 m                         | Auckland Jelande        | Autumn | 1        | 603          | 0.112    | 8          | 28   | 8_62     |
| Scampritiawi                                                         | vessels < 20 m                         | Auckland Islands        | Autumn | 1        | 005          | 0.112    | 0          | 20   | 0-02     |
| Surface longline                                                     |                                        |                         |        |          |              |          |            |      |          |
| Bigeye SLL                                                           | Vessels $< 43 \text{ m}$               | East of North Island    | Autumn | 0        | 96           | 0.021    | 0          | 747  | 268-1667 |
| Southern bluefin SLL                                                 | Vessels $< 43 \text{ m}$               | West Coast South Island | Autumn | 81       | 326          | 0.118    | 688        | 636  | 334–1141 |
| Southern bluefin SLL                                                 | Vessels $\geq 43 \text{ m}$            | Fiordland               | Autumn | 422      | 3057         | 0.900    | 468        | 489  | 348-671  |
| Southern bluefin SLL                                                 | Vessels $< 43 \text{ m}$               | East of North Island    | Autumn | 18       | 372          | 0.045    | 401        | 462  | 241-814  |
| Albacore SLL                                                         | Vessels $< 43 \text{ m}$               | East of North Island    | Autumn | 0        | 23           | 0.015    | 0          | 275  | 64-805   |
| Southern bluefin SLL                                                 | Vessels $< 43 \text{ m}$               | Fiordland               | Autumn | 19       | 12           | 0.032    | 589        | 198  | 69–440   |
| Bigeye SLL                                                           | Vessels $< 43 \text{ m}$               | North East              | Autumn | 2        | 56           | 0.012    | 166        | 149  | 45-332   |
| Bigeye SLL                                                           | Vessels $< 43 \text{ m}$               | East of North Island    | Summer | 7        | 161          | 0.026    | 266        | 133  | 48-295   |
| Bigeye SLL                                                           | Vessels $< 43 \text{ m}$               | North East              | Winter | 2        | 102          | 0.013    | 148        | 80   | 25-186   |
| Southern bluefin SLL                                                 | Vessels $< 43 \text{ m}$               | West Coast South Island | Winter | 2        | 46           | 0.057    | 35         | 62   | 25-122   |
| Swordfish SLL                                                        | Vessels $< 43 \text{ m}$               | West Coast South Island | Autumn | 0        | 37           | 0.136    | 0          | 37   | 1-171    |
| Southern bluefin SLL                                                 | Vessels $< 43 \text{ m}$               | East of North Island    | Winter | 3        | 212          | 0.116    | 25         | 34   | 13-66    |
| Southern bluefin SLL                                                 | Vessels $\ge 43 \text{ m}$             | West Coast South Island | Autumn | 16       | 333          | 0.915    | 17         | 24   | 7-51     |
| Bigeye SLL                                                           | Vessels $< 43$ m                       | North East              | Summer | 0        | 160          | 0.029    | 0          | 23   | 6-55     |
| Albacore SLL                                                         | Vessels $< 43$ m                       | West Coast South Island | Autumn | 0        | 0            | 0.000    |            | 21   | 0-109    |
| Bottom longline                                                      |                                        |                         |        |          |              |          |            |      |          |
| Bluenose BLI                                                         | Vessels < 34 m                         | Eastern Chatham Rise    | Autumn | 2        | 29           | 0.018    | 112        | 76   | 15-209   |
| Hāpuku BLI                                                           | Vessels < 34 m                         | Eastern Chatham Rise    | Autumn | 0        | 2)           | 0.000    | 112        | 54   | 0_249    |
| Ling BLL – vessels < 34 m                                            | Vessels < 34 m                         | West Coast South Jeland | Autumn | 4        | 35           | 0.014    | 270        | 18   | 14-109   |
| Ling BLL vessels $< 34$ m                                            | Vessels < 34 m                         | Fastern Chatham Rise    | Winter | 0        | 174          | 0.047    | 2/2        | 31   | 9_69     |
| Ling BLL vessels < 34 m                                              | Vessels < 34 m                         | Eastern Chatham Rise    | Autumn | 1        | 13           | 0.043    | 23         | 25   | 7-54     |
| Phonoso PLI                                                          | Vessels $< 34 \text{ m}$               | East of North Island    | Autumn | 1        | 17           | 0.045    | 25         | 23   | 2 60     |
| Ling (no IWI) BLL – vessels $> 34$ m                                 | Veccele $> 34 \text{ m}$               | East of North Island    | Autumn | 0        | 157          | 0.000    | 0          | 24   | 6-51     |
| Ling PLL vocable $\leq 24$ m                                         | Vessels $\leq 34 \text{ m}$            | Eastern Chathan Kise    | Winter | 0        | 2            | 0.000    | 0          | 25   | 5 54     |
| Snoppor PLI                                                          | Vessels $< 34 \text{ m}$               | North East              | Autumn | 0        | 509          | 0.002    | 0          | 22   | 0.05     |
| $I_{ing}$ (no IWI) PLL vascale > 24 m                                | Vessels > 34 m                         | Fastern Chatham Pisa    | Winter | 0        | 1018         | 0.014    | 0          | 20   | 5 47     |
| $Ling (II0 TWL) BLL - vessels \geq 34 IIILing PLL vessels \leq 34 m$ | $V_{\text{occols}} \ge 34 \text{ III}$ | Wast Coast South Island | Winter | 0        | 1018         | 0.142    | 0          | 20   | 5 47     |
| Minor terrote DLL                                                    | vessels < 54  m<br>Veccels < 24 m      | Fastorn Chatham Pice    | Autume | 0        | 0            | 0.002    | 0          | 20   | 3-40     |
| Ling PLL voccols < 24 m                                              | Vessels < 54 m                         | Wastern Chatham Pice    | Autumn | 0        | 55           | 0.000    | 0          | 13   | 0-/1     |
| Diverges DLL – Vessels < 34 III                                      | Vessels < 54 m                         | Fostom Chothom Dis-     | Winter | 0        | 55           | 0.031    | 0          | 14   | 5-54     |
| Diuenose DLL<br>Diuenose DLI                                         | vessels < 34  m<br>Vessels < 24  m     | Eastern Chatham Rise    | Autume | 0        | 2            | 0.002    | 0          | 13   | 1-3/     |
| DIUCIOSE DLL                                                         | vessels < 54 m                         | riordiand               | Autumn | 0        | 0            | 0.000    |            | 12   | 1-3/     |
Table A-8: Summary of model parameters, for Buller's albatrosses capture in New Zealand commercial trawl, bottom-, and surface-longline fisheries. For each parameter, the table gives summary statistics of the posterior distribution (mean, median, and 95% credible interval, based on the 2.5% and 97.5% quantiles), and diagnostics (the number of chains that fail convergence and half-width tests (Heidelberger & Welch 1983), and the effective length of the chains (without autocorrelation). Trace plots of the chains are also shown. Base levels of the factor covariates are: Large SLL for method, South for region, and Autumn (Apr-Jun) for season. Model strata included different different areas, seasons, years, target fisheries and areas for trawling, surface-longline (SLL), and bottom-longline (BLL) fisheries. IWL, integrated weight line.

| Parameter                            |        |        | Statistic                      |       |      | Dia              | agnostics                                                                                                        |
|--------------------------------------|--------|--------|--------------------------------|-------|------|------------------|------------------------------------------------------------------------------------------------------------------|
|                                      | Mean   | Median | 95% c.i.                       | Conv. | H.W. | Effective length | Trace                                                                                                            |
| S.d.(Year)                           |        |        |                                |       |      |                  |                                                                                                                  |
| BLL                                  | 1.063  | 1.005  | 0.183 - 2.282                  |       |      | 2895             | iont Allerian                                                                                                    |
| SLL                                  | 0.334  | 0.319  | 0.083 - 0.685                  |       |      | 3859             | and a strength                                                                                                   |
| Trawl                                | 0.408  | 0.397  | 0.201 - 0.681                  |       |      | 4002             | annaisteoriai                                                                                                    |
| S.d.(Area)                           | 1.454  | 1.406  | 0.872 - 2.310                  |       |      | 3217             | minten                                                                                                           |
| S.d.(Fishery)                        | 1.025  | 0.996  | 0.639 - 1.587                  |       |      | 3973             | athelesatur                                                                                                      |
| Overdispersion                       |        |        |                                |       |      |                  |                                                                                                                  |
| BLL                                  | 1.452  | 1.234  | 0.411 - 3.795                  |       |      | 4002             | <b>Addition</b>                                                                                                  |
| SLL                                  | 5.946  | 5.921  | 4.481 - 7.531                  |       |      | 4080             | intering and a second                                                                                            |
| Irawi                                | 8.344  | 8.316  | 6.058 - 10.817                 |       |      | 3885             | 1010061200000                                                                                                    |
| Intercept                            | 0.145  | 0.097  | 0.024 - 0.555                  |       |      | 4071             | L                                                                                                                |
| Method / Vessel class                |        |        |                                |       |      |                  |                                                                                                                  |
| BLL / vessels $\geq 34$ m            | 0.087  | 0.040  | 0.005 - 0.406                  |       |      | 3745             | a 1.                                                                                                             |
| SLL / vessels $\geq 43$ m            | 1.000  | 1.000  | 1.000 - 1.000                  | 3     |      | 4.600            |                                                                                                                  |
| $Trawl / vessels \ge 28 m$           | 0.101  | 0.078  | 0.017 - 0.326                  |       |      | 4683             | Sec.                                                                                                             |
| BLL / vessels $< 34 \text{ m}$       | 0.292  | 0.181  | 0.030 - 1.236                  |       |      | 4350             | a de la calita                                                                                                   |
| SLL / vessels $< 43 \text{ m}$       | 5./43  | 3.512  | 1./40 - 6.953                  |       |      | 4002             | distriction                                                                                                      |
| 1raw1 / vessels < 28 m               | 0.076  | 0.053  | 0.011 - 0.285                  |       |      | 4002             | يىرىلىغىلە<br>سىلىغىلە                                                                                           |
| Region                               |        |        |                                |       |      | 400.0            |                                                                                                                  |
| North                                | 0.299  | 0.124  | 0.021 - 1.481<br>1.000 - 1.000 | 3     |      | 4002             |                                                                                                                  |
| South                                | 1.000  | 1.000  | 1.000 - 1.000                  | 3     |      |                  |                                                                                                                  |
| Season                               | 1.000  | 1 000  | 1 000 1 000                    |       |      |                  |                                                                                                                  |
| Autumn (Apr-Jun)                     | 1.000  | 1.000  | 1.000 - 1.000                  | 3     |      | 2007             |                                                                                                                  |
| Spring (Oct-Dec)                     | 0.086  | 0.084  | 0.046 - 0.144                  |       |      | 389/             | elasticularias                                                                                                   |
| Winter (Jul Sen)                     | 0.155  | 0.131  | 0.094 - 0.184<br>0.222 0.460   |       |      | 3691             | Absolution (                                                                                                     |
| winter (Jui-Sep)                     | 0.554  | 0.329  | 0.232 - 0.460                  |       |      | 3740             | and the magnetic first                                                                                           |
| Fishery                              |        |        |                                |       |      | 400.0            |                                                                                                                  |
| Albacore SLL                         | 1.794  | 1.547  | 0.380 - 4.725                  |       |      | 4002             | <u>ل معالىيە.</u>                                                                                                |
| Bigeye SLL                           | 1.827  | 1.596  | 0.45/-4.645                    |       |      | 3891             | idedition                                                                                                        |
| Bluenose BLL                         | 1./05  | 1.413  | 0.30/ - 4.76/                  |       |      | 4002             | متباد وشجول                                                                                                      |
| Eletfish trawl                       | 0.096  | 0.082  | 0.021 - 0.256<br>0.002 1.506   |       |      | 4012             | DATE OF COMPANY                                                                                                  |
| Hake trawl                           | 0.400  | 0.239  | 0.003 - 1.090                  |       |      | 4113             | a de la companya de la |
| Hāpuku BLI                           | 0.424  | 0.514  | 0.008 - 2.861                  |       |      | 3888             | allel a seat                                                                                                     |
| Hoki trawl                           | 0.952  | 0.897  | 0.380 - 1.850                  |       |      | 3940             | in start with a                                                                                                  |
| Inshore trawl                        | 0.315  | 0.200  | 0.002 - 1.236                  |       |      | 3867             | di contra sa                                                                                                     |
| Ling (no IWL) BLL – vessels $> 34$ m | 1.781  | 1.491  | 0.248 - 5.059                  |       |      | 4002             | in the second                                                                                                    |
| Ling (IWL) BLL – vessels $> 34$ m    | 0.306  | 0.174  | 0.001 - 1.361                  |       |      | 4002             | والمعالكين أر                                                                                                    |
| Ling BLL – vessels $< 34 \text{ m}$  | 1.053  | 0.856  | 0.181 - 3.008                  |       |      | 4113             | بم فالسط                                                                                                         |
| Ling trawl                           | 1.458  | 1.310  | 0.434 - 3.403                  |       |      | 4002             | makelihout                                                                                                       |
| Mackerel trawl                       | 0.524  | 0.465  | 0.134 - 1.257                  |       |      | 3864             | و المراجع المراجع الم                                                                                            |
| Middle depths trawl                  | 1.990  | 1.883  | 0.817 - 3.836                  |       |      | 4047             | <b>Level of Level</b>                                                                                            |
| Minor targets BLL                    | 0.597  | 0.400  | 0.005 - 2.341                  | 1     |      | 4201             | eine Rach                                                                                                        |
| Minor surface longline               | 0.832  | 0.574  | 0.007 - 3.077                  |       |      | 4002             | واللافاتين والمتح                                                                                                |
| Southern blue whiting trawl          | 0.894  | 0.656  | 0.057 - 3.063                  | 1     |      | 4099             | فاستغلظ فاستنع                                                                                                   |
| Scampi trawi                         | 1.662  | 1.480  | 0.444 - 3.948                  |       |      | 4002             | Linguage and the second se   |
| Smapper BLL<br>Souid trawl           | 1.079  | 1.862  | 0.004 - 2.330<br>0.812 2.764   |       |      | 4002             | idiani antini                                                                                                    |
| Southern bluefin SLI                 | 0.657  | 0.566  | 0.812 - 3.704<br>0.146 - 1.688 |       |      | 4302             | NUMBER OF                                                                                                        |
| Swordfish SLL                        | 0.333  | 0.212  | 0.015 - 1.338                  |       |      | 4176             | his tool loss too                                                                                                |
| A #20                                |        |        |                                |       |      |                  |                                                                                                                  |
| Auckland Islands                     | 0.735  | 0.668  | 0.189 - 1.659                  |       |      | 3817             |                                                                                                                  |
| Cook Strait                          | 0.056  | 0.021  | 0.000 - 0.320                  |       |      | 3872             | والمراجع والمراجع                                                                                                |
| East of North Island                 | 2.735  | 2.330  | 0.237 - 7.748                  |       |      | 4002             | 11.10 min.16(1)                                                                                                  |
| Eastern Chatham Rise                 | 1.715  | 1.559  | 0.423 - 3.944                  |       |      | 3826             | ALL BRIDE                                                                                                        |
| East Subantarctic                    | 0.190  | 0.066  | 0.000 - 1.116                  |       |      | 4382             | and a state of the state of the                                                                                  |
| Fiordland                            | 2.927  | 2.666  | 0.777 - 6.636                  |       |      | 3816             | <b>derivabilitates</b>                                                                                           |
| Kermadec Islands                     | 0.294  | 0.100  | 0.000 - 1.765                  |       |      | 3868             | سالفيتعيد                                                                                                        |
| North East                           | 0.572  | 0.433  | 0.037 - 1.915                  |       |      | 4433             | the second s   |
| South Subantarctic                   | 0.108  | 0.065  | 0.003 - 0.470                  |       |      | 4002             | Landekan                                                                                                         |
| Stewart Snares Shelf                 | 1.773  | 1.614  | 0.481 - 3.870                  |       |      | 3978             | Andrews                                                                                                          |
| Western Chatham Rise                 | 0.516  | 0.465  | 0.126 - 1.212                  |       |      | 4004             | Assessed                                                                                                         |
| West Coast North Island              | 0.083  | 0.026  | 0.000 - 0.493                  |       |      | 4002             | متحدثانك                                                                                                         |
| WEST V UAST OUTHET ISTALIC           | 1 47.7 | 1 100  | $V_{1} + I = 4000$             |       |      | 1049             | Sector Sector Sector                                                                                             |



Figure A-3: Comparison between the observed and the predicted number of captures of Buller's albatrosses (represented by their mean and 95% credible interval), for each combination of region, fishery, vessel size, area, and season. The points were coloured according to the fishing method (BLL, bottom longline; SLL, surface longline).

Table A-9: List of strata, defined as combinations of region, fishery, vessel size, area, and season, for which the number of observed captures of Buller's albatrosses was outside the 95% credible interval (c.i.) of the estimated number of captures. There were eight of these strata, representing 1.3% of all 620 strata. SLL, surface longline; BLL, bottom longline. Cut-off lengths between small and large vessels were 28 m for trawl, 34 m for BLL, and 45 m for SLL.

| Method | Fishery                                 | Vessel size | Region | Area                    | Season           | Observations | Captures | Mean  | 95% c.i. |
|--------|-----------------------------------------|-------------|--------|-------------------------|------------------|--------------|----------|-------|----------|
| SLL    | Bigeye SLL                              | Small       | North  | East of North Island    | Autumn (Apr-Jun) | 96           | 0        | 15.95 | 1-52     |
| Trawl  | Hoki trawl                              | Large       | South  | Eastern Chatham Rise    | Autumn (Apr-Jun) | 864          | 1        | 8.29  | 2-19     |
| BLL    | Ling BLL – vessels $< 34$ m             | Small       | South  | West Coast South Island | Autumn (Apr-Jun) | 35           | 4        | 0.67  | 0-3      |
| Trawl  | Middle depths trawl                     | Large       | South  | Eastern Chatham Rise    | Spring (Oct-Dec) | 291          | 5        | 0.57  | 0-3      |
| Trawl  | Scampi trawl                            | Small       | South  | Eastern Chatham Rise    | Summer (Jan-Mar) | 279          | 3        | 0.45  | 0-2      |
| BLL    | Ling (no IWL) BLL − vessels ≥ 34 m      | Large       | South  | Eastern Chatham Rise    | Spring (Oct-Dec) | 460          | 3        | 0.32  | 0-2      |
| SLL    | Southern bluefin SLL                    | Large       | North  | East of North Island    | Autumn (Apr-Jun) | 9            | 2        | 0.13  | 0-1      |
| BLL    | Ling (no IWL) BLL – vessels $\geq$ 34 m | Large       | South  | Western Chatham Rise    | Winter (Jul-Sep) | 47           | 2        | 0.12  | 0-1      |

# A.4 Other albatrosses

Table A-10: Model strata with the highest number of estimated captures of other albatrosses in each of trawl, surface-longline (SLL), and bottom-longline (BLL) fisheries. Only the 15 strata with the most estimated captures are shown, sorted in decreasing order of mean estimated captures. The strata were defined as combinations of fishery, vessel size, area, and season. The number of observed captures between the fishing years 1998–99 and 2016–17 for bottom- and surface-longline fisheries, and between 2002–03 and 2016–17 for trawl fisheries are shown, along with the number of fishing events observed, the proportion of fishing events observed (observer coverage), the associated ratio estimate of the total number of captures, and the mean and 95% credible interval of the total estimated number of captures. IWL: Integrated weight line.

| Fishery                                              | Vessel size                 | Area                    | Season | Observations |        |          | Observations | Estimated captures |          |  |
|------------------------------------------------------|-----------------------------|-------------------------|--------|--------------|--------|----------|--------------|--------------------|----------|--|
|                                                      |                             |                         |        | Captures     | Events | Coverage | Ratio est.   | Mean               | 95% c.i. |  |
| Trawl                                                |                             |                         |        |              |        |          |              |                    |          |  |
| Inshore trawl                                        | Vessels $< 28$ m            | East of North Island    | Spring | 0            | 193    | 0.006    | 0            | 33                 | 6-85     |  |
| Flatfish trawl                                       | Vessels $< 28$ m            | Stewart Snares Shelf    | Spring | 0            | 7      | 0.000    | 0            | 20                 | 1-70     |  |
| Hoki trawl                                           | Vessels $\ge 28 \text{ m}$  | Eastern Chatham Rise    | Spring | 2            | 2456   | 0.236    | 8            | 18                 | 7–34     |  |
| Hoki trawl                                           | Vessels $\ge 28 \text{ m}$  | West Coast South Island | Winter | 8            | 14364  | 0.332    | 24           | 18                 | 7–34     |  |
| Squid trawl                                          | Vessels $\ge 28 \text{ m}$  | Stewart Snares Shelf    | Summer | 7            | 10155  | 0.377    | 18           | 17                 | 6-32     |  |
| Inshore trawl                                        | Vessels $< 28$ m            | East of North Island    | Winter | 0            | 187    | 0.007    | 0            | 15                 | 2-41     |  |
| Deepwater trawl                                      | Vessels $\ge 28 \text{ m}$  | Eastern Chatham Rise    | Spring | 6            | 2781   | 0.271    | 22           | 13                 | 4-26     |  |
| Inshore trawl                                        | Vessels $< 28$ m            | North East              | Spring | 0            | 1119   | 0.036    | 0            | 13                 | 2-35     |  |
| Flatfish trawl                                       | Vessels $< 28$ m            | Western Chatham Rise    | Spring | 0            | 54     | 0.003    | 0            | 12                 | 0-42     |  |
| Hoki trawl                                           | Vessels $\ge 28 \text{ m}$  | Western Chatham Rise    | Spring | 2            | 2444   | 0.187    | 10           | 12                 | 3-24     |  |
| Inshore trawl                                        | Vessels $< 28 \text{ m}$    | East of North Island    | Autumn | 0            | 170    | 0.007    | 0            | 11                 | 1-31     |  |
| Inshore trawl                                        | Vessels $< 28 \text{ m}$    | Western Chatham Rise    | Spring | 0            | 155    | 0.008    | 0            | 11                 | 1-31     |  |
| Southern blue whiting trawl                          | Vessels $\geq 28 \text{ m}$ | South Subantarctic      | Winter | 7            | 5503   | 0.570    | 12           | 11                 | 3-22     |  |
| Scampi trawl                                         | Vessels $< 28 \text{ m}$    | Eastern Chatham Rise    | Spring | 2            | 541    | 0.092    | 21           | 10                 | 2-25     |  |
| Inshore trawl                                        | Vessels < 28 m              | East of North Island    | Summer | 0            | 265    | 0.010    | 0            | 9                  | 1–25     |  |
| Surface longline                                     |                             |                         |        |              |        |          |              |                    |          |  |
| Southern bluefin SLL                                 | Vessels $< 43 \text{ m}$    | East of North Island    | Autumn | 15           | 372    | 0.045    | 334          | 484                | 264-832  |  |
| Bigeye SLL                                           | Vessels $< 43 \text{ m}$    | North East              | Spring | 23           | 233    | 0.034    | 684          | 441                | 231-756  |  |
| Bigeye SLL                                           | Vessels $< 43 \text{ m}$    | East of North Island    | Autumn | 0            | 96     | 0.021    | 0            | 331                | 134-663  |  |
| Bigeye SLL                                           | Vessels $< 43 \text{ m}$    | East of North Island    | Summer | 6            | 161    | 0.026    | 228          | 319                | 136-651  |  |
| Bigeye SLL                                           | Vessels $< 43 \text{ m}$    | North East              | Winter | 2            | 102    | 0.013    | 148          | 252                | 118-471  |  |
| Albacore SLL                                         | Vessels $< 43$ m            | East of North Island    | Autumn | 0            | 23     | 0.015    | 0            | 218                | 64-533   |  |
| Bigeye SLL                                           | Vessels $< 43$ m            | East of North Island    | Spring | 1            | 13     | 0.015    | 67           | 142                | 53-297   |  |
| Bigeye SLL                                           | Vessels $< 43$ m            | North East              | Autumn | 1            | 56     | 0.012    | 83           | 138                | 62-259   |  |
| Southern bluefin SLL                                 | Vessels $< 43 \text{ m}$    | East of North Island    | Winter | 14           | 212    | 0.116    | 120          | 121                | 59-221   |  |
| Bigeye SLL                                           | Vessels $< 43 \text{ m}$    | North East              | Summer | 3            | 160    | 0.029    | 103          | 114                | 52-217   |  |
| Southern bluefin SLL                                 | Vessels $< 43 \text{ m}$    | North East              | winter | 12           | 400    | 0.109    | 55           | 101                | 46-189   |  |
| Albasses CLL                                         | Vessels $< 43 \text{ m}$    | Fast of Nexth Jaland    | Autumn | 12           | 320    | 0.118    | 101          | 80                 | 30-148   |  |
| Albacore SLL<br>Swordfish SLL                        | Vessels $< 43 \text{ m}$    | East of North Island    | Summer | 0            | 12     | 0.011    | 0            | 62                 | 14-169   |  |
| Swordfish SLL                                        | Vessels $< 43$ m            | West Coast South Island | Summor | 0            | 12     | 0.033    | 22           | 45                 | 12-174   |  |
| Swordinsh SEL                                        | vessels < 45 m              | west Coast South Island | Summer | 1            | 20     | 0.044    | 22           | 43                 | 10-123   |  |
| Bottom longline                                      | Vaccala < 24 m              | East of North Island    | Sarias | 0            | 0      | 0.000    |              | 152                | 24 517   |  |
| Ling PLL voccols $< 24 \text{ m}$                    | Vessels $< 34 \text{ m}$    | East of North Island    | Spring | 0            | 26     | 0.000    | 0            | 132                | 24-31/   |  |
| Ling $\text{BLL} = \text{vessels} \leq 34 \text{ m}$ | Vessels $< 34 \text{ m}$    | East of North Island    | Winter | 2            | 02     | 0.011    | 120          | 112                | 21 274   |  |
| Snapper BLI                                          | Vessels < 34 m              | North Fast              | Spring | 0            | 535    | 0.013    | 150          | 07                 | 3_346    |  |
| Ling BLL $-$ vessels $< 34$ m                        | Vessels < 34 m              | Eastern Chatham Rise    | Spring | 3            | 132    | 0.015    | 52           | 85                 | 23_215   |  |
| Ling BLL – vessels $< 34$ m                          | Vessels < 34 m              | Eastern Chatham Rise    | Winter | 13           | 174    | 0.047    | 277          | 70                 | 21-164   |  |
| Bluenose BLI                                         | Vessels < 34 m              | North Fast              | Spring | 15           | 27     | 0.005    | 2//          | 61                 | 10-193   |  |
| Ling BLL $-$ vessels $< 34$ m                        | Vessels < 34 m              | Western Chatham Rise    | Spring | 0            | 66     | 0.005    | 0            | 50                 | 13-164   |  |
| L ing (no IWI) BI I = vessels > 34 m                 | Vessels $> 34$ m            | Fastern Chatham Rise    | Spring | 4            | 460    | 0.135    | 29           | 53                 | 14-133   |  |
| Ling (no IWL) BLL – vessels $\geq 34$ m              | Vessels $> 34 \text{ m}$    | Eastern Chatham Rise    | Winter | 8            | 1018   | 0 142    | 56           | 52                 | 16-123   |  |
| Ling BLL – vessels $< 34$ m                          | Vessels $< 34 \text{ m}$    | West Coast South Island | Spring | 0            | .0.3   | 0.001    | 0            | 50                 | 11-144   |  |
| Bluenose BLL                                         | Vessels $< 34 \text{ m}$    | East of North Island    | Winter | Ő            | 14     | 0.005    | 0            | 46                 | 7-145    |  |
| Hāpuku BLL                                           | Vessels $< 34 \text{ m}$    | Eastern Chatham Rise    | Spring | ő            | 24     | 0.015    | Ő            | 43                 | 3-164    |  |
| Ling BLL – vessels $< 34$ m                          | Vessels $< 34 \text{ m}$    | Cook Strait             | Spring | ő            | 0      | 0.000    | 0            | 40                 | 5-138    |  |
| Snapper BLL                                          | Vessels $< 34$ m            | North East              | Winter | 0            | 0      | 0.000    |              | 40                 | 1-144    |  |

Table A-11: Summary of model parameters, for other albatrosses capture in New Zealand commercial trawl, bottom-, and surface-longline fisheries. For each parameter, the table gives summary statistics of the posterior distribution (mean, median, and 95% credible interval, based on the 2.5% and 97.5% quantiles), and diagnostics (the number of chains that fail convergence and half-width tests (Heidelberger & Welch 1983), and the effective length of the chains (without autocorrelation). Trace plots of the chains are also shown. Base levels of the factor covariates are: Small SLL for method, North for region, and Spring (Oct-Dec) for season. Model strata included different different areas, seasons, years, target fisheries and areas for trawling, surface-longline (SLL), and bottom-longline (BLL) fisheries. IWL, integrated weight line.

| Parameter                            |        |        | Statistic                      |       |      | Dia              | gnostics                                                                                                        |
|--------------------------------------|--------|--------|--------------------------------|-------|------|------------------|-----------------------------------------------------------------------------------------------------------------|
|                                      | Mean   | Median | 95% c.i.                       | Conv. | H.W. | Effective length | Trace                                                                                                           |
| S.d.(Year)                           |        |        |                                |       |      |                  |                                                                                                                 |
| BLL                                  | 1.368  | 1.344  | 0.545 - 2.304                  |       |      | 4002             | <b>Billion</b>                                                                                                  |
| SLL                                  | 0.417  | 0.381  | 0.090 - 0.962                  |       |      | 3823             | the solution to be                                                                                              |
| Trawl                                | 0.314  | 0.296  | 0.080 - 0.662                  |       |      | 4002             | educetesta                                                                                                      |
| S.d.(Area)                           | 0.743  | 0.722  | 0.446 - 1.191                  |       |      | 4127             | shoitsiana                                                                                                      |
| S.d.(Fishery)                        | 0.714  | 0.697  | 0.345 - 1.178                  |       |      | 4002             | strandaðaldala                                                                                                  |
| Overdispersion                       |        |        |                                |       |      |                  |                                                                                                                 |
| BLL                                  | 12.457 | 12.208 | 8.035 - 17.994                 |       |      | 3393             | <b>HEARDAND AND AND AND AND AND AND AND AND AND</b>                                                             |
| SLL                                  | 5.989  | 5.946  | 4.700 - 7.466                  |       |      | 4002             | englingsiste                                                                                                    |
| Trawl                                | 1.161  | 1.024  | 0.389 - 2.858                  |       |      | 4127             | متسقيقها:                                                                                                       |
| Intercept                            | 0.185  | 0.149  | 0.049 - 0.529                  |       |      | 4112             | وللاستعاليك                                                                                                     |
| Method / Vessel class                |        |        |                                |       |      |                  |                                                                                                                 |
| BLL / vessels $\ge 34$ m             | 0.136  | 0.052  | 0.010 - 0.421                  |       |      | 4002             |                                                                                                                 |
| SLL / vessels $\geq$ 43 m            | 0.842  | 0.791  | 0.382 - 1.624                  |       |      | 4263             | shidowald                                                                                                       |
| Trawl / vessels $\geq 28$ m          | 0.008  | 0.007  | 0.002 - 0.023                  |       |      | 3822             |                                                                                                                 |
| BLL / vessels $< 34$ m               | 0.108  | 0.083  | 0.021 - 0.342                  | _     |      | 3556             | <u>مەممىلىد</u>                                                                                                 |
| SLL / vessels $< 43 \text{ m}$       | 1.000  | 1.000  | 1.000 - 1.000                  | 3     |      |                  |                                                                                                                 |
| Trawl / vessels $< 28 \text{ m}$     | 0.007  | 0.005  | 0.001 - 0.021                  |       |      | 4002             | متغيليتيه                                                                                                       |
| Region                               |        |        |                                |       |      |                  |                                                                                                                 |
| North                                | 1.000  | 1.000  | 1.000 - 1.000                  | 3     |      |                  |                                                                                                                 |
| South                                | 1.275  | 1.083  | 0.341 - 3.322                  |       |      | 4115             | <u>مىلىدىلىد</u>                                                                                                |
| Season                               |        |        |                                |       |      |                  |                                                                                                                 |
| Autumn (Apr-Jun)                     | 0.469  | 0.453  | 0.265 - 0.749                  |       |      | 4002             | shadaaaa                                                                                                        |
| Spring (Oct-Dec)                     | 1.000  | 1.000  | 1.000 - 1.000                  | 3     |      | 1000             |                                                                                                                 |
| Summer (Jan-Mar)                     | 0.333  | 0.319  | 0.182 - 0.557                  |       |      | 4002             | miliphol                                                                                                        |
| Winter (Jul-Sep)                     | 0.532  | 0.515  | 0.310 - 0.860                  |       |      | 4002             | Association                                                                                                     |
| Fishery                              |        |        |                                |       |      |                  |                                                                                                                 |
| Albacore SLL                         | 1.165  | 1.056  | 0.344 - 2.613                  |       |      | 4140             | ففسيد وأحرقه                                                                                                    |
| Bigeye SLL                           | 0.649  | 0.602  | 0.194 - 1.370                  |       |      | 4002             | Station Street                                                                                                  |
| Bluenose BLL                         | 1.246  | 1.107  | 0.308 - 2.938                  |       |      | 4155             | <u>سادها عادم</u>                                                                                               |
| Deepwater trawl                      | 0.728  | 0.684  | 0.279 - 1.422                  |       |      | 4139             | territori                                                                                                       |
| Flatfish trawi                       | 0.771  | 0.680  | 0.051 - 2.159                  |       |      | 4215             | <u>aliteratik</u>                                                                                               |
| Hake trawi                           | 1.052  | 0.741  | 0.205 - 1.797<br>0.156 - 2.767 |       |      | 4151             | ALANGHISH                                                                                                       |
| Hapuku BEE<br>Hoki trawl             | 1.052  | 0.915  | 0.150 - 2.707<br>0.454 - 1.853 |       |      | 3017             | And an and a                                                                                                    |
| Inshore trawl                        | 0.784  | 0.930  | 0.454 - 1.855<br>0.153 - 1.916 |       |      | 4140             | addition of the                                                                                                 |
| Ling (no IWL) BLL – vessels $> 34$ m | 1 021  | 0.904  | 0.135 - 2.541                  |       |      | 4002             | and a state of the                                                                                              |
| Ling (IWL) BLL – vessels $\geq 34$ m | 0 736  | 0.648  | 0.103 - 1.907                  |       |      | 4230             | etercilitatio                                                                                                   |
| Ling BLL – vessels $< 34$ m          | 1.655  | 1.486  | 0.506 - 3.870                  |       |      | 4002             |                                                                                                                 |
| Ling trawl                           | 1.005  | 0.917  | 0.254 - 2.276                  |       |      | 3937             | فالعقب والمعالي                                                                                                 |
| Mackerel trawl                       | 0.430  | 0.351  | 0.017 - 1.241                  |       |      | 4323             | بالاستناسات                                                                                                     |
| Middle depths trawl                  | 0.938  | 0.883  | 0.353 - 1.837                  |       |      | 4002             | duality.                                                                                                        |
| Minor targets BLL                    | 0.885  | 0.774  | 0.124 - 2.332                  |       |      | 4158             | فيعاصلونه                                                                                                       |
| Minor surface longline               | 0.711  | 0.594  | 0.029 - 2.110                  |       |      | 4002             | undi mése                                                                                                       |
| Southern blue whiting trawl          | 1.653  | 1.506  | 0.622 - 3.563                  |       |      | 3983             | and the second                                                                                                  |
| Scampi trawl                         | 1.151  | 1.050  | 0.344 - 2.456                  |       |      | 4002             | and the second second                                                                                           |
| Snapper BLL                          | 0.288  | 0.203  | 0.006 - 0.998                  |       |      | 4013             | والمستحصلة                                                                                                      |
| Squid trawl                          | 1.600  | 1.501  | 0.686 - 3.086                  |       |      | 4182             | us due lo tale                                                                                                  |
| Southern bluenn SLL<br>Swordfish SLI | 2 301  | 2 003  | 0.168 - 1.130<br>0.908 - 5.087 |       |      | 3030             | tat Barlowing                                                                                                   |
| Swordhish SEE                        | 2.501  | 2.075  | 0.708 - 5.087                  |       |      | 41//             | and and the second s |
| Area                                 | 1 204  | 1 127  | 0.504 2.205                    |       |      | 1005             |                                                                                                                 |
| Auckland Islands                     | 1.204  | 1.12/  | 0.504 - 2.305<br>0.270 - 2.280 |       |      | 4205             | desidents                                                                                                       |
| East of North Island                 | 1.010  | 1 733  | 0.270 - 2.269<br>0.666 - 3.775 |       |      | 5119<br>ADA7     | totaubootka                                                                                                     |
| Fastern Chatham Rise                 | 1 742  | 1.755  | 0.860 - 3.112                  |       |      | 4002             | Automatic                                                                                                       |
| East Subantarctic                    | 0 526  | 0 453  | 0.069 - 1.454                  |       |      | 3880             | Reserve and a                                                                                                   |
| Fiordland                            | 0.320  | 0.725  | 0.000 = 0.404<br>0.080 = 0.541 |       |      | 4002             | and a second second                                                                                             |
| Kermadec Islands                     | 1,189  | 1 070  | 0.335 - 2.749                  |       |      | 3622             | h-distantion                                                                                                    |
| North East                           | 0.765  | 0 711  | 0.253 - 1.599                  |       |      | 4112             | ماد مدينة المراجع                                                                                               |
| South Subantarctic                   | 1 317  | 1 228  | 0.532 - 2.525                  |       |      | 4002             |                                                                                                                 |
| Stewart Snares Shelf                 | 1.218  | 1.153  | 0.569 - 2.202                  |       |      | 3825             | Magled and State                                                                                                |
| Western Chatham Rise                 | 0.883  | 0.828  | 0.348 - 1.730                  |       |      | 4002             | المعمدين                                                                                                        |
| West Coast North Island              | 0.224  | 0.188  | 0.040 - 0.599                  |       |      | 4358             | America                                                                                                         |
| West Coast South Island              | 0.823  | 0 776  | 0.345 - 1.526                  |       |      | 4745             | at the stand                                                                                                    |



Figure A-4: Comparison between the observed and the predicted number of captures of other albatrosses (represented by their mean and 95% credible interval), for each combination of region, fishery, vessel size, area, and season. The points were coloured according to the fishing method (BLL, bottom longline; SLL, surface longline).

Table A-12: List of strata, defined as combinations of region, fishery, vessel size, area, and season, for which the number of observed captures of other albatrosses was outside the 95% credible interval (c.i.) of the estimated number of captures. There were eight of these strata, representing 1.3% of all 620 strata. SLL, surface longline; BLL, bottom longline. Cut-off lengths between small and large vessels were 28 m for trawl, 34 m for BLL, and 45 m for SLL.

| Method | Fishery                            | Vessel size | Region | Area                    | Season           | Observations | Captures | Mean | 95% c.i. |
|--------|------------------------------------|-------------|--------|-------------------------|------------------|--------------|----------|------|----------|
| SLL    | Swordfish SLL                      | Small       | North  | Kermadec Islands        | Spring (Oct-Dec) | 22           | 56       | 7.78 | 0-40     |
| SLL    | Southern bluefin SLL               | Large       | North  | East of North Island    | Autumn (Apr-Jun) | 9            | 8        | 0.50 | 0-4      |
| SLL    | Bigeye SLL                         | Small       | North  | West Coast North Island | Spring (Oct-Dec) | 23           | 4        | 0.41 | 0-3      |
| BLL    | Bluenose BLL                       | Small       | North  | North East              | Autumn (Apr-Jun) | 46           | 3        | 0.23 | 0-2      |
| Trawl  | Scampi trawl                       | Small       | North  | North East              | Autumn (Apr-Jun) | 379          | 2        | 0.11 | 0-1      |
| SLL    | Southern bluefin SLL               | Small       | South  | Fiordland               | Autumn (Apr-Jun) | 12           | 3        | 0.10 | 0-1      |
| BLL    | Ling (no IWL) BLL − vessels ≥ 34 m | Large       | South  | Auckland Islands        | Autumn (Apr-Jun) | 20           | 2        | 0.08 | 0-1      |
| Trawl  | Hoki trawl                         | Large       | South  | South Subantarctic      | Summer (Jan-Mar) | 57           | 1        | 0.02 | 0–0      |

# A.5 White-chinned petrel

Table A-13: Model strata with the highest number of estimated captures of white-chinned petrel in each of trawl, surface-longline (SLL), and bottom-longline (BLL) fisheries. Only the 15 strata with the most estimated captures are shown, sorted in decreasing order of mean estimated captures. The strata were defined as combinations of fishery, vessel size, area, and season. The number of observed captures between the fishing years 1998–99 and 2016–17 for bottom- and surface-longline fisheries, and between 2002–03 and 2016–17 for trawl fisheries are shown, along with the number of fishing events observed, the proportion of fishing events observed (observer coverage), the associated ratio estimate of the total number of captures, and the mean and 95% credible interval of the total estimated number of captures. IWL: Integrated weight line.

| Fishery                                                                                                                                                | Vessel size                 | Area                    | Season | Observations |        |          | Observations | s Estimated captures |          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|--------|--------------|--------|----------|--------------|----------------------|----------|--|
|                                                                                                                                                        |                             |                         |        | Captures     | Events | Coverage | Ratio est.   | Mean                 | 95% c.i. |  |
| Trawl                                                                                                                                                  |                             |                         |        |              |        |          |              |                      |          |  |
| Squid trawl                                                                                                                                            | Vessels $\geq 28 \text{ m}$ | Stewart Snares Shelf    | Summer | 516          | 10155  | 0.377    | 1370         | 1210                 | 880-1626 |  |
| Squid trawl                                                                                                                                            | Vessels $\geq 28 \text{ m}$ | Auckland Islands        | Summer | 460          | 7259   | 0.488    | 941          | 877                  | 595-1229 |  |
| Squid trawl                                                                                                                                            | Vessels $\geq 28 \text{ m}$ | Auckland Islands        | Autumn | 96           | 2969   | 0.379    | 253          | 214                  | 128-327  |  |
| Squid trawl                                                                                                                                            | Vessels $\geq 28 \text{ m}$ | Stewart Snares Shelf    | Autumn | 153          | 2918   | 0.324    | 472          | 181                  | 111-275  |  |
| Ling trawl                                                                                                                                             | Vessels $\ge 28 \text{ m}$  | Stewart Snares Shelf    | Spring | 12           | 918    | 0.189    | 63           | 105                  | 38-234   |  |
| Middle depths trawl                                                                                                                                    | Vessels $\geq 28 \text{ m}$ | Stewart Snares Shelf    | Spring | 29           | 1698   | 0.304    | 95           | 96                   | 48-166   |  |
| Scampi trawl                                                                                                                                           | Vessels $\geq 28 \text{ m}$ | Auckland Islands        | Spring | 1            | 412    | 0.174    | 5            | 92                   | 25-231   |  |
| Hoki trawl                                                                                                                                             | Vessels $\ge 28 \text{ m}$  | Eastern Chatham Rise    | Summer | 5            | 1663   | 0.137    | 36           | 87                   | 47-146   |  |
| Middle depths trawl                                                                                                                                    | Vessels $\ge 28 \text{ m}$  | Stewart Snares Shelf    | Summer | 78           | 1725   | 0.587    | 132          | 76                   | 37-136   |  |
| Hoki trawl                                                                                                                                             | Vessels $\geq 28 \text{ m}$ | Western Chatham Rise    | Summer | 10           | 1890   | 0.138    | 72           | 75                   | 41-126   |  |
| Hoki trawl                                                                                                                                             | Vessels $\ge 28 \text{ m}$  | Stewart Snares Shelf    | Spring | 5            | 1529   | 0.239    | 20           | 62                   | 30-111   |  |
| Hoki trawl                                                                                                                                             | Vessels $\ge 28 \text{ m}$  | Eastern Chatham Rise    | Spring | 24           | 2456   | 0.236    | 101          | 59                   | 30–99    |  |
| Hoki trawl                                                                                                                                             | Vessels $\ge 28 \text{ m}$  | Western Chatham Rise    | Spring | 16           | 2444   | 0.187    | 85           | 51                   | 27-87    |  |
| Squid trawl                                                                                                                                            | Vessels $\ge 28 \text{ m}$  | Stewart Snares Shelf    | Spring | 0            | 139    | 0.096    | 0            | 49                   | 17-107   |  |
| Hoki trawl                                                                                                                                             | Vessels $\geq 28 \text{ m}$ | Stewart Snares Shelf    | Autumn | 9            | 1782   | 0.250    | 36           | 46                   | 23-80    |  |
| Surface longline                                                                                                                                       |                             |                         | _      | _            |        |          |              |                      |          |  |
| Bigeye SLL                                                                                                                                             | Vessels $< 43 \text{ m}$    | East of North Island    | Summer | 3            | 161    | 0.026    | 114          | 156                  | 38-440   |  |
| Swordfish SLL                                                                                                                                          | Vessels $< 43 \text{ m}$    | West Coast South Island | Summer | 3            | 20     | 0.044    | 67           | 93                   | 9-404    |  |
| Albacore SLL                                                                                                                                           | Vessels $< 43 \text{ m}$    | Eastern Chatham Rise    | Summer | 0            | 0      | 0.000    |              | 92                   | 0-669    |  |
| Bigeye SLL                                                                                                                                             | Vessels $< 43 \text{ m}$    | North East              | Summer | 0            | 160    | 0.029    | 0            | 80                   | 17-231   |  |
| Bigeye SLL                                                                                                                                             | Vessels $< 43 \text{ m}$    | North East              | Spring | 1            | 233    | 0.034    | 29           | 79                   | 17-226   |  |
| Albacore SLL                                                                                                                                           | Vessels $< 43 \text{ m}$    | East of North Island    | Autumn | 0            | 23     | 0.015    | 0            | 60                   | 4-255    |  |
| Albacore SLL                                                                                                                                           | Vessels $< 43 \text{ m}$    | East of North Island    | Summer | 0            | 7      | 0.011    | 0            | 55                   | 4-242    |  |
| Bigeye SLL                                                                                                                                             | Vessels $< 43 \text{ m}$    | East of North Island    | Autumn | 0            | 96     | 0.021    | 0            | 50                   | 10-144   |  |
| Albacore SLL                                                                                                                                           | Vessels $< 43$ m            | Western Chatham Rise    | Summer | 0            | 0      | 0.000    |              | 40                   | 0-277    |  |
| Southern bluefin SLL                                                                                                                                   | Vessels $\geq 43 \text{ m}$ | Fiordland               | Autumn | 21           | 3057   | 0.900    | 23           | 35                   | 16-65    |  |
| Bigeye SLL                                                                                                                                             | Vessels $< 43$ m            | West Coast North Island | Summer | 0            | 60     | 0.023    | 0            | 33                   | 5-103    |  |
| Bigeye SLL                                                                                                                                             | Vessels $< 43 \text{ m}$    | North East              | Autumn | 1            | 56     | 0.012    | 83           | 30                   | 5-88     |  |
| Bigeye SLL                                                                                                                                             | Vessels $< 43 \text{ m}$    | Eastern Chatham Rise    | Summer | 0            | 1      | 0.067    | 0            | 25                   | 0-161    |  |
| Swordfish SLL                                                                                                                                          | Vessels $< 43 \text{ m}$    | West Coast South Island | Autumn | 2            | 37     | 0.136    | 14           | 25                   | 1-107    |  |
| Albacore SLL                                                                                                                                           | Vessels $< 43 \text{ m}$    | Cook Strait             | Summer | 0            | 0      | 0.000    |              | 23                   | 0-153    |  |
| Bottom longline                                                                                                                                        | W 1 > 24                    |                         | a :    | 142          | 026    | 0.400    | 200          | 0.64                 | 251 2155 |  |
| Ling (no IWL) BLL – vessels $\geq 34$ m                                                                                                                | Vessels $\geq 34 \text{ m}$ | Stewart Snares Shelf    | Spring | 143          | 936    | 0.480    | 298          | 964                  | 351-2155 |  |
| Ling (no IWL) BLL – vessels $\geq 34$ m                                                                                                                | Vessels $\ge 34 \text{ m}$  | Eastern Chatham Rise    | Spring | 300          | 400    | 0.135    | 2/10         | 840                  | 305-1/04 |  |
| Ling BLL – vessels $< 34 \text{ m}$                                                                                                                    | Vessels $< 34 \text{ m}$    | Eastern Chatham Rise    | Spring | 24           | 152    | 0.058    | 41/          | 819                  | 219-2208 |  |
| Ling BLL – vessels $< 34$ m                                                                                                                            | Vessels < 34 m              | Fastern Chatham Rise    | Spring | 3            | 00     | 0.022    | 139          | 600                  | 219-2337 |  |
| Ling BLL – vessels $< 34 \text{ m}$                                                                                                                    | Vessels $< 34 \text{ m}$    | Eastern Chatham Rise    | Summer | 0            | 205    | 0.005    | 2(0          | 652                  | 101-1804 |  |
| Ling (no IWL) BLL – vessels $\geq 34$ m                                                                                                                | Vessels $\geq 34 \text{ m}$ | Eastern Chatham Rise    | Summer | 40           | 285    | 0.149    | 269          | 627                  | 19/-1558 |  |
| Bluenose BLL $L_{inc}$ (i.e. $WL$ ) DLL $\dots \dots $ | Vessels $< 34 \text{ m}$    | Eastern Chatham Rise    | Summer | 0            | 52     | 0.018    | 224          | 510                  | 23-2400  |  |
| Ling (no IWL) BLL – vessels $\geq 34$ m                                                                                                                | Vessels $\geq 34 \text{ m}$ | East Subantarctic       | Summer | 82           | 522    | 0.300    | 224          | 4/8                  | 129-1329 |  |
| Ling (no IWL) BLL – vessels $\geq 34$ m                                                                                                                | Vessels $\ge 34 \text{ m}$  | Western Chatham Rise    | Spring | 5            | 38     | 0.024    | 207          | 209                  | 141-976  |  |
| napuku BLL                                                                                                                                             | vessels $< 34 \text{ m}$    | Eastern Chatham Kise    | Summer | 0            | 0      | 0.000    | 0            | 398                  | 0-2604   |  |
| Ling BLL – Vessels $< 34 \text{ m}$                                                                                                                    | vessels $< 34 \text{ m}$    | Fastern Chatham Rise    | Summer | 0            | 157    | 0.002    | 0            | 270                  | 81-1133  |  |
| Ling (no IWL) BLL – vessels $\geq 34$ m                                                                                                                | vessels $\geq 34 \text{ m}$ | Eastern Unatham Kise    | Autumn | 50           | 15/    | 0.005    | 456          | 3/0                  | 138-86/  |  |
| Ling (no IWL) BLL – vessels $\geq 34$ m                                                                                                                | vessels $\geq 34 \text{ m}$ | South Subantarctic      | Summer | 13           | 12     | 0.007    | 1/85         | 222                  | /9-962   |  |
| Ling (no IWL) BLL – vessels $\geq 34$ m                                                                                                                | vessels $\geq 34 \text{ m}$ | western Chatham Rise    | Summer | 6            | 65     | 0.044    | 156          | 333                  | 96-875   |  |
| $Ling$ (no IWL) $BLL - vessels \ge 34 \text{ m}$                                                                                                       | vesseis ≥ 54 m              | East Subantarctic       | Spring | 08           | 557    | 0.424    | 160          | 320                  | 84-880   |  |

Table A-14: Summary of model parameters, for white-chinned petrel capture in New Zealand commercial trawl, bottom-, and surface-longline fisheries. For each parameter, the table gives summary statistics of the posterior distribution (mean, median, and 95% credible interval, based on the 2.5% and 97.5% quantiles), and diagnostics (the number of chains that fail convergence and half-width tests (Heidelberger & Welch 1983), and the effective length of the chains (without autocorrelation). Trace plots of the chains are also shown. Base levels of the factor covariates are: Large trawl for method, South for region, and Summer (Jan-Mar) for season. Model strata included different different areas, seasons, years, target fisheries and areas for trawling, surface-longline (SLL), and bottom-longline (BLL) fisheries. IWL, integrated weight line.

| Parameter                               |         |        | Statistic                      | tistic Diag |      |                  | ignostics                          |
|-----------------------------------------|---------|--------|--------------------------------|-------------|------|------------------|------------------------------------|
|                                         | Mean    | Median | 95% c.i.                       | Conv.       | H.W. | Effective length | Trace                              |
| S.d.(Year)                              |         |        |                                |             |      |                  |                                    |
| BLL                                     | 0.829   | 0.824  | 0.335 - 1.331                  |             |      | 4287             | Nationalism                        |
| SLL                                     | 0.529   | 0.483  | 0.115 - 1.197                  |             |      | 3578             | together where                     |
| Trawl                                   | 0.644   | 0.628  | 0.429 - 0.951                  |             |      | 3857             | <b>Devidentifina</b>               |
| S.d.(Area)                              | 0.807   | 0.780  | 0.490 - 1.265                  |             |      | 4002             | enlastion                          |
| S.d.(Fishery)                           | 1.230   | 1.208  | 0.848 - 1.748                  | 1           |      | 4154             | a liberative                       |
| Overdispersion                          |         |        |                                |             |      |                  |                                    |
| BLL                                     | 11.668  | 11.602 | 9.487 - 14.384                 |             |      | 3565             | Mademiniae                         |
| SLL                                     | 7.951   | 7.772  | 4.285 - 12.679                 |             |      | 3873             | <b>Nakadagina</b>                  |
| Trawl                                   | 12.213  | 12.185 | 10.568 - 14.088                |             |      | 4002             | beter staden av de                 |
| Intercept                               | 0.017   | 0.014  | 0.005 - 0.048                  |             |      | 3856             | Burchese                           |
| Method / Vessel class                   |         |        |                                |             |      |                  |                                    |
| BLL / vessels $\geq$ 34 m               | 15.540  | 9.671  | 1.827 - 64.184                 |             |      | 4002             |                                    |
| SLL / vessels $\geq 43$ m               | 115.389 | 53.272 | 6.487 - 597.984                | _           |      | 4002             | a al ma                            |
| Trawl / vessels $\geq 28$ m             | 1.000   | 1.000  | 1.000 - 1.000                  | 3           |      | 1000             |                                    |
| BLL / vessels $< 34 \text{ m}$          | 35.278  | 20.985 | 3.795 - 150.800                |             |      | 4002             | مىمەكمالد<br>ا                     |
| SLL / vessels $< 43 \text{ m}$          | 230.741 | 0.158  | 14.110 - 11/3.331              |             |      | 3040             | المراجع والم                       |
| mawi / vessels < 28 m                   | 0.178   | 0.138  | 0.055 - 0.427                  |             |      | 4002             | Lo, and Alexandrian                |
| Region                                  | 0.024   | 0.016  | 0.000 0.000                    |             |      | 1002             |                                    |
| North                                   | 0.024   | 0.016  | 0.003 - 0.089<br>1.000 - 1.000 | 3           |      | 4002             |                                    |
| South                                   | 1.000   | 1.000  | 1.000 - 1.000                  | 5           |      |                  |                                    |
| Season                                  | 0.441   | 0.426  | 0.227 0.59(                    |             |      | 4002             |                                    |
| Autumn (Apr-Jun)                        | 0.441   | 0.436  | 0.327 - 0.586                  |             |      | 4002             | Approximation                      |
| Summer (Ion Mar)                        | 0.806   | 0.793  | 0.544 - 1.145<br>1.000 1.000   | 2           |      | 5220             | nationalise                        |
| Winter (Jul-Sep)                        | 0.013   | 0.012  | 0.004 - 0.028                  | 5           |      | 4002             | Windows                            |
|                                         |         |        |                                |             |      |                  |                                    |
| Fishery                                 | 2 570   | 2.126  | 0.270 7.210                    |             |      | 29/0             |                                    |
| Albacore SLL<br>Digovo SLI              | 2.579   | 2.130  | 0.3/8 - 7.319<br>0.116 - 2.257 |             |      | 3808             | Print Sector                       |
| Bluenose BLI                            | 0.861   | 0.587  | 0.110 - 3.337<br>0.040 - 3.298 |             |      | 3950             | at a sector                        |
| Deepwater trawl                         | 0.033   | 0.027  | 0.040 - 0.097                  |             |      | 4002             | and the last of                    |
| Flatfish trawl                          | 0.254   | 0.120  | 0.000 - 1.252                  |             |      | 4598             | يت يتحادينه                        |
| Hake trawl                              | 0.214   | 0.178  | 0.043 - 0.586                  |             |      | 4002             | Advest new                         |
| Hāpuku BLL                              | 0.503   | 0.215  | 0.000 - 2.585                  |             |      | 3634             | ومراجع والمراجع                    |
| Hoki trawl                              | 0.601   | 0.561  | 0.194 - 1.228                  |             |      | 3576             | distributioner                     |
| Inshore trawl                           | 0.686   | 0.500  | 0.043 - 2.429                  |             |      | 4002             | والكسيم والط                       |
| Ling (no IWL) BLL – vessels $\geq 34$ m | 2.7/1   | 2.361  | 0.493 - 7.348                  |             |      | 4002             | alkadak kirda                      |
| Ling (IWL) BLL – vessels $\geq 34$ m    | 0.555   | 0.439  | 0.0/2 - 1.004<br>0.241 4.052   |             |      | 38/3             | المستقدا<br>مستقدا                 |
| Ling trawl                              | 1.027   | 0.891  | 0.241 - 4.555<br>0.258 - 2.544 |             |      | 4002             | and a second                       |
| Mackerel trawl                          | 0 900   | 0.804  | 0.253 - 2.044<br>0.262 - 2.088 |             |      | 3915             | exceletate.                        |
| Middle depths trawl                     | 0.978   | 0.911  | 0.335 - 1.993                  |             |      | 3551             | <b>Automatics</b>                  |
| Minor targets BLL                       | 0.665   | 0.504  | 0.075 - 2.235                  |             |      | 3872             | statistic.                         |
| Minor surface longline                  | 0.717   | 0.364  | 0.001 - 3.547                  |             |      | 4002             | <u>idiotector</u>                  |
| Southern blue whiting trawl             | 0.295   | 0.150  | 0.000 - 1.432                  |             |      | 3756             | admitta.                           |
| Scampi trawl                            | 2.694   | 2.448  | 0.845 - 5.908                  |             |      | 3942             | ender andre                        |
| Snapper BLL                             | 0.198   | 0.076  | 0.000 - 1.088                  |             |      | 3455             |                                    |
| Southern bluefin SLI                    | 2.399   | 2.217  | 0.824 - 4.904<br>0.004 0.218   |             |      | 3933             | Edittion:                          |
| Swordfish SLL                           | 1.145   | 0.047  | 0.107 - 3.816                  |             |      | 3835             | ىلىنىغانىغانلىر<br>يىلىنىغانىلىغان |
| A.r.o.                                  |         |        |                                |             |      |                  |                                    |
| Auckland Islands                        | 2 357   | 2 255  | 1.172 - 4 120                  |             |      | 4701             | سابعماهتمالي                       |
| Cook Strait                             | 0.399   | 0.343  | 0.085 - 1.035                  |             |      | 4115             | and a state                        |
| East of North Island                    | 1.251   | 1.121  | 0.262 - 2.922                  |             |      | 4280             |                                    |
| Eastern Chatham Rise                    | 1.019   | 0.975  | 0.466 - 1.815                  |             |      | 4002             | mandator                           |
| East Subantarctic                       | 0.997   | 0.903  | 0.331 - 2.250                  |             |      | 3841             | لسأهسين                            |
| Fiordland                               | 0.721   | 0.671  | 0.272 - 1.490                  |             |      | 4166             | anterilensions                     |
| Kermadec Islands                        | 1.271   | 1.097  | 0.210 - 3.464                  |             |      | 4002             | معتقامة                            |
| Notul East<br>South Subantaratia        | 0.752   | 0.032  | 0.127 - 1.903                  |             |      | 4002             | advanceder.                        |
| Stewart Snares Shelf                    | 1 947   | 1 859  | 0.267 - 1.710<br>0.982 - 3.347 |             |      | 4002<br>4405     | attribution                        |
| Western Chatham Rise                    | 0 745   | 0 710  | 0.346 - 1.346                  |             |      | 4702             | مەرەمەرىيە<br>مەرەمەرمەر           |
| West Coast North Island                 | 0.612   | 0.511  | 0.091 - 1.704                  |             |      | 4450             | Lines of the                       |
| West Coast South Island                 | 0.126   | 0.110  | 0.031 - 0.313                  |             |      | 4002             | heteliheesse                       |



Figure A-5: Comparison between the observed and the predicted number of captures of white-chinned petrel (represented by their mean and 95% credible interval), for each combination of region, fishery, vessel size, area, and season. The points were coloured according to the fishing method (BLL, bottom longline; SLL, surface longline).

Table A-15: List of strata, defined as combinations of region, fishery, vessel size, area, and season, for which the number of observed captures of white-chinned petrel was outside the 95% credible interval (c.i.) of the estimated number of captures. There were twelve of these strata, representing 1.9% of all 620 strata. SLL, surface longline; BLL, bottom longline. Cut-off lengths between small and large vessels were 28 m for trawl, 34 m for BLL, and 45 m for SLL.

| Method | Fishery                                 | Vessel size | Region | Area                    | Season           | Observations | Captures | Mean  | 95% c.i. |
|--------|-----------------------------------------|-------------|--------|-------------------------|------------------|--------------|----------|-------|----------|
| Trawl  | Squid trawl                             | Large       | South  | Stewart Snares Shelf    | Autumn (Apr-Jun) | 2918         | 153      | 81.16 | 41-139   |
| Trawl  | Hoki trawl                              | Large       | South  | Stewart Snares Shelf    | Spring (Oct-Dec) | 1529         | 5        | 18.96 | 6-42     |
| Trawl  | Scampi trawl                            | Large       | South  | Auckland Islands        | Summer (Jan-Mar) | 111          | 55       | 7.22  | 0-35     |
| BLL    | Minor targets BLL                       | Small       | South  | Eastern Chatham Rise    | Spring (Oct-Dec) | 8            | 17       | 1.38  | 0-13     |
| BLL    | Ling BLL – vessels $< 34$ m             | Small       | South  | West Coast South Island | Summer (Jan-Mar) | 23           | 19       | 1.13  | 0-10     |
| Trawl  | Scampi trawl                            | Small       | South  | Auckland Islands        | Summer (Jan-Mar) | 81           | 12       | 1.00  | 0-6      |
| SLL    | Southern bluefin SLL                    | Large       | South  | South Subantarctic      | Autumn (Apr-Jun) | 55           | 6        | 0.55  | 0-4      |
| SLL    | Bigeye SLL                              | Small       | North  | West Coast North Island | Spring (Oct-Dec) | 23           | 3        | 0.23  | 0-2      |
| Trawl  | Hoki trawl                              | Large       | South  | Fiordland               | Spring (Oct-Dec) | 33           | 2        | 0.07  | 0-1      |
| BLL    | Ling (no IWL) BLL – vessels $\geq$ 34 m | Large       | South  | Stewart Snares Shelf    | Winter (Jul-Sep) | 4            | 1        | 0.03  | 0-0      |
| SLL    | Bigeye SLL                              | Small       | North  | North East              | Winter (Jul-Sep) | 102          | 1        | 0.02  | 0-0      |
| SLL    | Southern bluefin SLL                    | Small       | North  | North East              | Winter (Jul-Sep) | 400          | 1        | 0.00  | 0-0      |

# A.6 Black petrel

Table A-16: Model strata with the highest number of estimated captures of black petrel in each of trawl, surface-longline (SLL), and bottom-longline (BLL) fisheries. Only the 15 strata with the most estimated captures are shown, sorted in decreasing order of mean estimated captures. The strata were defined as combinations of fishery, vessel size, area, and season. The number of observed captures between the fishing years 1998–99 and 2016–17 for bottom- and surface-longline fisheries, and between 2002–03 and 2016–17 for trawl fisheries are shown, along with the number of fishing events observed, the proportion of fishing events observed (observer coverage), the associated ratio estimate of the total number of captures, and the mean and 95% credible interval of the total estimated number of captures.

| Fishery                   | Vessel size              | Area                    | Season | Observations |        |          | Observations | Estimated captures |          |  |
|---------------------------|--------------------------|-------------------------|--------|--------------|--------|----------|--------------|--------------------|----------|--|
|                           |                          |                         |        | Captures     | Events | Coverage | Ratio est.   | Mean               | 95% c.i. |  |
| Trawl                     |                          |                         |        |              |        |          |              |                    |          |  |
| Inshore trawl             | Vessels $< 28$ m         | North East              | Autumn | 20           | 1540   | 0.051    | 395          | 280                | 162-432  |  |
| Inshore trawl             | Vessels $< 28$ m         | North East              | Summer | 8            | 1261   | 0.036    | 222          | 234                | 126-377  |  |
| Inshore trawl             | Vessels $< 28$ m         | North East              | Spring | 0            | 1119   | 0.036    | 0            | 93                 | 34-181   |  |
| Inshore trawl             | Vessels $< 28$ m         | East of North Island    | Autumn | 0            | 170    | 0.007    | 0            | 10                 | 1-30     |  |
| Inshore trawl             | Vessels $< 28 \text{ m}$ | East of North Island    | Summer | 0            | 265    | 0.010    | 0            | 8                  | 0-25     |  |
| Inshore trawl             | Vessels $< 28 \text{ m}$ | North East              | Winter | 0            | 894    | 0.032    | 0            | 7                  | 0-31     |  |
| Inshore trawl             | Vessels $< 28 \text{ m}$ | East of North Island    | Spring | 0            | 193    | 0.006    | 0            | 4                  | 0-17     |  |
| Inshore trawl             | Vessels $< 28 \text{ m}$ | West Coast North Island | Autumn | 0            | 912    | 0.057    | 0            | 4                  | 0-14     |  |
| Middle depths trawl       | Vessels $< 28 \text{ m}$ | North East              | Autumn | 0            | 44     | 0.040    | 0            | 4                  | 0-19     |  |
| Flatfish trawl            | Vessels $< 28 \text{ m}$ | West Coast North Island | Autumn | 0            | 1      | 0.000    | 0            | 3                  | 0-19     |  |
| Inshore trawl             | Vessels $< 28 \text{ m}$ | West Coast North Island | Summer | 0            | 1231   | 0.058    | 0            | 3                  | 0-14     |  |
| Hoki trawl                | Vessels $< 28 \text{ m}$ | North East              | Autumn | 0            | 32     | 0.055    | 0            | 2                  | 0-13     |  |
| Inshore trawl             | Vessels $< 28 \text{ m}$ | West Coast North Island | Spring | 0            | 704    | 0.029    | 0            | 2                  | 0-8      |  |
| Scampi trawl              | Vessels $< 28 \text{ m}$ | North East              | Autumn | 0            | 379    | 0.179    | 0            | 2                  | 0-9      |  |
| Scampi trawl              | Vessels $< 28 \text{ m}$ | North East              | Summer | 0            | 172    | 0.051    | 0            | 2                  | 0-11     |  |
| Surface longline          |                          |                         |        |              |        |          |              |                    |          |  |
| Bigeye SLL                | Vessels $< 43 \text{ m}$ | North East              | Autumn | 0            | 56     | 0.012    | 0            | 895                | 353-2116 |  |
| Bigeye SLL                | Vessels $< 43 \text{ m}$ | North East              | Summer | 10           | 160    | 0.029    | 345          | 746                | 341-1686 |  |
| Bigeve SLL                | Vessels $< 43 \text{ m}$ | North East              | Spring | 21           | 233    | 0.034    | 624          | 385                | 206-667  |  |
| Albacore SLL              | Vessels $< 43 \text{ m}$ | North East              | Autumn | 0            | 1      | 0.002    | 0            | 234                | 21-1058  |  |
| Minor surface longline    | Vessels $< 43 \text{ m}$ | North East              | Summer | 3            | 23     | 0.059    | 50           | 109                | 15-425   |  |
| Albacore SLL              | Vessels $< 43$ m         | North East              | Summer | 0            | 0      | 0.000    |              | 46                 | 2-215    |  |
| Albacore SLL              | Vessels $< 43 \text{ m}$ | North East              | Spring | 2            | 1      | 0.004    | 566          | 44                 | 3-182    |  |
| Swordfish SLL             | Vessels < 43 m           | North East              | Summer | 2            | 31     | 0.063    | 31           | 43                 | 5-167    |  |
| Bigeve SLL                | Vessels $< 43 \text{ m}$ | North East              | Winter | 0            | 102    | 0.013    | 0            | 37                 | 1-151    |  |
| Bigeve SLL                | Vessels < 43 m           | East of North Island    | Autumn | õ            | 96     | 0.021    | 0            | 35                 | 5-97     |  |
| Swordfish SLL             | Vessels < 43 m           | North East              | Autumn | Ő            | 16     | 0.058    | ő            | 34                 | 3-136    |  |
| Bigeve SLL                | Vessels < 43 m           | East of North Island    | Summer | 3            | 161    | 0.026    | 114          | 33                 | 5-93     |  |
| Albacore SLI              | Vessels < 43 m           | East of North Island    | Autumn | 0            | 23     | 0.015    | 0            | 32                 | 1-145    |  |
| Minor surface longline    | Vessels < 43 m           | North Fast              | Autumn | 0            | 25     | 0.000    | 0            | 20                 | 1_99     |  |
| Albacore SLI              | Vessels < 43 m           | Fast of North Island    | Summer | 0            | 7      | 0.011    | 0            | 9                  | 0_40     |  |
|                           | vessels < 45 m           | Lust of Hortin Island   | Summer | 0            | ,      | 0.011    | Ŭ            |                    | 0 40     |  |
| Bottom longline           | Versels < 24 m           | No with Front           | A      | 0            | 10     | 0.010    | 0            | 15(4               | 402 2709 |  |
| Bluenose BLL              | Vessels $< 34 \text{ m}$ | North East              | Autumn | 0            | 40     | 0.010    | 2242         | 1304               | 492-3798 |  |
| Bluenose BLL              | vessels $< 34 \text{ m}$ | North East              | Summer | 43           | 85     | 0.013    | 3243         | 1482               | 500-5500 |  |
| Snapper BLL               | Vessels $< 34 \text{ m}$ | North East              | Autumn | 21           | 508    | 0.014    | 1486         | 1098               | 612-184/ |  |
| Snapper BLL               | Vessels $< 34 \text{ m}$ | North East              | Summer | 14           | /43    | 0.020    | /14          | 833                | 4/3-13/6 |  |
| Bluenose BLL              | Vessels $< 34 \text{ m}$ | North East              | Spring | 4            | 27     | 0.005    | 754          | 527                | 164–1303 |  |
| Snapper BLL               | Vessels $< 34 \text{ m}$ | North East              | Spring | 2            | 535    | 0.013    | 157          | 417                | 163-830  |  |
| Hāpuku BLL                | Vessels $< 34 \text{ m}$ | North East              | Autumn | 3            | 26     | 0.017    | 178          | 168                | 18-611   |  |
| Hāpuku BLL                | Vessels $< 34 \text{ m}$ | North East              | Summer | 0            | 5      | 0.003    | 0            | 153                | 15-571   |  |
| Minor targets BLL         | Vessels $< 34 \text{ m}$ | North East              | Autumn | 0            | 26     | 0.018    | 0            | 77                 | 6-294    |  |
| Häpuku BLL                | Vessels $< 34 \text{ m}$ | North East              | Spring | 0            | 3      | 0.002    | 0            | 63                 | 5-252    |  |
| Minor targets BLL         | Vessels $< 34 \text{ m}$ | North East              | Summer | 2            | 37     | 0.025    | 81           | 56                 | 5-218    |  |
| Bluenose BLL              | Vessels $< 34 \text{ m}$ | East of North Island    | Summer | 0            | 50     | 0.012    | 0            | 40                 | 5-127    |  |
| Bluenose BLL              | Vessels $< 34 \text{ m}$ | North East              | Winter | 0            | 15     | 0.003    | 0            | 39                 | 1-170    |  |
| Bluenose BLL              | Vessels $< 34 \text{ m}$ | East of North Island    | Autumn | 0            | 17     | 0.006    | 0            | 37                 | 4-120    |  |
| Ling BLL – vessels < 34 m | Vessels $< 34 \text{ m}$ | North East              | Autumn | 0            | 0      | 0.000    |              | 34                 | 0-192    |  |

Table A-17: Summary of model parameters, for black petrel capture in New Zealand commercial trawl, bottom-, and surface-longline fisheries. For each parameter, the table gives summary statistics of the posterior distribution (mean, median, and 95% credible interval, based on the 2.5% and 97.5% quantiles), and diagnostics (the number of chains that fail convergence and half-width tests (Heidelberger & Welch 1983), and the effective length of the chains (without autocorrelation). Trace plots of the chains are also shown. Base levels of the factor covariates are: Small BLL for method, North for region, and Summer (Jan-Mar) for season. Model strata included different different areas, seasons, years, target fisheries and areas for trawling, surface-longline (SLL), and bottom-longline (BLL) fisheries. IWL, integrated weight line.

| Parameter                                  |       |        | Statistic                      |       |      | Dia              | gnostics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------|-------|--------|--------------------------------|-------|------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | Mean  | Median | 95% c.i.                       | Conv. | H.W. | Effective length | Trace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| S.d.(Year)                                 |       |        |                                |       |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BLL                                        | 0.940 | 0.810  | 0.140 - 2.344                  |       |      | 1926             | manhain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SLL                                        | 0.833 | 0.713  | 0.130 - 2.131                  |       |      | 2073             | feinder auf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Trawl                                      | 0.929 | 0.794  | 0.142 - 2.354                  |       |      | 1896             | official state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| S.d.(Area)                                 | 1.520 | 1.461  | 0.845 - 2.471                  |       |      | 4002             | altonistorias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| S.d.(Fishery)                              | 1.337 | 1.298  | 0.758 - 2.133                  |       |      | 3652             | itianathinga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Overdispersion                             |       |        |                                |       |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BLL                                        | 6.302 | 6.177  | 3.970 - 9.265                  |       |      | 4002             | Nahatathia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SLL                                        | 4.172 | 4.138  | 1.626 - 6.798                  |       |      | 3867             | designed the set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Irawl                                      | 2.141 | 1.322  | 0.407 - 10.039                 |       |      | 4226             | <u>ktokosti</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Intercept                                  | 0.081 | 0.027  | 0.005 - 0.331                  |       |      | 4002             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Method / Vessel class                      |       |        |                                |       |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BLL / vessels $\geq$ 34 m                  | 1.348 | 0.036  | 0.000 - 6.641                  |       |      | 4010             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SLL / vessels $\geq 43$ m                  | 1.659 | 0.344  | 0.017 – 9.364                  |       |      | 4002             | a the an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Trawl / vessels $\geq 28$ m                | 0.007 | 0.001  | 0.000 - 0.055                  | 1     |      | 4082             | an an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BLL / vessels $< 34 \text{ m}$             | 1.000 | 1.000  | 1.000 - 1.000                  | 3     |      | 4002             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SLL / vessels $< 43 \text{ m}$             | 5.008 | 2.187  | 0.328 - 20.114                 |       |      | 4002             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Traw1 / vessels < 28 m                     | 0.076 | 0.045  | 0.006 - 0.325                  |       |      | 4002             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Region                                     |       |        |                                | _     |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| North                                      | 1.000 | 1.000  | 1.000 - 1.000                  | 3     |      | 4002             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| South                                      | 0.019 | 0.002  | 0.000 - 0.113                  |       |      | 4002             | ···· 1·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Season                                     | 1.440 | 1 201  | 0.501 0.450                    |       |      | 1026             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Autumn (Apr-Jun)                           | 1.449 | 1.391  | 0.781 - 2.459                  |       |      | 4026             | <b>Manada</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Spring (Oct-Dec)                           | 0.464 | 0.437  | 0.182 - 0.8/6                  | 2     |      | 4106             | est-Methoda a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Winter (Jul Sen)                           | 0.040 | 0.026  | 1.000 - 1.000                  | 3     |      | 2996             | and an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| winter (Jui-Sep)                           | 0.040 | 0.020  | 0.002 - 0.137                  |       |      | 3880             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fishery                                    | 1.0/2 | 1.440  | 0.011 5.040                    |       |      | 1002             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Albacore SLL                               | 1.862 | 1.449  | 0.211 - 5.940                  | 1     |      | 4002             | <u>Helehondel</u> a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Bigeye SLL                                 | 0.964 | 0.750  | 0.105 - 3.017                  | 1     |      | 4002             | abtentelike<br>Nationalise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Deepwater travi                            | 0.626 | 2.875  | 0.030 - 8.103                  |       |      | 4002             | RUNCHULAN .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Flatfish trawl                             | 0.050 | 0.318  | 0.000 = 3.003<br>0.000 = 4.246 |       |      | 4002             | and the sector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Hake trawl                                 | 0.872 | 0.516  | 0.000 - 4.240<br>0.001 - 4.548 |       |      | 4002             | And a state of the |
| Hāpuku BLL                                 | 1 021 | 0.739  | 0.001 - 3.595                  |       |      | 3895             | Accession                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Hoki trawl                                 | 0.673 | 0.353  | 0.000 - 3.269                  |       |      | 4002             | ويعرفوه أباديا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Inshore trawl                              | 2.438 | 1.988  | 0.343 - 7.115                  |       |      | 4002             | <b>NUMBER</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ling (no IWL) BLL – vessels $\geq$ 34 m    | 0.908 | 0.476  | 0.001 - 4.301                  |       |      | 4002             | astituto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ling (IWL) BLL – vessels $\geq 34$ m       | 0.878 | 0.471  | 0.001 - 4.216                  |       |      | 3767             | ation and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ling BLL – vessels $< 34$ m                | 0.493 | 0.233  | 0.000 - 2.433                  |       |      | 3594             | منداستان <u>م</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ling trawl                                 | 0.788 | 0.416  | 0.000 - 3.878                  |       |      | 4202             | فمتلغطيهم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mackerel trawl                             | 0.895 | 0.469  | 0.000 - 4.161                  |       |      | 4002             | وتهديلياهم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Middle depths trawl                        | 0.623 | 0.327  | 0.000 - 2.875                  |       |      | 3560             | and the sector and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Minor targets BLL                          | 0.536 | 0.355  | 0.038 - 2.098                  |       |      | 4012             | the second state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Southern blue whiting trawl                | 0.067 | 0.523  | 0.100 - 3.093                  |       |      | 38/4             | and Mederal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Scampi travi                               | 0.907 | 0.084  | 0.001 - 4.003                  |       |      | 3874             | discontration of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Snapper BLI                                | 0.201 | 0.290  | 0.050 - 1.077<br>0.059 - 0.944 |       |      | 4002             | de utiles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Souid trawl                                | 0.904 | 0.483  | 0.001 - 4.346                  |       |      | 4128             | And the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Southern bluefin SLL                       | 0.058 | 0.018  | 0.000 - 0.363                  |       |      | 3319             | 1 Annually                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Swordfish SLL                              | 0.574 | 0.390  | 0.031 - 2.169                  |       |      | 3781             | dension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Area                                       |       |        |                                |       |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Auckland Islands                           | 0.941 | 0.437  | 0.000 - 4.785                  |       |      | 3841             | <u>يدا ديداند</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Cook Strait                                | 0.922 | 0.414  | 0.000 - 4.879                  |       |      | 3761             | histola                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| East of North Island                       | 0.145 | 0.102  | 0.009 - 0.532                  |       |      | 3919             | diam'r.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Eastern Chatham Rise                       | 0.858 | 0.348  | 0.000 - 4.643                  |       |      | 4002             | Caniel Alata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| East Subantarctic                          | 0.928 | 0.409  | 0.000 - 4.981                  |       |      | 4002             | بالشاماء                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Fiordland                                  | 0.882 | 0.408  | 0.000 - 4.570                  |       |      | 4002             | and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| North Fast                                 | 0.748 | 0.461  | 0.022 - 3.028                  |       |      | 4183             | لمعياناتها.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Notul East                                 | 3.289 | 2.8/3  | 0.5 / / - 8.329                |       |      | 4002             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| South Subantarctic<br>Stewart Snares Shelf | 0.890 | 0.383  | 0.000 - 4.549<br>0.000 - 4.541 |       |      | 2800             | unite and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Western Chatham Rise                       | 0.861 | 0.303  | 0.000 - 4.041<br>0.000 - 4.605 |       |      | 4002             | al policitada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| West Coast North Island                    | 0.080 | 0.049  | 0.002 - 0.348                  |       |      | 4157             | and a second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| West Coast South Island                    | 0.873 | 0 383  | 0.000 - 4.847                  |       |      | 4011             | detailable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



Figure A-6: Comparison between the observed and the predicted number of captures of black petrel (represented by their mean and 95% credible interval), for each combination of region, fishery, vessel size, area, and season. The points were coloured according to the fishing method (BLL, bottom longline; SLL, surface longline).

Table A-18: List of strata, defined as combinations of region, fishery, vessel size, area, and season, for which the number of observed captures of black petrel was outside the 95% credible interval (c.i.) of the estimated number of captures. There were two of these strata, representing 0.3% of all 620 strata. SLL, surface longline; BLL, bottom longline. Cut-off lengths between small and large vessels were 28 m for trawl, 34 m for BLL, and 45 m for SLL.

| Method | Fishery      | Vessel size | Region | Area       | Season           | Observations | Captures | Mean  | 95% c.i. |
|--------|--------------|-------------|--------|------------|------------------|--------------|----------|-------|----------|
| SLL    | Bigeye SLL   | Small       | North  | North East | Autumn (Apr-Jun) | 56           | 0        | 10.58 | 1-36     |
| SLL    | Albacore SLL | Large       | North  | North East | Winter (Jul-Sep) | 2            | 1        | 0.00  | 0-0      |

# A.7 Grey petrel

Table A-19: Model strata with the highest number of estimated captures of grey petrel in each of trawl, surface-longline (SLL), and bottom-longline (BLL) fisheries. Only the 15 strata with the most estimated captures are shown, sorted in decreasing order of mean estimated captures. The strata were defined as combinations of fishery, vessel size, area, and season. The number of observed captures between the fishing years 1998–99 and 2016–17 for bottom- and surface-longline fisheries, and between 2002–03 and 2016–17 for trawl fisheries are shown, along with the number of fishing events observed, the proportion of fishing events observed (observer coverage), the associated ratio estimate of the total number of captures, and the mean and 95% credible interval of the total estimated number of captures. IWL: Integrated weight line.

| Fishery                                 | Vessel size                 | Area                 | Season | Observations |        |          | Observations | Estimated captures |          |  |
|-----------------------------------------|-----------------------------|----------------------|--------|--------------|--------|----------|--------------|--------------------|----------|--|
|                                         |                             |                      |        | Captures     | Events | Coverage | Ratio est.   | Mean               | 95% c.i. |  |
| Trawl                                   |                             |                      |        |              |        |          |              |                    |          |  |
| Southern blue whiting trawl             | Vessels $\geq 28 \text{ m}$ | South Subantarctic   | Winter | 38           | 5503   | 0.570    | 66           | 69                 | 44–98    |  |
| Southern blue whiting trawl             | Vessels $\geq 28 \text{ m}$ | East Subantarctic    | Winter | 14           | 983    | 0.491    | 28           | 19                 | 6–36     |  |
| Inshore trawl                           | Vessels $< 28$ m            | East of North Island | Winter | 0            | 187    | 0.007    | 0            | 17                 | 0-85     |  |
| Flatfish trawl                          | Vessels $< 28$ m            | Western Chatham Rise | Winter | 0            | 63     | 0.004    | 0            | 6                  | 0-39     |  |
| Hoki trawl                              | Vessels $\ge 28 \text{ m}$  | Western Chatham Rise | Autumn | 1            | 2470   | 0.163    | 6            | 6                  | 0-17     |  |
| Hoki trawl                              | Vessels $\geq 28 \text{ m}$ | Western Chatham Rise | Winter | 0            | 1100   | 0.154    | 0            | 6                  | 0-16     |  |
| Inshore trawl                           | Vessels $< 28 \text{ m}$    | East of North Island | Autumn | 0            | 170    | 0.007    | 0            | 6                  | 0-31     |  |
| Flatfish trawl                          | Vessels $< 28 \text{ m}$    | East of North Island | Winter | 0            | 0      | 0.000    |              | 4                  | 0-27     |  |
| Flatfish trawl                          | Vessels $< 28$ m            | Western Chatham Rise | Autumn | 0            | 94     | 0.005    | 0            | 4                  | 0-22     |  |
| Inshore trawl                           | Vessels $\ge 28 \text{ m}$  | East of North Island | Winter | 0            | 0      | 0.000    |              | 4                  | 0-22     |  |
| Scampi trawl                            | Vessels $\geq 28 \text{ m}$ | Auckland Islands     | Winter | 0            | 48     | 0.036    | 0            | 4                  | 0-14     |  |
| Squid trawl                             | Vessels $\ge 28 \text{ m}$  | Auckland Islands     | Autumn | 0            | 2969   | 0.379    | 0            | 4                  | 0-13     |  |
| Deepwater trawl                         | Vessels $\ge 28 \text{ m}$  | East of North Island | Autumn | 0            | 416    | 0.112    | 0            | 3                  | 0-10     |  |
| Deepwater trawl                         | Vessels $\ge 28 \text{ m}$  | South Subantarctic   | Winter | 0            | 603    | 0.251    | 0            | 3                  | 0–9      |  |
| Inshore trawl                           | Vessels $< 28 \text{ m}$    | North East           | Winter | 0            | 894    | 0.032    | 0            | 3                  | 0-17     |  |
| Surface longline                        |                             |                      |        |              |        |          |              |                    |          |  |
| Southern bluefin SLL                    | Vessels $< 43 \text{ m}$    | East of North Island | Autumn | 13           | 372    | 0.045    | 290          | 235                | 111-447  |  |
| Southern bluefin SLL                    | Vessels $< 43 \text{ m}$    | East of North Island | Winter | 7            | 212    | 0.116    | 60           | 125                | 51-272   |  |
| Albacore SLL                            | Vessels $< 43 \text{ m}$    | East of North Island | Autumn | 0            | 23     | 0.015    | 0            | 51                 | 5-204    |  |
| Bigeye SLL                              | Vessels $< 43 \text{ m}$    | East of North Island | Autumn | 0            | 96     | 0.021    | 0            | 51                 | 3-192    |  |
| Southern bluefin SLL                    | Vessels $< 43 \text{ m}$    | North East           | Winter | 3            | 400    | 0.109    | 27           | 51                 | 16-118   |  |
| Bigeye SLL                              | Vessels $< 43 \text{ m}$    | North East           | Winter | 0            | 102    | 0.013    | 0            | 41                 | 2-157    |  |
| Southern bluefin SLL                    | Vessels $\ge 43 \text{ m}$  | East of North Island | Winter | 25           | 146    | 0.764    | 32           | 25                 | 3-71     |  |
| Swordfish SLL                           | Vessels $< 43 \text{ m}$    | East of North Island | Autumn | 0            | 12     | 0.055    | 0            | 25                 | 1-126    |  |
| Bigeye SLL                              | Vessels $< 43 \text{ m}$    | North East           | Autumn | 0            | 56     | 0.012    | 0            | 10                 | 0-40     |  |
| Minor surface longline                  | Vessels $< 43 \text{ m}$    | East of North Island | Autumn | 0            | 2      | 0.011    | 0            | 10                 | 0-60     |  |
| Swordfish SLL                           | Vessels $< 43 \text{ m}$    | Kermadec Islands     | Winter | 0            | 0      | 0.000    |              | 8                  | 0-45     |  |
| Albacore SLL                            | Vessels $\ge 43 \text{ m}$  | Kermadec Islands     | Winter | 0            | 106    | 1.000    | 0            | 7                  | 0-35     |  |
| Albacore SLL                            | Vessels $< 43$ m            | North East           | Winter | 0            | 0      | 0.000    |              | 6                  | 0-27     |  |
| Bigeye SLL                              | Vessels $< 43 \text{ m}$    | Kermadec Islands     | Winter | 0            | 17     | 0.057    | 0            | 6                  | 0-35     |  |
| Swordfish SLL                           | Vessels $< 43 \text{ m}$    | North East           | Autumn | 0            | 16     | 0.058    | 0            | 6                  | 0–27     |  |
| Bottom longline                         |                             |                      |        |              |        |          |              |                    |          |  |
| Snapper BLL                             | Vessels $< 34 \text{ m}$    | North East           | Winter | 0            | 0      | 0.000    |              | 1085               | 304-2760 |  |
| Ling BLL – vessels $< 34$ m             | Vessels $< 34 \text{ m}$    | East of North Island | Winter | 0            | 93     | 0.015    | 0            | 513                | 60-1872  |  |
| Snapper BLL                             | Vessels $< 34 \text{ m}$    | North East           | Autumn | 11           | 508    | 0.014    | 778          | 476                | 157-1171 |  |
| Ling (no IWL) BLL – vessels $\geq$ 34 m | Vessels $\ge 34 \text{ m}$  | South Subantarctic   | Autumn | 105          | 424    | 0.242    | 433          | 330                | 85-865   |  |
| Ling (no IWL) BLL – vessels $\geq$ 34 m | Vessels $\ge 34 \text{ m}$  | Eastern Chatham Rise | Winter | 9            | 1018   | 0.142    | 63           | 247                | 62-664   |  |
| Bluenose BLL                            | Vessels $< 34 \text{ m}$    | East of North Island | Winter | 0            | 14     | 0.005    | 0            | 228                | 3-1168   |  |
| Ling (no IWL) BLL – vessels $\geq$ 34 m | Vessels $\ge 34 \text{ m}$  | Auckland Islands     | Winter | 98           | 165    | 0.358    | 273          | 221                | 17-765   |  |
| Ling (no IWL) BLL – vessels $\geq$ 34 m | Vessels $\ge 34 \text{ m}$  | Western Chatham Rise | Winter | 10           | 47     | 0.026    | 382          | 199                | 28-689   |  |
| Ling (no IWL) BLL – vessels $\geq$ 34 m | Vessels $\ge$ 34 m          | East Subantarctic    | Autumn | 0            | 8      | 0.013    | 0            | 136                | 16-467   |  |
| Ling (no IWL) BLL – vessels $\geq$ 34 m | Vessels $\ge 34 \text{ m}$  | South Subantarctic   | Winter | 103          | 55     | 0.186    | 554          | 134                | 6-533    |  |
| Hāpuku BLL                              | Vessels $< 34 \text{ m}$    | East of North Island | Winter | 0            | 1      | 0.001    | 0            | 89                 | 0-518    |  |
| Bluenose BLL                            | Vessels $< 34 \text{ m}$    | East of North Island | Autumn | 0            | 17     | 0.006    | 0            | 80                 | 1-393    |  |
| Snapper BLL                             | Vessels $< 34 \text{ m}$    | North East           | Spring | 0            | 535    | 0.013    | 0            | 77                 | 12-262   |  |
| Ling BLL - vessels < 34 m               | Vessels $< 34 \text{ m}$    | Western Chatham Rise | Winter | 3            | 109    | 0.035    | 86           | 73                 | 10-264   |  |
| Ling (no IWL) BLL − vessels ≥ 34 m      | Vessels $\ge 34 \text{ m}$  | East Subantarctic    | Winter | 0            | 21     | 0.135    | 0            | 69                 | 0-339    |  |

Table A-20: Summary of model parameters, for grey petrel capture in New Zealand commercial trawl, bottom-, and surface-longline fisheries. For each parameter, the table gives summary statistics of the posterior distribution (mean, median, and 95% credible interval, based on the 2.5% and 97.5% quantiles), and diagnostics (the number of chains that fail convergence and half-width tests (Heidelberger & Welch 1983), and the effective length of the chains (without autocorrelation). Trace plots of the chains are also shown. Base levels of the factor covariates are: Large BLL for method, South for region, and Winter (Jul-Sep) for season. Model strata included different different areas, seasons, years, target fisheries and areas for trawling, surface-longline (SLL), and bottom-longline (BLL) fisheries. IWL, integrated weight line.

| Parameter                                  |        |        | Statistic                       |       |      | Dia              | agnostics                                |
|--------------------------------------------|--------|--------|---------------------------------|-------|------|------------------|------------------------------------------|
|                                            | Mean   | Median | 95% c.i.                        | Conv. | H.W. | Effective length | Trace                                    |
| S.d.(Year)                                 |        |        |                                 |       |      |                  |                                          |
| BLL                                        | 1.800  | 1.789  | 0.953 - 2.717                   |       |      | 4002             | ealer feini                              |
| SLL                                        | 0.510  | 0.439  | 0.095 - 1.322                   |       |      | 2994             | فمالتأمدها                               |
| Trawl                                      | 0.601  | 0.584  | 0.211 - 1.082                   |       |      | 4002             | daintantahé                              |
| S.d.(Area)                                 | 1.828  | 1.790  | 1.205 - 2.701                   |       |      | 4109             | metricals                                |
| S.d.(Fishery)                              | 0.950  | 0.929  | 0.479 - 1.527                   |       |      | 3443             | inditionality)                           |
| Overdispersion                             |        |        |                                 |       |      |                  |                                          |
| BLL                                        | 12.425 | 12.240 | 7.411 – 18.194                  |       |      | 4141             | 1000-maph                                |
| SLL<br>Travi                               | 5.510  | 5.4/5  | 1.755 - 9.183                   |       |      | 4213             | ukutuku                                  |
| Ilawi                                      | 1.520  | 1.097  | 0.393 - 3.092                   |       |      | 4002             | الم دامانه                               |
| Intercept                                  | 0.147  | 0.074  | 0.012 - 0.669                   |       |      | 4569             | La dina na                               |
| Method / Vessel class                      |        |        |                                 |       |      |                  |                                          |
| BLL / vessels $\geq 34 \text{ m}$          | 1.000  | 1.000  | 1.000 - 1.000                   | 3     |      |                  |                                          |
| SLL / vessels $\geq 43 \text{ m}$          | 2.186  | 0.812  | 0.079 - 10.836                  |       |      | 3489             |                                          |
| $1 \text{rawl / vessels} \ge 28 \text{ m}$ | 0.029  | 0.020  | 0.003 - 0.110                   |       |      | 4002             | tanakinan .                              |
| BLL / vessels $< 34 \text{ m}$             | 0.908  | 0.476  | 0.051 - 4.199<br>0.042 5.872    |       |      | 3670             | بالاستقلاب                               |
| Trawl / vessels < 28 m                     | 0.010  | 0.478  | 0.043 - 5.872<br>0.000 - 0.054  |       |      | 4000             |                                          |
| Hawi / Vessels < 28 m                      | 0.010  | 0.004  | 0.000 - 0.034                   |       |      | 4002             | a.a.                                     |
| Region                                     | 5 510  | 1.570  | 0 125 22 405                    |       |      | 2860             |                                          |
| North                                      | 5.510  | 1.579  | 0.135 - 32.405<br>1.000 - 1.000 | 3     |      | 3809             |                                          |
| South                                      | 1.000  | 1.000  | 1.000 - 1.000                   | 5     |      |                  |                                          |
| Season                                     | 0.445  | 0.424  | 0.211 0.021                     |       |      | 4002             |                                          |
| Autumn (Apr-Jun)                           | 0.445  | 0.424  | 0.211 - 0.821                   |       |      | 4002             | adheadatatid                             |
| Spring (Oct-Dec)                           | 0.064  | 0.050  | 0.011 - 0.205                   |       |      | 4162             | ير فليلغه مراقين                         |
| Winter (Jul Sen)                           | 1.000  | 1.000  | 1.000 - 0.033                   | 2     |      | 5//5             | alian anisa                              |
| winter (Jui-Sep)                           | 1.000  | 1.000  | 1.000 - 1.000                   | 5     |      |                  |                                          |
| Fishery                                    | 0.770  | 0.000  | 0.001 0.100                     |       |      | 1000             |                                          |
| Albacore SLL                               | 0.772  | 0.626  | 0.064 - 2.406                   |       |      | 4002             | <u>ىلىمىيىلىك</u><br>تىرى                |
| Bluenose BLI                               | 0.514  | 0.223  | 0.013 - 1.130<br>0.014 - 2.146  |       |      | 3991             | ballisteria                              |
| Deenwater trawl                            | 0.394  | 0.411  | 0.014 - 2.140<br>0.052 - 1.082  |       |      | 4002             | يەتىيەتىغىد<br>مىللىر بىر                |
| Flatfish trawl                             | 0.920  | 0.674  | 0.032 = 1.032<br>0.011 = 3.231  |       |      | 4002             | t also als                               |
| Hake trawl                                 | 0.934  | 0.710  | 0.014 - 3.332                   |       |      | 3640             | al a second                              |
| Hāpuku BLL                                 | 0.756  | 0.538  | 0.009 - 2.778                   |       |      | 4002             | والمراجع والمراجع                        |
| Hoki trawl                                 | 0.860  | 0.734  | 0.149 - 2.348                   |       |      | 3721             |                                          |
| Inshore trawl                              | 0.612  | 0.445  | 0.005 - 2.182                   |       |      | 4235             | واستأد المعاليات                         |
| Ling (no IWL) BLL − vessels ≥ 34 m         | 1.262  | 1.072  | 0.229 - 3.374                   |       |      | 3945             | Industria.                               |
| Ling (IWL) BLL – vessels $\geq$ 34 m       | 1.106  | 0.909  | 0.173 - 3.292                   |       |      | 4002             | athrophics                               |
| Ling BLL – vessels $< 34$ m                | 0.865  | 0.676  | 0.109 - 2.767                   |       |      | 4002             | والمتحدثان                               |
| Ling trawl                                 | 1.482  | 1.216  | 0.196 - 4.459                   |       |      | 3875             | di analah s                              |
| Mackerel trawl                             | 0.731  | 0.546  | 0.007 - 2.528                   |       |      | 3660             | and income                               |
| Minor terests BLL                          | 0.482  | 0.352  | 0.004 - 1.097                   |       |      | 3/4/             | <u>tilenteitet</u>                       |
| Minor surface longline                     | 0.857  | 0.652  | 0.034 - 2.913<br>0.016 - 3.410  |       |      | 3669             | handle and                               |
| Southern blue whiting trawl                | 2 865  | 2 551  | 0.972 - 6.672                   |       |      | 4133             | a horacita a                             |
| Scampi trawl                               | 0.932  | 0 764  | 0.075 - 2.854                   |       |      | 3656             | when wh                                  |
| Snapper BLL                                | 1.915  | 1.607  | 0.362 - 5.291                   |       |      | 4127             | م الم الم الم الم الم الم الم الم الم ال |
| Squid trawl                                | 0.476  | 0.360  | 0.038 - 1.581                   |       |      | 4002             | mandaka                                  |
| Southern bluefin SLL                       | 0.873  | 0.725  | 0.102 - 2.454                   |       |      | 4002             | ومعتبط بالرو                             |
| Swordfish SLL                              | 2.095  | 1.783  | 0.436 - 5.733                   |       |      | 3858             | and disease.                             |
| Area                                       |        |        |                                 |       |      |                  |                                          |
| Auckland Islands                           | 2.416  | 2.015  | 0.373 - 7.070                   |       |      | 4004             | Links Achie                              |
| Cook Strait                                | 0.064  | 0.009  | 0.000 - 0.461                   |       |      | 4002             | يتفاسينهم                                |
| East of North Island                       | 2.259  | 1.729  | 0.095 - 7.473                   |       |      | 4030             | <b>CARDON</b>                            |
| Eastern Chatham Rise                       | 0.391  | 0.299  | 0.046 - 1.244                   |       |      | 4002             | dadotas                                  |
| East Subantarctic                          | 2.612  | 2.222  | 0.431 - 7.024                   |       |      | 4002             | 100.000                                  |
| Fiordland                                  | 0.035  | 0.016  | 0.001 - 0.188                   |       |      | 4002             | to an an at the                          |
| Kermadec Islands                           | 1.144  | 0.724  | 0.032 - 4.860                   |       |      | 3736             | يشملانهم                                 |
| NORIN East                                 | 0.481  | 0.335  | 0.015 - 1.780                   |       |      | 3/94             | مقتلعمهم                                 |
| South Subantarctic<br>Stewart Sparse Shalf | 2.195  | 1.887  | 0.385 - 5.595                   |       |      | 4002             | And Andrewson                            |
| Western Chatham Rise                       | 1 013  | 0.000  | 0.000 - 0.200<br>0.118 - 3.412  |       |      | 4002             |                                          |
| West Coast North Island                    | 0.034  | 0.005  | 0.000 - 0.257                   |       |      | 4115             | and the second                           |
| West Coast South Island                    | 0.011  | 0.002  | 0.000 - 0.073                   |       |      | 3721             |                                          |



Figure A-7: Comparison between the observed and the predicted number of captures of grey petrel (represented by their mean and 95% credible interval), for each combination of region, fishery, vessel size, area, and season. The points were coloured according to the fishing method (BLL, bottom longline; SLL, surface longline).

Table A-21: List of strata, defined as combinations of region, fishery, vessel size, area, and season, for which the number of observed captures of grey petrel was outside the 95% credible interval (c.i.) of the estimated number of captures. There were four of these strata, representing 0.6% of all 620 strata. SLL, surface longline; BLL, bottom longline. Cut-off lengths between small and large vessels were 28 m for trawl, 34 m for BLL, and 45 m for SLL.

| Method | Fishery       | Vessel size | Region | Area                 | Season           | Observations | Captures | Mean | 95% c.i. |
|--------|---------------|-------------|--------|----------------------|------------------|--------------|----------|------|----------|
| SLL    | Swordfish SLL | Small       | North  | Kermadec Islands     | Spring (Oct-Dec) | 22           | 3        | 0.13 | 0-1      |
| Trawl  | Ling trawl    | Large       | South  | South Subantarctic   | Spring (Oct-Dec) | 90           | 1        | 0.02 | 0-0      |
| Trawl  | Hoki trawl    | Large       | South  | Fiordland            | Winter (Jul-Sep) | 149          | 1        | 0.01 | 0-0      |
| Trawl  | Squid trawl   | Large       | South  | Western Chatham Rise | Winter (Jul-Sep) | 5            | 1        | 0.00 | 0–0      |

# A.8 Sooty shearwater

Table A-22: Model strata with the highest number of estimated captures of sooty shearwater in each of trawl, surface-longline (SLL), and bottom-longline (BLL) fisheries. Only the 15 strata with the most estimated captures are shown, sorted in decreasing order of mean estimated captures. The strata were defined as combinations of fishery, vessel size, area, and season. The number of observed captures between the fishing years 1998–99 and 2016–17 for bottom- and surface-longline fisheries, and between 2002–03 and 2016–17 for trawl fisheries are shown, along with the number of fishing events observed, the proportion of fishing events observed (observer coverage), the associated ratio estimate of the total number of captures, and the mean and 95% credible interval of the total estimated number of captures. IWL: Integrated weight line.

| Fishery                                 | Vessel size                 | Area                 | Season | Observations Est |        |          |            |      | stimated captures |  |
|-----------------------------------------|-----------------------------|----------------------|--------|------------------|--------|----------|------------|------|-------------------|--|
|                                         | vesser sille                | . indu               | Season | Captures         | Events | Coverage | Ratio est. | Mean | 95% c.i.          |  |
| Trawl                                   |                             |                      |        |                  |        |          |            |      |                   |  |
| Squid trawl                             | Vessels $\geq 28$ m         | Stewart Snares Shelf | Summer | 351              | 10155  | 0.377    | 932        | 1109 | 771-1565          |  |
| Squid trawl                             | Vessels $\ge 28 \text{ m}$  | Stewart Snares Shelf | Autumn | 375              | 2918   | 0.324    | 1157       | 781  | 464-1237          |  |
| Hoki trawl                              | Vessels $\ge 28 \text{ m}$  | Western Chatham Rise | Autumn | 117              | 2470   | 0.163    | 715        | 476  | 282-746           |  |
| Middle depths trawl                     | Vessels $< 28$ m            | Western Chatham Rise | Autumn | 0                | 6      | 0.001    | 0          | 334  | 86-967            |  |
| Hoki trawl                              | Vessels $\ge 28 \text{ m}$  | Western Chatham Rise | Spring | 54               | 2444   | 0.187    | 288        | 300  | 174-489           |  |
| Middle depths trawl                     | Vessels $\leq 28 \text{ m}$ | Western Chatham Rise | Spring | 0                | 63     | 0.010    | 0          | 294  | 76-846            |  |
| Hoki trawl                              | Vessels > 28 m              | Stewart Snares Shelf | Autumn | 28               | 1782   | 0.250    | 112        | 283  | 146-497           |  |
| Squid trawl                             | Vessels $\ge 28 \text{ m}$  | Auckland Islands     | Autumn | 69               | 2969   | 0.379    | 182        | 231  | 127-382           |  |
| Middle depths trawl                     | Vessels $< 28 \text{ m}$    | Western Chatham Rise | Summer | 11               | 191    | 0.026    | 424        | 222  | 64-617            |  |
| Squid trawl                             | Vessels > 28 m              | Auckland Islands     | Summer | 102              | 7259   | 0.488    | 208        | 214  | 129-333           |  |
| Squid trawl                             | Vessels $\ge 28 \text{ m}$  | Western Chatham Rise | Autumn | 18               | 412    | 0.145    | 124        | 208  | 82-430            |  |
| Squid trawl                             | Vessels $< 28 \text{ m}$    | Western Chatham Rise | Autumn | 0                | 0      | 0.000    |            | 207  | 39-683            |  |
| Inshore trawl                           | Vessels $< 28 \text{ m}$    | Western Chatham Rise | Autumn | 3                | 77     | 0.004    | 837        | 205  | 44-581            |  |
| Hoki trawl                              | Vessels > 28 m              | Western Chatham Rise | Summer | 39               | 1890   | 0.138    | 281        | 201  | 116-323           |  |
| Middle depths trawl                     | Vessels $\ge$ 28 m          | Stewart Snares Shelf | Spring | 32               | 1698   | 0.304    | 105        | 201  | 97–367            |  |
| Surface longline                        |                             |                      |        |                  |        |          |            |      |                   |  |
| Albacore SLL                            | Vessels $< 43$ m            | East of North Island | Autumn | 0                | 23     | 0.015    | 0          | 11   | 0-61              |  |
| Albacore SLL                            | Vessels $\ge 43 \text{ m}$  | East of North Island | Autumn | 7                | 67     | 0.971    | 7          | 5    | 0-12              |  |
| Southern bluefin SLL                    | Vessels $\ge 43 \text{ m}$  | Fiordland            | Autumn | 0                | 3057   | 0.900    | 0          | 4    | 0-12              |  |
| Bigeye SLL                              | Vessels $< 43$ m            | East of North Island | Autumn | 0                | 96     | 0.021    | 0          | 3    | 0-20              |  |
| Albacore SLL                            | Vessels $< 43$ m            | East of North Island | Summer | 0                | 7      | 0.011    | 0          | 2    | 0-13              |  |
| Bigeye SLL                              | Vessels $< 43$ m            | East of North Island | Summer | 0                | 161    | 0.026    | 0          | 2    | 0-13              |  |
| Albacore SLL                            | Vessels > 43 m              | North East           | Autumn | 0                | 44     | 1.000    | 0          | 1    | 0-4               |  |
| Albacore SLL                            | Vessels $< 43 \text{ m}$    | North East           | Autumn | 0                | 1      | 0.002    | 0          | 1    | 0-7               |  |
| Albacore SLL                            | Vessels $< 43$ m            | North East           | Spring | 0                | 1      | 0.004    | 0          | 1    | 0-4               |  |
| Albacore SLL                            | Vessels $< 43 \text{ m}$    | Western Chatham Rise | Autumn | 0                | 0      | 0.000    |            | 1    | 0-4               |  |
| Bigeye SLL                              | Vessels $< 43$ m            | North East           | Autumn | 0                | 56     | 0.012    | 0          | 1    | 0-7               |  |
| Bigeye SLL                              | Vessels $< 43 \text{ m}$    | North East           | Spring | 0                | 233    | 0.034    | 0          | 1    | 0-8               |  |
| Bigeye SLL                              | Vessels $< 43 \text{ m}$    | North East           | Summer | 0                | 160    | 0.029    | 0          | 1    | 0-5               |  |
| Minor surface longline                  | Vessels $< 43 \text{ m}$    | East of North Island | Autumn | 0                | 2      | 0.011    | 0          | 1    | 0-5               |  |
| Minor surface longline                  | Vessels $< 43 \text{ m}$    | East of North Island | Summer | 0                | 9      | 0.017    | 0          | 1    | 0–7               |  |
| Bottom longline                         |                             |                      |        |                  |        |          |            |      |                   |  |
| Ling (no IWL) BLL − vessels ≥ 34 m      | Vessels $\ge 34 \text{ m}$  | Stewart Snares Shelf | Spring | 70               | 936    | 0.480    | 145        | 119  | 70-183            |  |
| Ling (no IWL) BLL – vessels $\geq$ 34 m | Vessels $\ge$ 34 m          | Western Chatham Rise | Spring | 0                | 58     | 0.024    | 0          | 102  | 51-191            |  |
| Ling (no IWL) BLL − vessels ≥ 34 m      | Vessels $\ge 34 \text{ m}$  | Western Chatham Rise | Autumn | 0                | 61     | 0.033    | 0          | 97   | 38-218            |  |
| Ling (IWL) BLL – vessels $\geq 34$ m    | Vessels $\ge$ 34 m          | Stewart Snares Shelf | Spring | 12               | 118    | 0.082    | 146        | 75   | 27-161            |  |
| Ling (no IWL) BLL – vessels ≥ 34 m      | Vessels $\ge 34 \text{ m}$  | Western Chatham Rise | Summer | 1                | 65     | 0.044    | 22         | 42   | 16-88             |  |
| Snapper BLL                             | Vessels $< 34 \text{ m}$    | North East           | Autumn | 0                | 508    | 0.014    | 0          | 21   | 0-79              |  |
| Snapper BLL                             | Vessels $< 34$ m            | North East           | Spring | 0                | 535    | 0.013    | 0          | 18   | 0-71              |  |
| Ling (no IWL) BLL – vessels $> 34$ m    | Vessels > 34 m              | Eastern Chatham Rise | Autumn | 0                | 157    | 0.066    | 0          | 14   | 4-34              |  |
| Ling (no IWL) BLL – vessels $\ge$ 34 m  | Vessels $\ge$ 34 m          | Eastern Chatham Rise | Spring | 1                | 460    | 0.135    | 7          | 14   | 4-29              |  |
| Ling (IWL) BLL – vessels $\geq 34$ m    | Vessels $\ge$ 34 m          | Fiordland            | Spring | 3                | 154    | 0.217    | 13         | 14   | 3-34              |  |
| Ling (no IWL) BLL – vessels $> 34$ m    | Vessels $\ge$ 34 m          | Fiordland            | Spring | 4                | 98     | 0.173    | 23         | 11   | 3-25              |  |
| Snapper BLL                             | Vessels $< 34$ m            | North East           | Summer | 1                | 743    | 0.020    | 51         | 11   | 0-41              |  |
| Hāpuku BLL                              | Vessels $< 34 \text{ m}$    | Western Chatham Rise | Summer | 0                | 6      | 0.011    | 0          | 10   | 0-49              |  |
| Ling (no IWL) BLL – vessels $> 34$ m    | Vessels > 34 m              | Auckland Islands     | Autumn | 0                | 20     | 0.061    | 0          | 10   | 2-26              |  |
| Bluenose BLL                            | Vessels $\leq 34 \text{ m}$ | Western Chatham Rise | Autumn | õ                | 10     | 0.023    | õ          | 9    | 0-42              |  |

Table A-23: Summary of model parameters, for sooty shearwater capture in New Zealand commercial trawl, bottom-, and surface-longline fisheries. For each parameter, the table gives summary statistics of the posterior distribution (mean, median, and 95% credible interval, based on the 2.5% and 97.5% quantiles), and diagnostics (the number of chains that fail convergence and half-width tests (Heidelberger & Welch 1983), and the effective length of the chains (without autocorrelation). Trace plots of the chains are also shown. Base levels of the factor covariates are: Large trawl for method, South for region, and Autumn (Apr-Jun) for season. Model strata included different different areas, seasons, years, target fisheries and areas for trawling, surface-longline (SLL), and bottom-longline (BLL) fisheries. IWL, integrated weight line.

| Parameter                                             |         |        | Statistic                       |       |      | Dia              | gnostics                         |
|-------------------------------------------------------|---------|--------|---------------------------------|-------|------|------------------|----------------------------------|
|                                                       | Mean    | Median | 95% c.i.                        | Conv. | H.W. | Effective length | Trace                            |
| S.d.(Year)                                            |         |        |                                 |       |      |                  |                                  |
| BLL                                                   | 0.769   | 0.740  | 0.220 - 1.465                   |       |      | 4138             | in also also                     |
| SLL                                                   | 0.710   | 0.607  | 0.120 - 1.871                   |       |      | 2598             | heidenkuns                       |
| Trawl                                                 | 0.363   | 0.354  | 0.156 - 0.621                   |       |      | 4002             | يلغمه معدمة                      |
| S.d.(Area)                                            | 1.265   | 1.234  | 0.865 - 1.825                   |       |      | 4002             | natatarapad                      |
| S.d.(Fishery)                                         | 1.371   | 1.346  | 0.940 - 1.936                   |       |      | 4002             | mentilismis                      |
| Overdispersion                                        |         |        |                                 |       |      |                  |                                  |
| BLL                                                   | 3.420   | 3.035  | 0.571 - 8.159                   | 1     |      | 4016             | Landrik Lorenze                  |
| SLL                                                   | 1.319   | 1.129  | 0.399 - 3.292                   |       |      | 4002             | lideants.                        |
| Irawi                                                 | 15.544  | 15.555 | 13.023 - 17.230                 |       |      | 4002             |                                  |
| Intercept                                             | 0.016   | 0.012  | 0.004 - 0.049                   |       |      | 3647             |                                  |
| Method / Vessel class                                 |         |        |                                 |       |      |                  |                                  |
| BLL / vessels $\geq 34$ m                             | 9.101   | 3.251  | 0.497 - 52.162                  |       |      | 3726             |                                  |
| SLL / vessels $\geq 43 \text{ m}$                     | 64.084  | 15.151 | 1.251 - 341.826                 | 2     |      | 4226             |                                  |
| $11awi / vessels \ge 28 m$                            | 0.962   | 0.492  | 1.000 - 1.000                   | 3     |      | 3866             |                                  |
| SLL/vessels < 43 m                                    | 2 273   | 0.472  | 0.040 - 4.930<br>0.028 - 13.674 |       |      | 4002             | - A.w                            |
| Trawl / vessels < 28 m                                | 1.754   | 1.459  | 0.538 - 4.666                   |       |      | 4197             | di Alianski.                     |
| Region                                                |         |        |                                 |       |      |                  |                                  |
| North                                                 | 0.420   | 0.190  | 0.028 - 2.371                   |       |      | 4084             | المعاملات                        |
| South                                                 | 1.000   | 1.000  | 1.000 - 1.000                   | 3     |      |                  |                                  |
| Season                                                |         |        |                                 |       |      |                  |                                  |
| Autumn (Apr-Jun)                                      | 1.000   | 1.000  | 1.000 - 1.000                   | 3     |      |                  |                                  |
| Spring (Oct-Dec)                                      | 0.753   | 0.734  | 0.471 - 1.155                   |       |      | 4002             | ntichtinantie                    |
| Summer (Jan-Mar)                                      | 0.480   | 0.4/3  | 0.341 - 0.651                   |       |      | 4002             | al sinulnisti                    |
| winter (Jui-Sep)                                      | 0.012   | 0.010  | 0.002 - 0.034                   |       |      | 4000             | particular dist                  |
| Fishery                                               | 2 0 ( 0 | 1 (57  | 0.121 (.511                     |       |      | 4002             |                                  |
| Albacore SLL<br>Bigeve SLL                            | 2.069   | 0.110  | 0.131 - 0.311<br>0.000 - 1.677  |       |      | 4002             | CHARGE                           |
| Bluenose BLL                                          | 1 215   | 0.869  | 0.000 - 4.639                   | 1     |      | 4115             | مىرىنىشىيە<br>ماراندارندىيە      |
| Deepwater trawl                                       | 0.058   | 0.046  | 0.008 - 0.170                   | -     |      | 4234             | harding                          |
| Flatfish trawl                                        | 0.040   | 0.012  | 0.000 - 0.244                   |       |      | 3897             | AL.                              |
| Hake trawl                                            | 1.621   | 1.401  | 0.404 - 4.221                   |       |      | 4275             | <u>distribute</u>                |
| Hāpuku BLL                                            | 1.999   | 1.531  | 0.117 - 6.649                   |       |      | 3801             | 400455                           |
| Hoki trawl                                            | 1.175   | 1.075  | 0.362 - 2.537                   |       |      | 3871             | بالنقنامية                       |
| Inshore trawi<br>Ling (no IWI) BLL – vessels $> 34$ m | 0.261   | 0.190  | 0.029 = 0.927<br>0.043 = 3.029  |       |      | 4226             | مىسىللىمى<br>بايىلىلىدى          |
| Ling (IWL) BLL – vessels $\geq 34$ m                  | 0.918   | 0.655  | 0.045 - 3.321                   |       |      | 4121             | nut bid a secie                  |
| Ling BLL – vessels $< 34 \text{ m}$                   | 0.287   | 0.106  | 0.000 - 1.732                   |       |      | 3829             |                                  |
| Ling trawl                                            | 1.354   | 1.144  | 0.327 - 3.539                   |       |      | 4002             | <u>adaanaa</u>                   |
| Mackerel trawl                                        | 0.330   | 0.270  | 0.066 - 0.930                   |       |      | 4171             | and the second                   |
| Middle depths trawl                                   | 1.427   | 1.308  | 0.441 - 3.095                   |       |      | 3993             | a salata a                       |
| Minor targets BLL<br>Minor surface longline           | 0.207   | 0.071  | 0.000 - 1.1/6<br>0.000 - 4.338  |       |      | 3888             | البرغانية ع                      |
| Southern blue whiting trawl                           | 0.645   | 0.293  | 0.000 - 4.338<br>0.000 - 3.284  |       |      | 4002             | nd Abelles                       |
| Scampi trawl                                          | 1.090   | 0.918  | 0.212 - 2.977                   |       |      | 4002             | the second second                |
| Snapper BLL                                           | 1.500   | 1.065  | 0.075 - 5.563                   | 1     |      | 3982             | Manufacture.                     |
| Squid trawl                                           | 2.576   | 2.370  | 0.811 - 5.474                   |       |      | 4008             | and dates                        |
| Southern bluefin SLL                                  | 0.015   | 0.007  | 0.000 - 0.079                   |       |      | 3897             | الساب                            |
| Swordfish SLL                                         | 1.831   | 1.326  | 0.098 - 6.264                   |       |      | 4192             | and the se                       |
| Area                                                  |         |        |                                 |       |      |                  |                                  |
| Auckland Islands                                      | 1.154   | 1.076  | 0.363 - 2.457                   |       |      | 3920             | tel de bland                     |
| COOK Strait                                           | 0.251   | 0.188  | 0.025 - 0.858<br>0.152 4.626    |       |      | 3888             | يتلاصل مرادي                     |
| East of North Island<br>Eastern Chatham Rise          | 0.267   | 0.240  | 0.132 - 4.030<br>0.076 - 0.613  |       |      | 3835<br>4117     | مامنده مدانته<br>ا - الاقتصاد ان |
| East Subantarctic                                     | 0.090   | 0.068  | 0.010 - 0.292                   |       |      | 4115             | الراديد ولو                      |
| Fiordland                                             | 1.088   | 0.981  | 0.295 - 2.501                   |       |      | 3944             | -                                |
| Kermadec Islands                                      | 1.619   | 1.259  | 0.101 - 5.194                   |       |      | 4212             | والمتعالية                       |
| North East                                            | 0.506   | 0.355  | 0.031 - 1.884                   |       |      | 4002             | بالمستحد                         |
| South Subantarctic                                    | 0.108   | 0.083  | 0.012 - 0.341                   |       |      | 3867             | <del>يد أدر مخ</del> دي          |
| Stewart Snares Shelf<br>Western Chatham Bigg          | 3.331   | 5.117  | 1.092 - 6.687                   |       |      | 3962             | ublation of                      |
| West Coast North Island                               | 0 215   | 0 118  | 0.855 - 5.482<br>0.005 - 1.040  |       |      | 4002             | identified                       |
| West Coast South Island                               | 0.106   | 0.087  | 0.017 - 0.305                   |       |      | 4002             | il and the                       |



Figure A-8: Comparison between the observed and the predicted number of captures of sooty shearwater (represented by their mean and 95% credible interval), for each combination of region, fishery, vessel size, area, and season. The points were coloured according to the fishing method (BLL, bottom longline; SLL, surface longline).

Table A-24: List of strata, defined as combinations of region, fishery, vessel size, area, and season, for which the number of observed captures of sooty shearwater was outside the 95% credible interval (c.i.) of the estimated number of captures. There were five of these strata, representing 0.8% of all 620 strata. SLL, surface longline; BLL, bottom longline. Cut-off lengths between small and large vessels were 28 m for trawl, 34 m for BLL, and 45 m for SLL.

| Method | Fishery              | Vessel size | Region | Area                 | Season           | Observations | Captures | Mean  | 95% c.i. |
|--------|----------------------|-------------|--------|----------------------|------------------|--------------|----------|-------|----------|
| Trawl  | Hake trawl           | Large       | South  | Stewart Snares Shelf | Spring (Oct-Dec) | 812          | 2        | 33.81 | 4-110    |
| Trawl  | Scampi trawl         | Small       | South  | Auckland Islands     | Summer (Jan-Mar) | 81           | 8        | 0.66  | 0-5      |
| Trawl  | Hoki trawl           | Large       | South  | Fiordland            | Spring (Oct-Dec) | 33           | 6        | 0.40  | 0-4      |
| Trawl  | Hake trawl           | Large       | South  | Eastern Chatham Rise | Summer (Jan-Mar) | 69           | 4        | 0.14  | 0-1      |
| SLL    | Southern bluefin SLL | Large       | South  | South Subantarctic   | Autumn (Apr-Jun) | 55           | 1        | 0.01  | 0–0      |

# A.9 Flesh-footed shearwater

Table A-25: Model strata with the highest number of estimated captures of flesh-footed shearwater in each of trawl, surface-longline (SLL), and bottom-longline (BLL) fisheries. Only the 15 strata with the most estimated captures are shown, sorted in decreasing order of mean estimated captures. The strata were defined as combinations of fishery, vessel size, area, and season. The number of observed captures between the fishing years 1998–99 and 2016–17 for bottom- and surface-longline fisheries, and between 2002–03 and 2016–17 for trawl fisheries are shown, along with the number of fishing events observed, the proportion of fishing events observed (observer coverage), the associated ratio estimate of the total number of captures, and the mean and 95% credible interval of the total estimated number of captures.

| Fishery                | Vessel size              | Area                    | Season | Observations |        |          | Estimated captures |      |           |
|------------------------|--------------------------|-------------------------|--------|--------------|--------|----------|--------------------|------|-----------|
|                        |                          |                         |        | Captures     | Events | Coverage | Ratio est.         | Mean | 95% c.i.  |
| Trawl                  |                          |                         |        |              |        |          |                    |      |           |
| Scampi trawl           | Vessels $< 28$ m         | North East              | Summer | 4            | 172    | 0.051    | 78                 | 206  | 77-471    |
| Inshore trawl          | Vessels $< 28 \text{ m}$ | North East              | Summer | 6            | 1261   | 0.036    | 167                | 162  | 76-291    |
| Scampi trawl           | Vessels $< 28$ m         | East of North Island    | Summer | 0            | 11     | 0.003    | 0                  | 154  | 39-427    |
| Scampi trawl           | Vessels $< 28 \text{ m}$ | North East              | Spring | 31           | 447    | 0.100    | 310                | 105  | 45-204    |
| Inshore trawl          | Vessels $< 28 \text{ m}$ | North East              | Autumn | 8            | 1540   | 0.051    | 158                | 104  | 47-191    |
| Scampi trawl           | Vessels $< 28 \text{ m}$ | North East              | Autumn | 2            | 379    | 0.179    | 11                 | 98   | 31-246    |
| Inshore trawl          | Vessels $< 28 \text{ m}$ | East of North Island    | Summer | 1            | 265    | 0.010    | 101                | 79   | 22-184    |
| Inshore trawl          | Vessels $< 28$ m         | North East              | Spring | 2            | 1119   | 0.036    | 55                 | 59   | 21-120    |
| Inshore trawl          | Vessels $< 28$ m         | East of North Island    | Autumn | 0            | 170    | 0.007    | 0                  | 52   | 13-125    |
| Scampi trawl           | Vessels $< 28 \text{ m}$ | East of North Island    | Spring | 0            | 259    | 0.085    | 0                  | 46   | 12-119    |
| Hoki trawl             | Vessels $< 28$ m         | North East              | Summer | 0            | 13     | 0.030    | 0                  | 38   | 2-200     |
| Inshore trawl          | Vessels $< 28 \text{ m}$ | East of North Island    | Spring | 0            | 193    | 0.006    | 0                  | 38   | 8–99      |
| Hoki trawl             | Vessels $< 28 \text{ m}$ | North East              | Autumn | 2            | 32     | 0.055    | 36                 | 37   | 2-174     |
| Inshore trawl          | Vessels $< 28 \text{ m}$ | West Coast North Island | Summer | 0            | 1231   | 0.058    | 0                  | 24   | 6-58      |
| Scampi trawl           | $Vessels < 28 \ m$       | East of North Island    | Autumn | 0            | 84     | 0.110    | 0                  | 23   | 3–76      |
| Surface longline       |                          |                         |        |              |        |          |                    |      |           |
| Bigeye SLL             | Vessels $< 43 \text{ m}$ | North East              | Summer | 17           | 160    | 0.029    | 587                | 1616 | 653-3698  |
| Bigeye SLL             | Vessels $< 43$ m         | East of North Island    | Summer | 87           | 161    | 0.026    | 3315               | 1036 | 462-2023  |
| Bigeye SLL             | Vessels $< 43$ m         | North East              | Autumn | 9            | 56     | 0.012    | 750                | 1031 | 357-2485  |
| Bigeye SLL             | Vessels $< 43$ m         | North East              | Spring | 14           | 233    | 0.034    | 416                | 817  | 291-2005  |
| Bigeye SLL             | Vessels $< 43$ m         | East of North Island    | Autumn | 0            | 96     | 0.021    | 0                  | 583  | 212-1290  |
| Bigeye SLL             | Vessels $< 43 \text{ m}$ | West Coast North Island | Summer | 0            | 60     | 0.023    | 0                  | 189  | 46-506    |
| Albacore SLL           | Vessels $< 43 \text{ m}$ | East of North Island    | Autumn | 0            | 23     | 0.015    | 0                  | 186  | 13-828    |
| Albacore SLL           | Vessels $< 43 \text{ m}$ | East of North Island    | Summer | 5            | 7      | 0.011    | 439                | 98   | 7-456     |
| Albacore SLL           | Vessels $< 43 \text{ m}$ | North East              | Autumn | 0            | 1      | 0.002    | 0                  | 92   | 5-441     |
| Minor surface longline | Vessels $< 43 \text{ m}$ | North East              | Summer | 3            | 23     | 0.059    | 50                 | 73   | 2-389     |
| Bigeye SLL             | Vessels $< 43 \text{ m}$ | West Coast North Island | Autumn | 0            | 16     | 0.012    | 0                  | 71   | 13-221    |
| Bigeye SLL             | Vessels $< 43 \text{ m}$ | North East              | Winter | 0            | 102    | 0.013    | 0                  | 62   | 1-272     |
| Bigeye SLL             | Vessels $< 43 \text{ m}$ | East of North Island    | Spring | 1            | 13     | 0.015    | 67                 | 60   | 16-149    |
| Minor surface longline | Vessels $< 43 \text{ m}$ | East of North Island    | Summer | 0            | 9      | 0.017    | 0                  | 59   | 2-302     |
| Albacore SLL           | Vessels $< 43 \text{ m}$ | North East              | Summer | 0            | 0      | 0.000    |                    | 33   | 0-188     |
| Bottom longline        |                          |                         |        |              |        |          |                    |      |           |
| Snapper BLL            | Vessels $< 34 \text{ m}$ | North East              | Summer | 44           | 743    | 0.020    | 2245               | 2459 | 1520-3888 |
| Snapper BLL            | Vessels $< 34 \text{ m}$ | North East              | Autumn | 33           | 508    | 0.014    | 2335               | 1746 | 1004-2802 |
| Snapper BLL            | Vessels $< 34 \text{ m}$ | North East              | Spring | 7            | 535    | 0.013    | 552                | 1113 | 549-2041  |
| Minor targets BLL      | Vessels $< 34 \text{ m}$ | North East              | Summer | 5            | 37     | 0.025    | 202                | 335  | 93–958    |
| Minor targets BLL      | Vessels $< 34 \text{ m}$ | West Coast North Island | Summer | 11           | 229    | 0.042    | 261                | 254  | 100-544   |
| Minor targets BLL      | Vessels $< 34 \text{ m}$ | North East              | Autumn | 3            | 26     | 0.018    | 168                | 242  | 63–696    |
| Hāpuku BLL             | Vessels $< 34 \text{ m}$ | North East              | Summer | 0            | 5      | 0.003    | 0                  | 177  | 19-701    |
| Minor targets BLL      | Vessels $< 34 \text{ m}$ | North East              | Spring | 0            | 24     | 0.019    | 0                  | 116  | 24-358    |
| Hāpuku BLL             | Vessels $< 34 \text{ m}$ | North East              | Autumn | 1            | 26     | 0.017    | 59                 | 101  | 12-371    |
| Minor targets BLL      | Vessels $< 34 \text{ m}$ | West Coast North Island | Spring | 2            | 46     | 0.011    | 182                | 80   | 25-191    |
| Minor targets BLL      | Vessels $< 34 \text{ m}$ | West Coast North Island | Autumn | 0            | 44     | 0.021    | 0                  | 76   | 24-174    |
| Minor targets BLL      | Vessels $< 34 \text{ m}$ | East of North Island    | Summer | 0            | 0      | 0.000    |                    | 72   | 12-234    |
| Hāpuku BLL             | Vessels $< 34 \text{ m}$ | North East              | Spring | 0            | 3      | 0.002    | 0                  | 67   | 6-281     |
| Snapper BLL            | Vessels $< 34 \text{ m}$ | North East              | Winter | 0            | 0      | 0.000    |                    | 64   | 2-263     |
| Hāpuku BLL             | Vessels $< 34 \text{ m}$ | West Coast North Island | Summer | 0            | 35     | 0.011    | 0                  | 62   | 8-217     |

Table A-26: Summary of model parameters, for flesh-footed shearwater capture in New Zealand commercial trawl, bottom-, and surface-longline fisheries. For each parameter, the table gives summary statistics of the posterior distribution (mean, median, and 95% credible interval, based on the 2.5% and 97.5% quantiles), and diagnostics (the number of chains that fail convergence and half-width tests (Heidelberger & Welch 1983), and the effective length of the chains (without autocorrelation). Trace plots of the chains are also shown. Base levels of the factor covariates are: Small SLL for method, North for region, and Summer (Jan-Mar) for season. Model strata included different different areas, seasons, years, target fisheries and areas for trawling, surface-longline (SLL), and bottom-longline (BLL) fisheries. IWL, integrated weight line.

| Parameter                            |        |        | Statistic                      |       |      | Dia              | agnostics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------|--------|--------|--------------------------------|-------|------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | Mean   | Median | 95% c.i.                       | Conv. | H.W. | Effective length | Trace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| S.d.(Year)                           |        |        |                                |       |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BLL                                  | 0.914  | 0.774  | 0.143 - 2.306                  |       |      | 2057             | ali nabada ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SLL                                  | 0.963  | 0.832  | 0.145 - 2.403                  |       |      | 1818             | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Trawl                                | 0.942  | 0.810  | 0.142 - 2.347                  |       |      | 2072             | A discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| S.d.(Area)                           | 0.919  | 0.830  | 0.317 - 2.046                  |       |      | 3762             | https://doi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| S.d.(Fishery)                        | 1.592  | 1.571  | 1.016 - 2.295                  |       |      | 3862             | discentibili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Overdispersion                       |        |        |                                |       |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BLL                                  | 6.120  | 6.036  | 3.993 - 8.733                  |       |      | 4002             | nterioridat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SLL                                  | 8.828  | 8.725  | 6.587 - 11.681                 |       |      | 3817             | distant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Trawl                                | 10.176 | 10.039 | 6.286 - 14.913                 |       |      | 4002             | pullingits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Intercept                            | 0.160  | 0.081  | 0.015 - 0.693                  |       |      | 3805             | ц. Л.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Method / Vessel class                |        |        |                                |       |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BLL / vessels $\geq$ 34 m            | 2.573  | 0.018  | 0.000 - 3.175                  |       |      | 4424             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SLL / vessels $\geq 43$ m            | 0.195  | 0.007  | 0.000 - 0.862                  |       |      | 3883             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Trawl / vessels $\geq 28$ m          | 0.038  | 0.009  | 0.000 - 0.267                  | 1     |      | 4159             | h.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BLL / vessels < 34 m                 | 1.681  | 0.686  | 0.074 - 8.740                  |       |      | 4002             | an dard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SLL / vessels < 43 m                 | 1.000  | 1.000  | 1.000 - 1.000                  | 3     |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Trawl / vessels $< 28$ m             | 0.560  | 0.233  | 0.025 - 2.304                  |       |      | 3873             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Region                               |        |        |                                |       |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| North                                | 1.000  | 1.000  | 1.000 - 1.000                  | 3     |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| South                                | 0.015  | 0.007  | 0.000 - 0.081                  |       |      | 3614             | adam.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Season                               |        |        |                                |       |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Autumn (Apr-Jun)                     | 0.777  | 0.745  | 0.408 - 1.316                  |       |      | 4290             | denomies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Spring (Oct-Dec)                     | 0.418  | 0.396  | 0.202 - 0.771                  |       |      | 4293             | Automotic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Summer (Jan-Mar)                     | 1.000  | 1.000  | 1.000 - 1.000                  | 3     |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Winter (Jul-Sep)                     | 0.030  | 0.019  | 0.001 - 0.121                  |       |      | 4002             | contraction of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Fishery                              |        |        |                                |       |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Albacore SLL                         | 1.695  | 1.225  | 0.133 - 5.986                  |       |      | 3734             | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bigeye SLL                           | 2.504  | 2.089  | 0.313 - 7.089                  |       |      | 4002             | a Arcestrant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bluenose BLL                         | 0.044  | 0.009  | 0.000 - 0.303                  |       |      | 4002             | a national and a state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Deepwater trawl                      | 0.152  | 0.036  | 0.000 - 0.998                  |       |      | 4053             | المدلية والمسدي                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Flatfish trawl                       | 0.200  | 0.049  | 0.000 - 1.378                  |       |      | 4134             | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Hake trawl                           | 0.941  | 0.390  | 0.000 - 5.185                  |       |      | 4002             | Although a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Hapuku BLL<br>Hali travul            | 2 220  | 0.697  | 0.056 - 4.000                  |       |      | 3330             | distantes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Inshere trawl                        | 2.220  | 0.140  | 0.224 - 7.233                  |       |      | 3009             | Different America                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ling (no IWI) BLL – vessels $> 34$ m | 0.169  | 0.149  | 0.021 - 0.393<br>0.000 - 4.872 |       |      | 3920             | and a second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ling(IWI) BLL = vessels > 34 m       | 0.000  | 0.261  | 0.000 - 4.354                  |       |      | 3872             | salation the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ling BLL – vessels $\leq 34$ m       | 0 133  | 0.028  | 0.000 - 0.920                  |       |      | 3726             | directory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ling trawl                           | 1.569  | 1.090  | 0.081 - 5.993                  |       |      | 4125             | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Mackerel trawl                       | 0.276  | 0.060  | 0.000 - 1.914                  |       |      | 3829             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Middle depths trawl                  | 0.470  | 0.269  | 0.011 - 2.101                  |       |      | 3846             | مانى .<br>مەلىك                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Minor targets BLL                    | 2.585  | 2.145  | 0.266 - 7.395                  |       |      | 3606             | A diagonal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Minor surface longline               | 1.158  | 0.712  | 0.051 - 5.028                  |       |      | 4002             | to diallo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Southern blue whiting trawl          | 0.924  | 0.358  | 0.000 - 5.182                  |       |      | 3894             | disease and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Scampi trawl                         | 2.281  | 1.889  | 0.288 - 6.626                  |       |      | 4090             | <u>deskeletetetetet</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Snapper BLL                          | 0.936  | 0.714  | 0.074 - 3.098                  |       |      | 4002             | and the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Squid trawl                          | 0.700  | 0.260  | 0.000 - 3.998                  |       |      | 3830             | an hair an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Southern bluetin SLL                 | 0.024  | 0.005  | 0.000 - 0.169                  |       |      | 4002             | يهال جنيتك                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Swordhish SEE                        | 0.407  | 0.274  | 0.019 - 2.302                  |       |      | 5697             | Sidi adala na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Area                                 |        | 0.665  |                                |       |      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Auckland Islands                     | 0.821  | 0.660  | 0.003 - 2.763                  |       |      | 4002             | ne ochradi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cook Strait                          | 0.947  | 0.754  | 0.005 - 3.213                  |       |      | 4147             | مقاناه مطارقت                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| East of North Island                 | 1.149  | 1.002  | 0.240 - 2.950                  |       |      | 4002             | to a final state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Eastern Chatham Rise                 | 0.788  | 0.649  | 0.004 - 2.568                  |       |      | 4131             | فالانعماد                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| East Subantarctic                    | 0.9/1  | 0.750  | 0.000 - 3.300                  |       |      | 4002             | فيعتظيمينه                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| r Iordiana<br>Kormadoa Islanda       | 0.980  | 0.771  | 0.005 - 3.3/9                  |       |      | 3/59             | المشدرة الافتد                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| North East                           | 1.077  | 0.3/1  | 0.002 - 2.442                  |       |      | 3804             | LUINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NOILII EASI                          | 1.8//  | 1.040  | 0.443 - 4.834                  |       |      | 4191             | aussatiata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Stowart Sparse Shelf                 | 0.972  | 0.775  | 0.003 - 3.338<br>0.002 - 2.850 |       |      | 3800             | and Hiller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Western Chatham Rice                 | 1 515  | 1 201  | 0.002 - 2.839<br>0.192 - 4.900 |       |      | 4002             | A DESCRIPTION OF THE OWNER OWNE OWNER OWNE OWNER OW |
| West Coast North Island              | 0 454  | 0 397  | 0.172 - 4.990<br>0.074 - 1.150 |       |      | 4002             | and a loss of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| West Coast South Island              | 0.878  | 0.716  | 0.004 - 2.891                  |       |      | 3951             | والملعلي                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



Figure A-9: Comparison between the observed and the predicted number of captures of flesh-footed shearwater (represented by their mean and 95% credible interval), for each combination of region, fishery, vessel size, area, and season. The points were coloured according to the fishing method (BLL, bottom longline; SLL, surface longline).

Table A-27: List of strata, defined as combinations of region, fishery, vessel size, area, and season, for which the number of observed captures of flesh-footed shearwater was outside the 95% credible interval (c.i.) of the estimated number of captures. There were one of these strata, representing 0.2% of all 620 strata. SLL, surface longline; BLL, bottom longline. Cut-off lengths between small and large vessels were 28 m for trawl, 34 m for BLL, and 45 m for SLL.

| Method | Fishery      | Vessel size | Region | Area       | Season           | Observations | Captures | Mean  | 95% c.i. |
|--------|--------------|-------------|--------|------------|------------------|--------------|----------|-------|----------|
| Trawl  | Scampi trawl | Small       | North  | North East | Spring (Oct-Dec) | 447          | 31       | 10.55 | 1–29     |

# A.10 Other birds

Table A-28: Model strata with the highest number of estimated captures of other birds in each of trawl, surface-longline (SLL), and bottom-longline (BLL) fisheries. Only the 15 strata with the most estimated captures are shown, sorted in decreasing order of mean estimated captures. The strata were defined as combinations of fishery, vessel size, area, and season. The number of observed captures between the fishing years 1998–99 and 2016–17 for bottom- and surface-longline fisheries, and between 2002–03 and 2016–17 for trawl fisheries are shown, along with the number of fishing events observed, the proportion of fishing events observed (observer coverage), the associated ratio estimate of the total number of captures, and the mean and 95% credible interval of the total estimated number of captures. IWL: Integrated weight line.

| Fishery                                 | Vessel size                 | Area                    | Season | Observations |        |          | Estimated captures |      |          |
|-----------------------------------------|-----------------------------|-------------------------|--------|--------------|--------|----------|--------------------|------|----------|
|                                         |                             |                         |        | Captures     | Events | Coverage | Ratio est.         | Mean | 95% c.i. |
| Trawl                                   |                             |                         |        |              |        |          |                    |      |          |
| Flatfish trawl                          | Vessels $< 28 \text{ m}$    | Stewart Snares Shelf    | Spring | 0            | 7      | 0.000    | 0                  | 342  | 113-867  |
| Flatfish trawl                          | Vessels $< 28$ m            | Stewart Snares Shelf    | Summer | 0            | 527    | 0.020    | 0                  | 313  | 113-734  |
| Flatfish trawl                          | Vessels $< 28$ m            | West Coast South Island | Autumn | 0            | 13     | 0.001    | 0                  | 300  | 91-754   |
| Flatfish trawl                          | Vessels $< 28$ m            | Western Chatham Rise    | Autumn | 0            | 94     | 0.005    | 0                  | 252  | 95–585   |
| Flatfish trawl                          | Vessels $< 28$ m            | Western Chatham Rise    | Spring | 0            | 54     | 0.003    | 0                  | 247  | 90-587   |
| Flatfish trawl                          | Vessels $< 28$ m            | Western Chatham Rise    | Summer | 32           | 241    | 0.011    | 3020               | 245  | 102-527  |
| Flatfish trawl                          | Vessels $< 28$ m            | West Coast South Island | Spring | 0            | 103    | 0.010    | 0                  | 243  | 72-647   |
| Flatfish trawl                          | Vessels $< 28$ m            | Stewart Snares Shelf    | Autumn | 0            | 51     | 0.003    | 0                  | 238  | 75-607   |
| Flatfish trawl                          | Vessels $< 28$ m            | West Coast South Island | Winter | 0            | 22     | 0.002    | 0                  | 228  | 69–588   |
| Flatfish trawl                          | Vessels $< 28$ m            | Stewart Snares Shelf    | Winter | 0            | 22     | 0.001    | 0                  | 226  | 70-571   |
| Flatfish trawl                          | Vessels $< 28 \text{ m}$    | Western Chatham Rise    | Winter | 0            | 63     | 0.004    | 0                  | 176  | 61-418   |
| Flatfish trawl                          | Vessels $< 28$ m            | West Coast South Island | Summer | 0            | 128    | 0.015    | 0                  | 166  | 50-428   |
| Flatfish trawl                          | Vessels $< 28$ m            | West Coast North Island | Autumn | 0            | 1      | 0.000    | 0                  | 133  | 39-342   |
| Hoki trawl                              | Vessels $\ge 28 \text{ m}$  | West Coast South Island | Winter | 34           | 14364  | 0.332    | 102                | 120  | 72-183   |
| Flatfish trawl                          | Vessels $< 28 \text{ m}$    | West Coast North Island | Winter | 0            | 0      | 0.000    |                    | 106  | 30-275   |
| Surface longline                        |                             |                         |        |              |        |          |                    |      |          |
| Albacore SLL                            | Vessels $< 43 \text{ m}$    | East of North Island    | Autumn | 0            | 23     | 0.015    | 0                  | 170  | 31-548   |
| Southern bluefin SLL                    | Vessels $< 43 \text{ m}$    | West Coast South Island | Autumn | 22           | 326    | 0.118    | 186                | 82   | 37-144   |
| Southern bluefin SLL                    | Vessels $< 43 \text{ m}$    | East of North Island    | Autumn | 1            | 372    | 0.045    | 22                 | 70   | 29-132   |
| Bigeye SLL                              | Vessels $< 43 \text{ m}$    | North East              | Spring | 5            | 233    | 0.034    | 148                | 64   | 23-132   |
| Albacore SLL                            | Vessels $< 43 \text{ m}$    | East of North Island    | Summer | 0            | 7      | 0.011    | 0                  | 60   | 10-194   |
| Albacore SLL                            | Vessels $< 43 \text{ m}$    | North East              | Autumn | 0            | 1      | 0.002    | 0                  | 60   | 10-197   |
| Bigeye SLL                              | Vessels $< 43 \text{ m}$    | North East              | Winter | 0            | 102    | 0.013    | 0                  | 59   | 20-127   |
| Albacore SLL                            | Vessels $< 43 \text{ m}$    | North East              | Winter | 0            | 0      | 0.000    |                    | 47   | 7-156    |
| Bigeye SLL                              | Vessels $< 43 \text{ m}$    | North East              | Summer | 1            | 160    | 0.029    | 34                 | 44   | 14–96    |
| Bigeye SLL                              | Vessels $< 43 \text{ m}$    | North East              | Autumn | 0            | 56     | 0.012    | 0                  | 42   | 14-89    |
| Albacore SLL                            | Vessels $< 43 \text{ m}$    | North East              | Spring | 0            | 1      | 0.004    | 0                  | 41   | 5-135    |
| Bigeye SLL                              | Vessels $< 43 \text{ m}$    | East of North Island    | Summer | 0            | 161    | 0.026    | 0                  | 40   | 12-92    |
| Southern bluefin SLL                    | Vessels $< 43 \text{ m}$    | North East              | Winter | 1            | 400    | 0.109    | 9                  | 35   | 13-70    |
| Bigeye SLL                              | Vessels $< 43 \text{ m}$    | East of North Island    | Autumn | 0            | 96     | 0.021    | 0                  | 32   | 9–74     |
| Albacore SLL                            | Vessels $< 43 \text{ m}$    | West Coast North Island | Summer | 0            | 0      | 0.000    |                    | 27   | 3–97     |
| Bottom longline                         |                             |                         |        |              |        |          |                    |      |          |
| Snapper BLL                             | Vessels $< 34 \text{ m}$    | North East              | Spring | 11           | 535    | 0.013    | 867                | 1085 | 560-1933 |
| Snapper BLL                             | Vessels $< 34 \text{ m}$    | North East              | Autumn | 8            | 508    | 0.014    | 566                | 880  | 451-1592 |
| Snapper BLL                             | Vessels $< 34 \text{ m}$    | North East              | Summer | 22           | 743    | 0.020    | 1122               | 829  | 436-1448 |
| Snapper BLL                             | Vessels $< 34 \text{ m}$    | North East              | Winter | 0            | 0      | 0.000    |                    | 715  | 341-1348 |
| Hapuku BLL                              | Vessels $< 34 \text{ m}$    | Eastern Chatham Rise    | Autumn | 0            | 0      | 0.000    |                    | 107  | 18-361   |
| Hāpuku BLL                              | Vessels $< 34 \text{ m}$    | Eastern Chatham Rise    | Summer | 0            | 0      | 0.000    |                    | 96   | 16-321   |
| Ling (no IWL) BLL – vessels $\geq$ 34 m | Vessels $\geq 34 \text{ m}$ | Eastern Chatham Rise    | Winter | 15           | 1018   | 0.142    | 105                | 86   | 41-158   |
| Hāpuku BLL                              | Vessels $< 34 \text{ m}$    | Eastern Chatham Rise    | Spring | 0            | 24     | 0.015    | 0                  | 76   | 12-257   |
| Hāpuku BLL                              | Vessels $< 34 \text{ m}$    | North East              | Winter | 0            | 20     | 0.006    | 0                  | 73   | 15-217   |
| Ling BLL – vessels $< 34$ m             | vessels $< 34 \text{ m}$    | west Coast South Island | Spring | 0            | 2      | 0.001    | 0                  | 71   | 18-189   |
| Minor targets BLL                       | vessels $< 34 \text{ m}$    | west Coast North Island | Summer | 2            | 229    | 0.042    | 47                 | 69   | 19-173   |
| Ling BLL – vessels $< 34$ m             | vessels $< 34 \text{ m}$    | west Coast South Island | Winter | 0            | 6      | 0.002    | 0                  | 64   | 18-163   |
| Hapuku BLL                              | vessels $< 34 \text{ m}$    | west Coast North Island | Spring | 0            | 20     | 0.007    | 0                  | 63   | 12-199   |
| Minor targets BLL                       | Vessels $< 34 \text{ m}$    | West Coast North Island | Spring | 3            | 46     | 0.011    | 274                | 63   | 17-160   |
| Minor targets BLL                       | vessels $< 34$ m            | Cook Strait             | Summer | 0            | 0      | 0.000    |                    | 62   | 12-188   |

Table A-29: Summary of model parameters, for other birds capture in New Zealand commercial trawl, bottom-, and surface-longline fisheries. For each parameter, the table gives summary statistics of the posterior distribution (mean, median, and 95% credible interval, based on the 2.5% and 97.5% quantiles), and diagnostics (the number of chains that fail convergence and half-width tests (Heidelberger & Welch 1983), and the effective length of the chains (without autocorrelation). Trace plots of the chains are also shown. Base levels of the factor covariates are: Large trawl for method, South for region, and Autumn (Apr-Jun) for season. Model strata included different different areas, seasons, years, target fisheries and areas for trawling, surface-longline (SLL), and bottom-longline (BLL) fisheries. IWL, integrated weight line.

| Parameter                                                                |        |         | Statistic                        |       |      | Dia              | gnostics                            |
|--------------------------------------------------------------------------|--------|---------|----------------------------------|-------|------|------------------|-------------------------------------|
|                                                                          | Mean   | Median  | 95% c.i.                         | Conv. | H.W. | Effective length | Trace                               |
| S.d.(Year)                                                               |        |         |                                  |       |      |                  |                                     |
| BLL                                                                      | 0.588  | 0.560   | 0.127 - 1.224                    |       |      | 3660             | <b>NAMES OF</b>                     |
| SLL                                                                      | 0.790  | 0.738   | 0.154 - 1.717                    |       |      | 3707             | an construction of                  |
| Trawl                                                                    | 0.336  | 0.325   | 0.114 - 0.615                    |       |      | 3899             | <b>Aminteenhiste</b>                |
| S.d.(Area)                                                               | 0.360  | 0.339   | 0.106 - 0.732                    |       |      | 4002             | unktermente                         |
| S.d.(Fishery)                                                            | 0.895  | 0.879   | 0.555 - 1.327                    |       |      | 4002             | diribadunia                         |
| Overdispersion                                                           |        |         |                                  |       |      |                  |                                     |
| BLL                                                                      | 10.511 | 10.436  | 7.854 - 13.599                   |       |      | 4002             | (dependent)                         |
| SLL                                                                      | 4.530  | 4.491   | 0.739 - 9.153                    |       |      | 4002             | <b>Hiderestell</b>                  |
| Irawi                                                                    | 19.120 | 19.295  | 17.305 - 19.974                  |       |      | 4462             | ومردوب والمراجع                     |
| Intercept                                                                | 0.004  | 0.004   | 0.002 - 0.011                    |       |      | 3622             | hul-                                |
| Method / Vessel class                                                    |        |         |                                  |       |      |                  |                                     |
| BLL / vessels $\geq$ 34 m                                                | 5.023  | 3.707   | 0.789 – 16.579                   |       |      | 4109             |                                     |
| SLL / vessels $\geq 43 \text{ m}$                                        | 5.741  | 4.190   | 0.893 - 19.799                   | 2     |      | 4353             | makktion                            |
| $1 \text{ rawi / vessels} \ge 28 \text{ m}$                              | 11 779 | 1.000   | 1.000 - 1.000                    | 3     |      | 2024             |                                     |
| SLL / vessels < 34 III                                                   | 26 598 | 9.383   | 2.494 - 54.581<br>4.304 - 93.197 |       |      | 3631             | فليتلينسين                          |
| Trawl / vessels < 28 m                                                   | 1.209  | 1.073   | 0.400 - 2.884                    |       |      | 3589             | Manadana and                        |
| Pasien                                                                   |        |         |                                  |       |      |                  |                                     |
| North                                                                    | 0.576  | 0.516   | 0.255 - 1.260                    |       |      | 4002             |                                     |
| South                                                                    | 1.000  | 1.000   | 1.000 - 1.000                    | 3     |      | 4002             |                                     |
| Season                                                                   |        |         |                                  |       |      |                  |                                     |
| Autumn (Apr-Jun)                                                         | 1.000  | 1.000   | 1.000 - 1.000                    | 3     |      |                  |                                     |
| Spring (Oct-Dec)                                                         | 1.069  | 1.043   | 0.693 - 1.592                    |       |      | 4002             | <b>benetikiste</b> in               |
| Summer (Jan-Mar)                                                         | 0.915  | 0.896   | 0.593 - 1.355                    |       |      | 3845             | <b>subhistion</b>                   |
| Winter (Jul-Sep)                                                         | 0.886  | 0.868   | 0.568 - 1.300                    |       |      | 4002             | heidpublik                          |
| Fishery                                                                  |        |         |                                  |       |      |                  |                                     |
| Albacore SLL                                                             | 3.407  | 3.141   | 1.203 - 7.109                    |       |      | 4292             | tionid feel                         |
| Bigeye SLL                                                               | 0.302  | 0.250   | 0.043 - 0.8/4                    |       |      | 3858             | <u>a anti-a</u>                     |
| Deenwater trawl                                                          | 0.460  | 0.373   | 0.041 - 1.341<br>0.093 - 0.714   |       |      | 4002             | ikeralisian.                        |
| Flatfish trawl                                                           | 3 753  | 3 4 3 1 | 1489 - 7744                      |       |      | 3584             | and spinster                        |
| Hake trawl                                                               | 0.452  | 0.393   | 0.103 - 1.108                    |       |      | 3845             | No. of Acres                        |
| Hāpuku BLL                                                               | 1.435  | 1.241   | 0.332 - 3.705                    |       |      | 3805             | and income                          |
| Hoki trawl                                                               | 0.671  | 0.633   | 0.236 - 1.310                    |       |      | 3972             | www.combie                          |
| Inshore trawl                                                            | 0.584  | 0.518   | 0.167 - 1.366                    |       |      | 3914             | <u>and a stables</u>                |
| Ling (no IWL) BLL – vessels $\geq 34$ m                                  | 1.245  | 1.084   | 0.263 - 3.170                    |       |      | 4002             | لنعتط ميعنا                         |
| Ling (IWL) BLL – vessels $\geq 34$ III<br>Ling BLL – vessels $\leq 34$ m | 0.534  | 0.755   | 0.174 - 2.520<br>0.103 - 1.439   |       |      | 4002             | international second                |
| Ling trawl                                                               | 1 303  | 1 189   | 0.373 - 2.924                    |       |      | 4002             | Main marked                         |
| Mackerel trawl                                                           | 1.124  | 1.034   | 0.373 - 2.412                    |       |      | 4002             | فعالقينيه                           |
| Middle depths trawl                                                      | 0.512  | 0.478   | 0.162 - 1.097                    |       |      | 4002             | dia statute                         |
| Minor targets BLL                                                        | 1.023  | 0.904   | 0.264 - 2.533                    |       |      | 4002             | فيعتلمنين                           |
| Minor surface longline                                                   | 0.614  | 0.444   | 0.012 - 2.180                    |       |      | 4028             | <b>Mediation</b>                    |
| Southern blue whiting trawl                                              | 0.844  | 0.749   | 0.219 - 1.995                    |       |      | 4066             | Referentia                          |
| Scampi trawi<br>Snapper BI I                                             | 1 537  | 0.441   | 0.121 - 1.234<br>0.436 - 3.564   |       |      | 3890             | deskikanste<br>deskikanste          |
| Souid trawl                                                              | 0.553  | 0.516   | 0.185 - 1.139                    |       |      | 3893             | and so in the local sector          |
| Southern bluefin SLL                                                     | 0.356  | 0.308   | 0.066 - 0.928                    |       |      | 3793             | مرمد المراد                         |
| Swordfish SLL                                                            | 0.425  | 0.331   | 0.047 - 1.384                    |       |      | 4002             | Linestek                            |
| Area                                                                     |        |         |                                  |       |      |                  |                                     |
| Auckland Islands                                                         | 1.270  | 1.210   | 0.777 - 2.095                    |       |      | 4126             | anihinihi                           |
| Cook Strait                                                              | 1.068  | 1.025   | 0.576 - 1.814                    |       |      | 4002             | united in the local division of the |
| East of North Island                                                     | 0.775  | 0.777   | 0.301 - 1.289                    | 1     |      | 3466             | valeninis                           |
| Eastern Chatham Rise                                                     | 0.868  | 0.862   | 0.501 - 1.298                    |       |      | 4179             | is big that private                 |
| Fiordland                                                                | 1.080  | 1.045   | 0.525 - 1.287<br>0.624 - 1.699   |       |      | 4002             | Antipativity                        |
| Kermadec Islands                                                         | 1.446  | 1.322   | 0.779 - 2.743                    |       |      | 3884             | متحيات ماد                          |
| North East                                                               | 0.964  | 0.954   | 0.449 - 1.528                    |       |      | 3701             | -ninitinda                          |
| South Subantarctic                                                       | 0.793  | 0.790   | 0.361 - 1.258                    |       |      | 3885             | destidentilt                        |
| Stewart Snares Shelf                                                     | 0.903  | 0.893   | 0.560 - 1.329                    |       |      | 4002             | notherstal                          |
| Western Chatham Rise                                                     | 0.836  | 0.833   | 0.448 - 1.283                    |       |      | 3900             | <b>Kistfordula</b>                  |
| West Coast South Island                                                  | 1 390  | 1 333   | 0.520 - 1.521<br>0.889 - 2.197   |       |      | 4002             |                                     |



Figure A-10: Comparison between the observed and the predicted number of captures of other birds (represented by their mean and 95% credible interval), for each combination of region, fishery, vessel size, area, and season. The points were coloured according to the fishing method (BLL, bottom longline; SLL, surface longline).

Table A-30: List of strata, defined as combinations of region, fishery, vessel size, area, and season, for which the number of observed captures of other birds was outside the 95% credible interval (c.i.) of the estimated number of captures. There were ten of these strata, representing 1.6% of all 620 strata. SLL, surface longline; BLL, bottom longline. Cut-off lengths between small and large vessels were 28 m for trawl, 34 m for BLL, and 45 m for SLL.

| Method | Fishery              | Vessel size | Region | Area                    | Season           | Observations | Captures | Mean | 95% c.i. |
|--------|----------------------|-------------|--------|-------------------------|------------------|--------------|----------|------|----------|
| SLL    | Southern bluefin SLL | Small       | South  | West Coast South Island | Autumn (Apr-Jun) | 326          | 22       | 9.55 | 2-21     |
| Trawl  | Deepwater trawl      | Large       | South  | Eastern Chatham Rise    | Autumn (Apr-Jun) | 2997         | 10       | 2.88 | 0-8      |
| Trawl  | Flatfish trawl       | Small       | South  | Western Chatham Rise    | Summer (Jan-Mar) | 241          | 32       | 2.62 | 0-14     |
| Trawl  | Mackerel trawl       | Large       | North  | West Coast North Island | Summer (Jan-Mar) | 1982         | 9        | 2.39 | 0-8      |
| Trawl  | Hoki trawl           | Large       | South  | Cook Strait             | Winter (Jul-Sep) | 1074         | 9        | 2.36 | 0-8      |
| BLL    | Hāpuku BLL           | Small       | North  | North East              | Autumn (Apr-Jun) | 26           | 6        | 0.64 | 0-5      |
| SLL    | Southern bluefin SLL | Large       | North  | East of North Island    | Winter (Jul-Sep) | 146          | 3        | 0.33 | 0-2      |
| Trawl  | Hoki trawl           | Large       | South  | Fiordland               | Autumn (Apr-Jun) | 137          | 4        | 0.32 | 0-3      |
| Trawl  | Hoki trawl           | Large       | South  | Fiordland               | Spring (Oct-Dec) | 33           | 2        | 0.10 | 0-1      |
| Trawl  | Ling trawl           | Large       | South  | South Subantarctic      | Summer (Jan-Mar) | 1            | 1        | 0.01 | 0–0      |

# APPENDIX B: SUMMARIES OF CAPTURES BY SPECIES AND FISHERY

#### **B.1 All birds captures**

#### **B.1.1** All birds captures in large-vessel ( $\geq$ 28 m length) trawl fisheries

Table B-31: Annual fishing effort and number of tows observed in large-vessel (≥ 28 m length) trawl fisheries, number of observed captures of all birds and observed capture rate (captures per hundred tows), estimated captures and capture rate of all birds (mean and 95% credible interval).

|         |        |        | Ot   | oserved | Est. captures |             | Est. | capture rate |
|---------|--------|--------|------|---------|---------------|-------------|------|--------------|
| Year    | Effort | % obs. | Cap. | Rate    | Mean          | 95% c.i.    | Mean | 95% c.i.     |
| 2002-03 | 54 200 | 11.9   | 260  | 4.03    | 1 807.2126    | 1 435-2 294 | 3.33 | 2.65-4.23    |
| 2003-04 | 47 339 | 13.4   | 248  | 3.90    | 1 515.4348    | 1 221-1 877 | 3.20 | 2.58-3.97    |
| 2004-05 | 44 156 | 17.2   | 428  | 5.64    | 2 098.8146    | 1 749-2 508 | 4.75 | 3.96-5.68    |
| 2005-06 | 39 121 | 15.8   | 333  | 5.39    | 1 825.0397    | 1 431-2 356 | 4.67 | 3.66-6.02    |
| 2006-07 | 35 193 | 20.6   | 176  | 2.43    | 946.3743      | 739-1 236   | 2.69 | 2.10-3.51    |
| 2007-08 | 32 767 | 25.3   | 221  | 2.66    | 930.1157      | 743-1175    | 2.84 | 2.27-3.59    |
| 2008-09 | 29 976 | 24.7   | 373  | 5.03    | 1 225.5492    | 1 010-1 525 | 4.09 | 3.37-5.09    |
| 2009-10 | 29 505 | 26.0   | 241  | 3.14    | 961.7836      | 773-1 196   | 3.26 | 2.62-4.05    |
| 2010-11 | 27 397 | 22.7   | 311  | 5.00    | 1 169.4785    | 947-1 464   | 4.27 | 3.46-5.34    |
| 2011-12 | 25 593 | 32.7   | 225  | 2.68    | 773.4495      | 638-944     | 3.02 | 2.49-3.69    |
| 2012-13 | 23 980 | 49.3   | 693  | 5.86    | 1 041.2991    | 943-1 169   | 4.34 | 3.93-4.87    |
| 2013-14 | 25 657 | 43.7   | 462  | 4.12    | 819.6757      | 722-937     | 3.19 | 2.81-3.65    |
| 2014-15 | 25 648 | 43.9   | 597  | 5.30    | 1 027.0590    | 916-1 172   | 4.00 | 3.57-4.57    |
| 2015-16 | 25 008 | 43.0   | 435  | 4.04    | 738.3916      | 660-835     | 2.95 | 2.64-3.34    |
| 2016-17 | 25 750 | 38.4   | 399  | 4.03    | 769.7299      | 666–903     | 2.99 | 2.59-3.51    |



#### (b) October 2016 to September 2017



Figure B-11: All birds captures in large-vessel ( $\geq 28$  m length) trawl fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016–17 (Following confidentiality rules, 97.8% of total effort is shown), (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

# B.1.2 All birds captures in small-vessel (< 28 m length) trawl fisheries

Table B-32: Annual fishing effort and number of tows observed in small-vessel (< 28 m length) trawl fisheries, number of observed captures of all birds and observed capture rate (captures per hundred tows), estimated captures and capture rate of all birds (mean and 95% credible interval).

|         |        |        | Ot   | oserved |            | Est. captures | Est. capture rate |           |
|---------|--------|--------|------|---------|------------|---------------|-------------------|-----------|
| Year    | Effort | % obs. | Cap. | Rate    | Mean       | 95% c.i.      | Mean              | 95% c.i.  |
| 2002-03 | 75 965 | 0.5    | 1    | 0.26    | 1 455.9198 | 1 073-2 019   | 1.92              | 1.41-2.66 |
| 2003-04 | 73 470 | 0.2    | 3    | 1.64    | 1 280.6399 | 942-1771      | 1.74              | 1.28-2.41 |
| 2004-05 | 76 309 | 0.2    | 6    | 4.76    | 1 406.0465 | 1 054-1 924   | 1.84              | 1.38-2.52 |
| 2005-06 | 70 822 | 0.6    | 12   | 2.75    | 1 348.2019 | 1 011-1 840   | 1.90              | 1.43-2.60 |
| 2006-07 | 68 115 | 1.0    | 32   | 4.66    | 1 335.2491 | 998-1 832     | 1.96              | 1.47-2.69 |
| 2007-08 | 56 770 | 1.3    | 11   | 1.46    | 1 049.5842 | 780-1 462     | 1.85              | 1.37-2.58 |
| 2008-09 | 57 574 | 4.1    | 87   | 3.69    | 1 083.6317 | 831-1 454     | 1.88              | 1.44-2.53 |
| 2009-10 | 63 384 | 2.1    | 23   | 1.71    | 1 140.6209 | 855-1 573     | 1.80              | 1.35-2.48 |
| 2010-11 | 58 692 | 2.1    | 53   | 4.29    | 1 108.4345 | 847-1459      | 1.89              | 1.44-2.49 |
| 2011-12 | 58 827 | 1.7    | 22   | 2.24    | 1 071.2946 | 804-1479      | 1.82              | 1.37-2.51 |
| 2012-13 | 59 857 | 1.0    | 8    | 1.38    | 1 099.3761 | 827-1 477     | 1.84              | 1.38-2.47 |
| 2013-14 | 59 452 | 3.3    | 25   | 1.27    | 1 116.4790 | 854-1474      | 1.88              | 1.44-2.48 |
| 2014-15 | 53 118 | 4.3    | 21   | 0.91    | 1 005.5090 | 759-1 359     | 1.89              | 1.43-2.56 |
| 2015-16 | 53 024 | 4.2    | 25   | 1.12    | 1 013.7754 | 768-1 370     | 1.91              | 1.45-2.58 |
| 2016-17 | 52 420 | 7.3    | 25   | 0.65    | 991.7031   | 742-1 348     | 1.89              | 1.42-2.57 |

(a) Estimated captures





(d) Effort, and observer coverage



03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 Fishing year

(b) October 2016 to September 2017



(e) Monthly distribution, all years



Figure B-12: All birds captures in small-vessel (< 28 m length) trawl fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016–17, (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

per 100 tows

Captures

## **B.1.3** All birds captures in large-vessel ( $\geq$ 28 m length) bottom-longline fisheries

Table B-33: Annual fishing effort and number of hooks observed in large-vessel ( $\geq$  28 m length) bottomlongline fisheries, number of observed captures of all birds and observed capture rate (captures per thousand hooks), estimated captures and capture rate of all birds (mean and 95% credible interval).

|         |            |        | C    | Observed | Est. captures Est. capt |           |       | est. capture rate |
|---------|------------|--------|------|----------|-------------------------|-----------|-------|-------------------|
| Year    | Effort     | % obs. | Cap. | Rate     | Mean                    | 95% c.i.  | Mean  | 95% c.i.          |
| 2002-03 | 17 928 519 | 61.5   | 254  | 0.230    | 619.8106                | 428-1 020 | 0.346 | 0.239-0.569       |
| 2003-04 | 23 339 252 | 20.9   | 46   | 0.094    | 355.6357                | 193-707   | 0.152 | 0.083-0.303       |
| 2004-05 | 18 932 296 | 13.7   | 17   | 0.066    | 668.5972                | 273-1 568 | 0.353 | 0.144-0.828       |
| 2005-06 | 14 888 023 | 24.4   | 29   | 0.080    | 309.2389                | 145-733   | 0.208 | 0.097-0.492       |
| 2006-07 | 12 759 288 | 14.2   | 15   | 0.083    | 521.6844                | 183-1 353 | 0.409 | 0.143-1.060       |
| 2007-08 | 14 127 896 | 21.8   | 22   | 0.071    | 409.9673                | 175-992   | 0.290 | 0.124-0.702       |
| 2008-09 | 12 861 501 | 24.9   | 5    | 0.016    | 312.0522                | 101-828   | 0.243 | 0.079-0.644       |
| 2009-10 | 13 602 940 | 12.6   | 10   | 0.058    | 348.4640                | 134-874   | 0.256 | 0.099-0.643       |
| 2010-11 | 12 919 517 | 11.8   | 18   | 0.118    | 332.1027                | 137-815   | 0.257 | 0.106-0.631       |
| 2011-12 | 11 571 447 | 17.5   | 4    | 0.020    | 207.6829                | 74-531    | 0.179 | 0.064-0.459       |
| 2012-13 | 8 234 145  | 3.3    | 0    | 0.000    | 259.1379                | 109-588   | 0.315 | 0.132-0.714       |
| 2013-14 | 16 459 721 | 11.7   | 47   | 0.244    | 682.0625                | 332-1 422 | 0.414 | 0.202-0.864       |
| 2014-15 | 14 060 072 | 2.5    | 11   | 0.308    | 481.5335                | 210-1 124 | 0.342 | 0.149-0.799       |
| 2015-16 | 18 604 396 | 10.8   | 80   | 0.398    | 606.8813                | 319-1 223 | 0.326 | 0.171-0.657       |
| 2016-17 | 22 157 051 | 17.6   | 13   | 0.033    | 567.1779                | 255-1 217 | 0.256 | 0.115-0.549       |

(a) Estimated captures



(c) Observed captures



(d) Effort, and observer coverage



(b) October 2016 to September 2017



(e) Monthly distribution, all years



Figure B-13: All birds captures in large-vessel ( $\geq 28$  m length) bottom-longline fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016–17 (Following confidentiality rules, 79.5% of total effort is shown), (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

# **B.1.4** All birds captures in small-vessel (< 28 m length) bottom-longline fisheries

Table B-34: Annual fishing effort and number of hooks observed in small-vessel (< 28 m length) bottomlongline fisheries, number of observed captures of all birds and observed capture rate (captures per thousand hooks), estimated captures and capture rate of all birds (mean and 95% credible interval).

|         |            | Observed |      | Est. captures |           | Est. capture rate |      |             |
|---------|------------|----------|------|---------------|-----------|-------------------|------|-------------|
| Year    | Effort     | % obs.   | Cap. | Rate          | Mean      | 95% c.i.          | Mean | 95% c.i.    |
| 2002-03 | 19 869 259 | 0.0      | 3    | 5.46          | 2 044.935 | 1 535-2 848       | 1.03 | 0.77-1.43   |
| 2003-04 | 19 910 503 | 1.1      | 11   | 0.49          | 1 758.624 | 1 316-2 444       | 0.88 | 0.66-1.23   |
| 2004-05 | 22 930 292 | 1.3      | 13   | 0.45          | 1 936.519 | 1 409-2 808       | 0.84 | 0.61-1.22   |
| 2005-06 | 22 260 510 | 0.7      | 12   | 0.76          | 1 700.249 | 1 183-2 577       | 0.76 | 0.53-1.16   |
| 2006-07 | 25 371 652 | 2.0      | 44   | 0.89          | 2 014.890 | 1 411-3 148       | 0.79 | 0.56-1.24   |
| 2007-08 | 27 376 411 | 1.8      | 18   | 0.37          | 1 837.148 | 1 253-2 930       | 0.67 | 0.46-1.07   |
| 2008-09 | 24 573 964 | 3.6      | 34   | 0.38          | 1 729.595 | 1 202-2 705       | 0.70 | 0.49-1.10   |
| 2009-10 | 26 845 521 | 2.7      | 58   | 0.80          | 1 812.609 | 1 271-2 806       | 0.68 | 0.47-1.05   |
| 2010-11 | 27 981 339 | 1.0      | 2    | 0.07          | 1 996,964 | 1 407-3 081       | 0.71 | 0.50 - 1.10 |
| 2011-12 | 26 312 456 | 0.3      | 6    | 0.72          | 1 853.290 | 1 254-3 035       | 0.70 | 0.48-1.15   |
| 2012-13 | 24 271 654 | 1.9      | 7    | 0.15          | 1 618.712 | 1 104-2 602       | 0.67 | 0.45 - 1.07 |
| 2013-14 | 24 419 994 | 4.1      | 57   | 0.57          | 1 480.920 | 1 064-2 174       | 0.61 | 0.44-0.89   |
| 2014-15 | 25 289 849 | 2.1      | 16   | 0.30          | 1 383.364 | 982-2 092         | 0.55 | 0.39-0.83   |
| 2015-16 | 24 887 264 | 2.5      | 24   | 0.38          | 1 327.626 | 918-2 105         | 0.53 | 0.37-0.85   |
| 2016-17 | 24 396 916 | 4.5      | 40   | 0.36          | 1 278.703 | 912-1 922         | 0.52 | 0.37-0.79   |

(a) Estimated captures



(c) Observed captures



(d) Effort, and observer coverage



(b) October 2016 to September 2017



(e) Monthly distribution, all years



Figure B-14: All birds captures in small-vessel (< 28 m length) bottom-longline fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016–17 (Following confidentiality rules, 97.0% of total effort is shown), (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

# **B.1.5** All birds captures in large-vessel ( $\geq$ 28 m length) surface-longline fisheries

Table B-35: Annual fishing effort and number of hooks observed in large-vessel ( $\geq$  28 m length) surfacelongline fisheries, number of observed captures of all birds and observed capture rate (captures per thousand hooks), estimated captures and capture rate of all birds (mean and 95% credible interval). Following Fisheries New Zealand data anonymity rules, effort and rate data are not shown where there were fewer than three vessels fishing.

|         |           | Observed |      |       | Est. captures |          | Est. | capture rate |
|---------|-----------|----------|------|-------|---------------|----------|------|--------------|
| Year    | Effort    | % obs.   | Cap. | Rate  | Mean          | 95% c.i. | Mean | 95% c.i.     |
| 2002-03 | 2 197 522 | 99.9     | 115  | 0.52  | 138.51374     | 118-190  | 0.63 | 0.54-0.86    |
| 2003-04 | 1 655 920 | 88.9     | 64   | 0.43  | 185.60770     | 86-735   | 1.12 | 0.52-4.44    |
| 2004-05 |           |          | 33   | 0.51  | 33.00000      | 33-33    |      |              |
| 2005-06 |           |          | 15   | 0.25  | 27.72764      | 17-55    |      | .—.          |
| 2006-07 | 1 407 149 | 60.7     | 111  | 1.30  | 156.43253     | 130-197  | 1.11 | 0.92-1.40    |
| 2007-08 |           |          | 24   | 0.84  | 42.46952      | 28-72    |      |              |
| 2008-09 |           |          | 42   | 0.53  | 43.52549      | 42-52    |      |              |
| 2009-10 |           |          | 56   | 1.17  | 56.00000      | 56-56    |      |              |
| 2010-11 |           |          | 29   | 0.58  | 29.00000      | 29-29    |      |              |
| 2011-12 |           |          | 33   | 0.59  | 33.00000      | 33-33    |      |              |
| 2012-13 |           |          | 5    | 0.10  | 5.00000       | 5-5      |      |              |
| 2013-14 |           |          | 16   | 0.24  | 16.00000      | 16-16    |      | .—.          |
| 2014-15 |           |          | 22   | 0.36  | 22,10070      | 22-23    |      | .—.          |
| 2015-16 |           |          | 27   | 11.37 | 43.61619      | 30-76    |      | .—.          |
| 2016-17 | 0         |          | 0    |       |               | _        |      | _            |



Figure B-15: All birds captures in large-vessel ( $\geq 28$  m length) surface-longline fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures from 2002–03 to 2016–17 (Following confidentiality rules, 1.3% of total effort is shown), (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

#### B.1.6 All birds captures in small-vessel (< 28 m length) surface-longline fisheries

Table B-36: Annual fishing effort and number of hooks observed in small-vessel (< 28 m length) surfacelongline fisheries, number of observed captures of all birds and observed capture rate (captures per thousand hooks), estimated captures and capture rate of all birds (mean and 95% credible interval).

|         |           | Observed |      | Est. captures |            | Est. capture rate |      |                                                                                                                                                                                                                             |
|---------|-----------|----------|------|---------------|------------|-------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Year    | Effort    | % obs.   | Cap. | Rate          | Mean       | 95% c.i.          | Mean | capture rate<br>95% c.i.<br>1.82–3.56<br>1.94–3.94<br>1.84–4.11<br>1.92–3.98<br>1.98–3.92<br>1.94–4.18<br>1.80–3.77<br>2.17–3.99<br>1.94–4.09<br>2.15–4.35<br>2.21–4.29<br>2.29–4.65<br>1.99–4.15<br>2.38–4.42<br>2.04–3.89 |
| 2002-03 | 8 572 516 | 0.0      | 0    |               | 2 122.3486 | 1 557-3 055       | 2.48 | 1.82-3.56                                                                                                                                                                                                                   |
| 2003-04 | 5 730 829 | 2.4      | 7    | 0.52          | 1 522.1669 | 1 109-2 256       | 2.66 | 1.94-3.94                                                                                                                                                                                                                   |
| 2004-05 | 3 044 211 | 4.7      | 8    | 0.56          | 811.8593   | 560-1 250         | 2.67 | 1.84-4.11                                                                                                                                                                                                                   |
| 2005-06 | 3 028 099 | 3.2      | 22   | 2.26          | 815.1164   | 581-1 204         | 2.69 | 1.92-3.98                                                                                                                                                                                                                   |
| 2006-07 | 2 332 763 | 8.0      | 76   | 4.06          | 639.6829   | 461-915           | 2.74 | 1.98-3.92                                                                                                                                                                                                                   |
| 2007-08 | 1 678 054 | 8.1      | 13   | 0.95          | 471.9848   | 325-702           | 2.81 | 1.94-4.18                                                                                                                                                                                                                   |
| 2008-09 | 2 306 403 | 6.5      | 15   | 0.99          | 599.3968   | 416-870           | 2.60 | 1.80-3.77                                                                                                                                                                                                                   |
| 2009-10 | 2 516 706 | 7.3      | 79   | 4.29          | 724.9835   | 547-1 004         | 2.88 | 2.17-3.99                                                                                                                                                                                                                   |
| 2010-11 | 2 684 809 | 6.4      | 18   | 1.05          | 740.7799   | 521-1 099         | 2.76 | 1.94-4.09                                                                                                                                                                                                                   |
| 2011-12 | 2 548 687 | 6.8      | 31   | 1.79          | 758.4025   | 547-1 109         | 2.98 | 2.15-4.35                                                                                                                                                                                                                   |
| 2012-13 | 2 389 412 | 3.1      | 22   | 3.02          | 722.9360   | 528-1 026         | 3.03 | 2.21-4.29                                                                                                                                                                                                                   |
| 2013-14 | 1 896 434 | 6.8      | 20   | 1.55          | 608.0330   | 435-881           | 3.21 | 2.29-4.65                                                                                                                                                                                                                   |
| 2014-15 | 1 790 036 | 6.0      | 16   | 1.50          | 507.6937   | 357-743           | 2.84 | 1.99-4.15                                                                                                                                                                                                                   |
| 2015-16 | 2 302 691 | 13.0     | 104  | 3.48          | 729.6132   | 549-1 017         | 3.17 | 2.38-4.42                                                                                                                                                                                                                   |
| 2016-17 | 2 092 486 | 16.5     | 51   | 1.48          | 579.0960   | 426-814           | 2.77 | 2.04-3.89                                                                                                                                                                                                                   |

(b) October 2016 to September 2017





Figure B-16: All birds captures in small-vessel (< 28 m length) surface-longline fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016–17 (Following confidentiality rules, 95.4% of total effort is shown), (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

#### **B.2 White-capped albatross captures**

#### B.2.1 White-capped albatross captures in large-vessel (> 28 m length) trawl fisheries

Table B-37: Annual fishing effort and number of tows observed in large-vessel ( $\geq$  28 m length) trawl fisheries, number of observed captures of white-capped albatross and observed capture rate (captures per hundred tows), estimated captures and capture rate of white-capped albatross (mean and 95% credible interval).

|         |        |        | Ol   | oserved | Est. captures |          | Est. capture rate |             |
|---------|--------|--------|------|---------|---------------|----------|-------------------|-------------|
| Year    | Effort | % obs. | Cap. | Rate    | Mean          | 95% c.i. | Mean              | 95% c.i.    |
| 2002-03 | 54 200 | 11.9   | 81   | 1.26    | 463.3581      | 337-631  | 0.85              | 0.62-1.16   |
| 2003-04 | 47 339 | 13.4   | 139  | 2.18    | 587.0977      | 440-768  | 1.24              | 0.93-1.62   |
| 2004-05 | 44 156 | 17.2   | 212  | 2.79    | 758.4465      | 598-967  | 1.72              | 1.35-2.19   |
| 2005-06 | 39 121 | 15.8   | 63   | 1.02    | 321.8331      | 228-445  | 0.82              | 0.58 - 1.14 |
| 2006-07 | 35 193 | 20.6   | 48   | 0.66    | 210.6107      | 147-294  | 0.60              | 0.42 - 0.84 |
| 2007-08 | 32 767 | 25.3   | 42   | 0.51    | 144.1027      | 101-204  | 0.44              | 0.31-0.62   |
| 2008-09 | 29 976 | 24.7   | 78   | 1.05    | 239.4198      | 178-316  | 0.80              | 0.59-1.05   |
| 2009-10 | 29 505 | 26.0   | 33   | 0.43    | 131.1674      | 86-194   | 0.44              | 0.29-0.66   |
| 2010-11 | 27 397 | 22.7   | 40   | 0.64    | 146.8491      | 101-209  | 0.54              | 0.37-0.76   |
| 2011-12 | 25 593 | 32.7   | 60   | 0.72    | 176.9460      | 131-242  | 0.69              | 0.51-0.95   |
| 2012-13 | 23 980 | 49.3   | 121  | 1.02    | 158.0790      | 140-182  | 0.66              | 0.58-0.76   |
| 2013-14 | 25 657 | 43.7   | 70   | 0.62    | 104.1697      | 88-126   | 0.41              | 0.34-0.49   |
| 2014-15 | 25 648 | 43.9   | 75   | 0.67    | 105.0840      | 91-124   | 0.41              | 0.35-0.48   |
| 2015-16 | 25 008 | 43.0   | 103  | 0.96    | 138.2261      | 122-160  | 0.55              | 0.49-0.64   |
| 2016-17 | 25 750 | 38.4   | 73   | 0.74    | 118.1407      | 98-146   | 0.46              | 0.38-0.57   |



Figure B-17: White-capped albatross captures in large-vessel ( $\geq 28$  m length) trawl fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016–17 (Following confidentiality rules, 97.8% of total effort is shown), (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

## B.2.2 White-capped albatross captures in small-vessel (< 28 m length) trawl fisheries

Table B-38: Annual fishing effort and number of tows observed in small-vessel (< 28 m length) trawl fisheries, number of observed captures of white-capped albatross and observed capture rate (captures per hundred tows), estimated captures and capture rate of white-capped albatross (mean and 95% credible interval).

|         |        | Observed |      |      | Е        | st. captures | Est. | capture rate |
|---------|--------|----------|------|------|----------|--------------|------|--------------|
| Year    | Effort | % obs.   | Cap. | Rate | Mean     | 95% c.i.     | Mean | 95% c.i.     |
| 2002-03 | 75 965 | 0.5      | 0    | 0.00 | 235.5700 | 146-356      | 0.31 | 0.19-0.47    |
| 2003-04 | 73 470 | 0.2      | 0    | 0.00 | 225.5037 | 138-341      | 0.31 | 0.19-0.46    |
| 2004-05 | 76 309 | 0.2      | 0    | 0.00 | 238.9653 | 148-360      | 0.31 | 0.19-0.47    |
| 2005-06 | 70 822 | 0.6      | 0    | 0.00 | 223.1804 | 138-337      | 0.32 | 0.19-0.48    |
| 2006-07 | 68 115 | 1.0      | 6    | 0.87 | 232.4830 | 146-345      | 0.34 | 0.21-0.51    |
| 2007-08 | 56 770 | 1.3      | 0    | 0.00 | 182.7849 | 111-278      | 0.32 | 0.20-0.49    |
| 2008-09 | 57 574 | 4.1      | 11   | 0.47 | 190.7926 | 122-278      | 0.33 | 0.21-0.48    |
| 2009-10 | 63 384 | 2.1      | 9    | 0.67 | 216.6619 | 136-319      | 0.34 | 0.21-0.50    |
| 2010-11 | 58 692 | 2.1      | 2    | 0.16 | 203.2661 | 128-304      | 0.35 | 0.22-0.52    |
| 2011-12 | 58 827 | 1.7      | 10   | 1.02 | 203.8811 | 130-302      | 0.35 | 0.22-0.51    |
| 2012-13 | 59 857 | 1.0      | 5    | 0.86 | 219.3518 | 138-328      | 0.37 | 0.23-0.55    |
| 2013-14 | 59 452 | 3.3      | 4    | 0.20 | 211.3301 | 132-314      | 0.36 | 0.22-0.53    |
| 2014-15 | 53 118 | 4.3      | 0    | 0.00 | 181.0152 | 114-277      | 0.34 | 0.21-0.52    |
| 2015-16 | 53 024 | 4.2      | 4    | 0.18 | 195.0182 | 123-289      | 0.37 | 0.23-0.55    |
| 2016-17 | 52 420 | 7.3      | 6    | 0.16 | 190.5850 | 121-283      | 0.36 | 0.23-0.54    |

(a) Estimated captures



(c) Observed captures



(d) Effort, and observer coverage



(b) October 2016 to September 2017



(e) Monthly distribution, all years



Figure B-18: White-capped albatross captures in small-vessel (< 28 m length) trawl fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016–17, (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

# B.2.3 White-capped albatross captures in small-vessel (< 28 m length) surface-longline fisheries

Table B-39: Annual fishing effort and number of hooks observed in small-vessel (< 28 m length) surfacelongline fisheries, number of observed captures of white-capped albatross and observed capture rate (captures per thousand hooks), estimated captures and capture rate of white-capped albatross (mean and 95% credible interval).

|         |           | Observed |      | Es   | st. captures | Est.     | capture rate |           |
|---------|-----------|----------|------|------|--------------|----------|--------------|-----------|
| Year    | Effort    | % obs.   | Cap. | Rate | Mean         | 95% c.i. | Mean         | 95% c.i.  |
| 2002-03 | 8 572 516 | 0.0      | 0    |      | 72.654923    | 34-134   | 0.08         | 0.04-0.16 |
| 2003-04 | 5 730 829 | 2.4      | 1    | 0.07 | 103.606197   | 50-184   | 0.18         | 0.09-0.32 |
| 2004-05 | 3 044 211 | 4.7      | 0    | 0.00 | 28.354823    | 10-59    | 0.09         | 0.03-0.19 |
| 2005-06 | 3 028 099 | 3.2      | 1    | 0.10 | 28.467016    | 10-60    | 0.09         | 0.03-0.20 |
| 2006-07 | 2 332 763 | 8.0      | 1    | 0.05 | 9.697901     | 3-21     | 0.04         | 0.01-0.09 |
| 2007-08 | 1 678 054 | 8.1      | 1    | 0.07 | 28.615192    | 9-61     | 0.17         | 0.05-0.36 |
| 2008-09 | 2 306 403 | 6.5      | 1    | 0.07 | 35.651424    | 13-74    | 0.15         | 0.06-0.32 |
| 2009-10 | 2 516 706 | 7.3      | 19   | 1.03 | 62.982009    | 37-105   | 0.25         | 0.15-0.42 |
| 2010-11 | 2 684 809 | 6.4      | 0    | 0.00 | 42.777361    | 17-84    | 0.16         | 0.06-0.31 |
| 2011-12 | 2 548 687 | 6.8      | 2    | 0.12 | 120.684408   | 58-219   | 0.47         | 0.23-0.86 |
| 2012-13 | 2 389 412 | 3.1      | 10   | 1.37 | 115.837831   | 61-205   | 0.48         | 0.26-0.86 |
| 2013-14 | 1 896 434 | 6.8      | 7    | 0.54 | 94.540480    | 46-169   | 0.50         | 0.24-0.89 |
| 2014-15 | 1 790 036 | 6.0      | 4    | 0.37 | 85.504748    | 40-158   | 0.48         | 0.22-0.88 |
| 2015-16 | 2 302 691 | 13.0     | 28   | 0.94 | 117.605197   | 69-197   | 0.51         | 0.30-0.86 |
| 2016-17 | 2 092 486 | 16.5     | 17   | 0.49 | 105.058721   | 57-180   | 0.50         | 0.27-0.86 |



Figure B-19: White-capped albatross captures in small-vessel (< 28 m length) surface-longline fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016– 17 (Following confidentiality rules, 95.4% of total effort is shown), (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

#### **B.3 Salvin's albatross captures**

#### B.3.1 Salvin's albatross captures in large-vessel (> 28 m length) trawl fisheries

Table B-40: Annual fishing effort and number of tows observed in large-vessel ( $\geq 28$  m length) trawl fisheries, number of observed captures of Salvin's albatross and observed capture rate (captures per hundred tows), estimated captures and capture rate of Salvin's albatross (mean and 95% credible interval).

|         |        |        | С    | Observed Est. captures Est. capture |           | Est. captures |       | st. capture rate |
|---------|--------|--------|------|-------------------------------------|-----------|---------------|-------|------------------|
| Year    | Effort | % obs. | Cap. | Rate                                | Mean      | 95% c.i.      | Mean  | 95% c.i.         |
| 2002-03 | 54 200 | 11.9   | 22   | 0.341                               | 181.61744 | 100-299       | 0.335 | 0.185-0.552      |
| 2003-04 | 47 339 | 13.4   | 7    | 0.110                               | 128.57171 | 52-255        | 0.272 | 0.110-0.539      |
| 2004-05 | 44 156 | 17.2   | 36   | 0.474                               | 372.82484 | 216-616       | 0.844 | 0.489-1.395      |
| 2005-06 | 39 121 | 15.8   | 7    | 0.113                               | 95.74663  | 40-181        | 0.245 | 0.102-0.463      |
| 2006-07 | 35 193 | 20.6   | 9    | 0.124                               | 72.06922  | 32-136        | 0.205 | 0.091-0.386      |
| 2007-08 | 32 767 | 25.3   | 5    | 0.060                               | 58.01674  | 21-116        | 0.177 | 0.064-0.354      |
| 2008-09 | 29 976 | 24.7   | 12   | 0.162                               | 94.53198  | 48-168        | 0.315 | 0.160-0.560      |
| 2009-10 | 29 505 | 26.0   | 33   | 0.430                               | 141.19440 | 89-216        | 0.479 | 0.302-0.732      |
| 2010-11 | 27 397 | 22.7   | 16   | 0.257                               | 96.79210  | 51-167        | 0.353 | 0.186-0.610      |
| 2011-12 | 25 593 | 32.7   | 21   | 0.251                               | 91.27186  | 53-150        | 0.357 | 0.207-0.586      |
| 2012-13 | 23 980 | 49.3   | 51   | 0.432                               | 126.34333 | 89-182        | 0.527 | 0.371-0.759      |
| 2013-14 | 25 657 | 43.7   | 48   | 0.428                               | 124.84208 | 87-178        | 0.487 | 0.339-0.694      |
| 2014-15 | 25 648 | 43.9   | 40   | 0.355                               | 139.97476 | 91-211        | 0.546 | 0.355-0.823      |
| 2015-16 | 25 008 | 43.0   | 33   | 0.307                               | 96.17191  | 64-145        | 0.385 | 0.256-0.580      |
| 2016-17 | 25 750 | 38.4   | 19   | 0.192                               | 70.96952  | 42-115        | 0.276 | 0.163-0.447      |



Figure B-20: Salvin's albatross captures in large-vessel ( $\geq 28$  m length) trawl fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016–17 (Following confidentiality rules, 97.8% of total effort is shown), (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

#### **B.3.2** Salvin's albatross captures in small-vessel (< 28 m length) trawl fisheries

Table B-41: Annual fishing effort and number of tows observed in small-vessel (< 28 m length) trawl fisheries, number of observed captures of Salvin's albatross and observed capture rate (captures per hundred tows), estimated captures and capture rate of Salvin's albatross (mean and 95% credible interval).

|         |        | Observed |      | E    | st. captures | Est. capture rate |      |             |
|---------|--------|----------|------|------|--------------|-------------------|------|-------------|
| Year    | Effort | % obs.   | Cap. | Rate | Mean         | 95% c.i.          | Mean | 95% c.i.    |
| 2002-03 | 75 995 | 0.5      | 1    | 0.26 | 315.5095     | 170-551           | 0.42 | 0.22-0.73   |
| 2003-04 | 73 511 | 0.3      | 3    | 1.62 | 245.5067     | 131-429           | 0.33 | 0.18-0.58   |
| 2004-05 | 76 312 | 0.2      | 2    | 1.59 | 295.6932     | 164-489           | 0.39 | 0.21-0.64   |
| 2005-06 | 70 812 | 0.6      | 1    | 0.23 | 290.3953     | 160-495           | 0.41 | 0.23-0.70   |
| 2006-07 | 68 135 | 1.0      | 1    | 0.15 | 263.8006     | 146-445           | 0.39 | 0.21-0.65   |
| 2007-08 | 56 767 | 1.3      | 4    | 0.53 | 193.5037     | 107-327           | 0.34 | 0.19-0.58   |
| 2008-09 | 57 574 | 4.1      | 24   | 1.02 | 219.3178     | 128-356           | 0.38 | 0.22-0.62   |
| 2009-10 | 63 386 | 2.1      | 10   | 0.75 | 214.5895     | 119-360           | 0.34 | 0.19-0.57   |
| 2010-11 | 58 692 | 2.1      | 4    | 0.32 | 231.5217     | 125-388           | 0.39 | 0.21-0.66   |
| 2011-12 | 58 825 | 1.7      | 5    | 0.51 | 229.3963     | 132-385           | 0.39 | 0.22-0.65   |
| 2012-13 | 59 856 | 1.0      | 2    | 0.34 | 239.0345     | 135-396           | 0.40 | 0.23-0.66   |
| 2013-14 | 59 453 | 3.3      | 3    | 0.15 | 268.2219     | 155-440           | 0.45 | 0.26-0.74   |
| 2014-15 | 53 119 | 4.3      | 6    | 0.26 | 251.0572     | 146-409           | 0.47 | 0.27 - 0.77 |
| 2015-16 | 53 022 | 4.2      | 2    | 0.09 | 211.8206     | 120-353           | 0.40 | 0.23-0.67   |
| 2016-17 | 52 422 | 7.3      | 6    | 0.16 | 215.6879     | 123-361           | 0.41 | 0.23-0.69   |

(a) Estimated captures



(c) Observed captures Dead Alive Rate



(d) Effort, and observer coverage



(b) October 2016 to September 2017



(e) Monthly distribution, all years



Figure B-21: Salvin's albatross captures in small-vessel (< 28 m length) trawl fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016–17, (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

per 100 tows

Captures

1.5

# B.3.3 Salvin's albatross captures in small-vessel (< 28 m length) bottom-longline fisheries

Table B-42: Annual fishing effort and number of hooks observed in small-vessel (< 28 m length) bottomlongline fisheries, number of observed captures of Salvin's albatross and observed capture rate (captures per thousand hooks), estimated captures and capture rate of Salvin's albatross (mean and 95% credible interval).

|         |            | Observed |      | Es    | Est. captures Est. ca |          | st. capture rate |             |
|---------|------------|----------|------|-------|-----------------------|----------|------------------|-------------|
| Year    | Effort     | % obs.   | Cap. | Rate  | Mean                  | 95% c.i. | Mean             | 95% c.i.    |
| 2002-03 | 19 869 259 | 0.0      | 0    | 0.000 | 69.15567              | 14-224   | 0.035            | 0.007-0.113 |
| 2003-04 | 19 910 503 | 1.1      | 0    | 0.000 | 66.14618              | 11-243   | 0.033            | 0.006-0.122 |
| 2004-05 | 22 930 292 | 1.3      | 0    | 0.000 | 104.15042             | 20-366   | 0.045            | 0.009-0.160 |
| 2005-06 | 22 260 510 | 0.7      | 0    | 0.000 | 97.63843              | 13-387   | 0.044            | 0.006-0.174 |
| 2006-07 | 25 371 652 | 2.0      | 22   | 0.443 | 121.70465             | 42-358   | 0.048            | 0.017-0.141 |
| 2007-08 | 27 376 411 | 1.8      | 0    | 0.000 | 112.68991             | 23-380   | 0.041            | 0.008-0.139 |
| 2008-09 | 24 573 964 | 3.6      | 0    | 0.000 | 107.23613             | 25-330   | 0.044            | 0.010-0.134 |
| 2009-10 | 26 845 521 | 2.7      | 0    | 0.000 | 112.87106             | 24-353   | 0.042            | 0.009-0.131 |
| 2010-11 | 27 981 339 | 1.0      | 0    | 0.000 | 145.30635             | 30-473   | 0.052            | 0.011-0.169 |
| 2011-12 | 26 312 456 | 0.3      | 0    | 0.000 | 157.24838             | 33-536   | 0.060            | 0.013-0.204 |
| 2012-13 | 24 271 654 | 1.9      | 1    | 0.021 | 143.51949             | 28-514   | 0.059            | 0.012-0.212 |
| 2013-14 | 24 419 994 | 4.1      | 1    | 0.010 | 113.68216             | 26-357   | 0.047            | 0.011-0.146 |
| 2014-15 | 25 289 849 | 2.1      | 0    | 0.000 | 109.15992             | 22-370   | 0.043            | 0.009-0.146 |
| 2015-16 | 24 887 264 | 2.5      | 0    | 0.000 | 106.43903             | 21-373   | 0.043            | 0.008-0.150 |
| 2016-17 | 24 396 916 | 4.5      | 1    | 0.009 | 74.57371              | 15-254   | 0.031            | 0.006-0.104 |



Figure B-22: Salvin's albatross captures in small-vessel (< 28 m length) bottom-longline fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016–17 (Following confidentiality rules, 97.0% of total effort is shown), (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

#### **B.4 Buller's albatrosses captures**

#### **B.4.1** Buller's albatrosses captures in large-vessel ( $\geq$ 28 m length) trawl fisheries

Table B-43: Annual fishing effort and number of tows observed in large-vessel (≥ 28 m length) trawl fisheries, number of observed captures of Buller's albatrosses and observed capture rate (captures per hundred tows), estimated captures and capture rate of Buller's albatrosses (mean and 95% credible interval).

|         |        |        | C    | bserved | Est. captures |          | ed Est. captures Est. capture ra |             | st. capture rate |
|---------|--------|--------|------|---------|---------------|----------|----------------------------------|-------------|------------------|
| Year    | Effort | % obs. | Cap. | Rate    | Mean          | 95% c.i. | Mean                             | 95% c.i.    |                  |
| 2002-03 | 54 200 | 11.9   | 6    | 0.093   | 75.17366      | 33-136   | 0.139                            | 0.061-0.251 |                  |
| 2003-04 | 47 339 | 13.4   | 9    | 0.141   | 88.48776      | 46-148   | 0.187                            | 0.097-0.313 |                  |
| 2004-05 | 44 156 | 17.2   | 21   | 0.277   | 131.97176     | 84-200   | 0.299                            | 0.190-0.453 |                  |
| 2005-06 | 39 121 | 15.8   | 8    | 0.129   | 74.16717      | 36-125   | 0.190                            | 0.092-0.320 |                  |
| 2006-07 | 35 193 | 20.6   | 6    | 0.083   | 49.81509      | 22-89    | 0.142                            | 0.063-0.253 |                  |
| 2007-08 | 32 767 | 25.3   | 17   | 0.205   | 80.55947      | 49-126   | 0.246                            | 0.150-0.385 |                  |
| 2008-09 | 29 976 | 24.7   | 16   | 0.216   | 56.86107      | 35-87    | 0.190                            | 0.117-0.290 |                  |
| 2009-10 | 29 505 | 26.0   | 11   | 0.143   | 49.53473      | 28-81    | 0.168                            | 0.095-0.275 |                  |
| 2010-11 | 27 397 | 22.7   | 20   | 0.322   | 67.73038      | 43-101   | 0.247                            | 0.157-0.369 |                  |
| 2011-12 | 25 593 | 32.7   | 33   | 0.394   | 101.13193     | 70-145   | 0.395                            | 0.274-0.567 |                  |
| 2012-13 | 23 980 | 49.3   | 58   | 0.491   | 84.27561      | 70-105   | 0.351                            | 0.292-0.438 |                  |
| 2013-14 | 25 657 | 43.7   | 38   | 0.339   | 66.52799      | 52-86    | 0.259                            | 0.203-0.335 |                  |
| 2014-15 | 25 648 | 43.9   | 34   | 0.302   | 68.61494      | 51-92    | 0.268                            | 0.199-0.359 |                  |
| 2015-16 | 25 008 | 43.0   | 57   | 0.530   | 99.64793      | 79-127   | 0.398                            | 0.316-0.508 |                  |
| 2016-17 | 25 750 | 38.4   | 22   | 0.222   | 51.48726      | 36-72    | 0.200                            | 0.140-0.280 |                  |



Figure B-23: Buller's albatrosses captures in large-vessel ( $\geq 28$  m length) trawl fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016–17 (Following confidentiality rules, 97.8% of total effort is shown), (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.
# B.4.2 Buller's albatrosses captures in small-vessel (< 28 m length) surface-longline fisheries

Table B-44: Annual fishing effort and number of hooks observed in small-vessel (< 28 m length) surfacelongline fisheries, number of observed captures of Buller's albatrosses and observed capture rate (captures per thousand hooks), estimated captures and capture rate of Buller's albatrosses (mean and 95% credible interval).

|         |           |        | Ot   | oserved | E         | st. captures | Est. | capture rate |
|---------|-----------|--------|------|---------|-----------|--------------|------|--------------|
| Year    | Effort    | % obs. | Cap. | Rate    | Mean      | 95% c.i.     | Mean | 95% c.i.     |
| 2002-03 | 8 572 816 | 0.0    | 0    |         | 348.16992 | 187-627      | 0.41 | 0.22-0.73    |
| 2003-04 | 5 730 459 | 2.4    | 0    | 0.00    | 295.62319 | 157-540      | 0.52 | 0.27-0.94    |
| 2004-05 | 3 044 411 | 4.7    | 1    | 0.07    | 106.67816 | 50-208       | 0.35 | 0.16-0.68    |
| 2005-06 | 3 028 699 | 3.2    | 5    | 0.51    | 132.14268 | 61-258       | 0.44 | 0.20-0.85    |
| 2006-07 | 2 332 813 | 8.0    | 1    | 0.05    | 72.41029  | 30-158       | 0.31 | 0.13-0.68    |
| 2007-08 | 1 678 754 | 8.1    | 3    | 0.22    | 65.16742  | 27-130       | 0.39 | 0.16-0.77    |
| 2008-09 | 2 305 503 | 6.5    | 2    | 0.13    | 94.35032  | 43-185       | 0.41 | 0.19-0.80    |
| 2009-10 | 2 517 986 | 7.3    | 28   | 1.52    | 129.87281 | 78-213       | 0.52 | 0.31-0.85    |
| 2010-11 | 2 683 529 | 6.4    | 4    | 0.23    | 105.45727 | 53-184       | 0.39 | 0.20-0.69    |
| 2011-12 | 2 548 787 | 6.8    | 4    | 0.23    | 138.25712 | 70-248       | 0.54 | 0.27-0.97    |
| 2012-13 | 2 389 462 | 3.1    | 8    | 1.10    | 118.08346 | 62-208       | 0.49 | 0.26-0.87    |
| 2013-14 | 1 896 434 | 6.8    | 8    | 0.62    | 104.80135 | 53-189       | 0.55 | 0.28 - 1.00  |
| 2014-15 | 1 790 036 | 6.0    | 3    | 0.28    | 85.21264  | 40-164       | 0.48 | 0.22-0.92    |
| 2015-16 | 2 303 441 | 13.0   | 43   | 1.44    | 150.81059 | 95-249       | 0.65 | 0.41 - 1.08  |
| 2016-17 | 2 092 486 | 16.5   | 13   | 0.38    | 114.02299 | 61-206       | 0.54 | 0.29-0.98    |



Figure B-24: Buller's albatrosses captures in small-vessel (< 28 m length) surface-longline fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016–17 (Following confidentiality rules, 95.4% of total effort is shown), (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

### **B.5** Other albatrosses captures

#### Other albatrosses captures in small-vessel (< 28 m length) bottom-longline fish-B.5.1 eries

Table B-45: Annual fishing effort and number of hooks observed in small-vessel (< 28 m length) bottomlongline fisheries, number of observed captures of other albatrosses and observed capture rate (captures per thousand hooks), estimated captures and capture rate of other albatrosses (mean and 95% credible interval).

|         |            | Observed |      | Es    | Est. captures |          | Est. capture rate |             |
|---------|------------|----------|------|-------|---------------|----------|-------------------|-------------|
| Year    | Effort     | % obs.   | Cap. | Rate  | Mean          | 95% c.i. | Mean              | 95% c.i.    |
| 2002-03 | 19 869 259 | 0.0      | 0    | 0.000 | 88.34708      | 33-200   | 0.044             | 0.017-0.101 |
| 2003-04 | 19 910 503 | 1.1      | 0    | 0.000 | 86.52049      | 31-198   | 0.043             | 0.016-0.099 |
| 2004-05 | 22 930 292 | 1.3      | 0    | 0.000 | 100.12869     | 38-230   | 0.044             | 0.017-0.100 |
| 2005-06 | 22 260 510 | 0.7      | 0    | 0.000 | 93.09370      | 34-218   | 0.042             | 0.015-0.098 |
| 2006-07 | 25 371 652 | 2.0      | 14   | 0.282 | 121.85682     | 54-265   | 0.048             | 0.021-0.104 |
| 2007-08 | 27 376 411 | 1.8      | 4    | 0.081 | 121.47901     | 48-271   | 0.044             | 0.018-0.099 |
| 2008-09 | 24 573 964 | 3.6      | 0    | 0.000 | 97.71589      | 37-220   | 0.040             | 0.015-0.090 |
| 2009-10 | 26 845 521 | 2.7      | 0    | 0.000 | 107.42029     | 41-238   | 0.040             | 0.015-0.089 |
| 2010-11 | 27 981 339 | 1.0      | 0    | 0.000 | 127.80035     | 48-290   | 0.046             | 0.017-0.104 |
| 2011-12 | 26 312 456 | 0.3      | 0    | 0.000 | 109.03423     | 41-240   | 0.041             | 0.016-0.091 |
| 2012-13 | 24 271 654 | 1.9      | 0    | 0.000 | 93.23638      | 33-217   | 0.038             | 0.014-0.089 |
| 2013-14 | 24 419 994 | 4.1      | 1    | 0.010 | 91.83433      | 36-200   | 0.038             | 0.015-0.082 |
| 2014-15 | 25 289 849 | 2.1      | 0    | 0.000 | 93.90355      | 36-207   | 0.037             | 0.014-0.082 |
| 2015-16 | 24 887 264 | 2.5      | 2    | 0.032 | 88.46852      | 33-197   | 0.036             | 0.013-0.079 |
| 2016-17 | 24 396 916 | 4.5      | 0    | 0.000 | 78.05497      | 28-180   | 0.032             | 0.011-0.074 |

(a) Estimated captures 10 - 49 eve nts 📃 1 - 4 events ents - 1 - 4 obs ev Estimated captures 250 200 150 100 50 0 03 07 09 15 05 11 13 17 Fishing year (c) Observed captures Dead 🔳 Alive — Rate -0.10 900 -0.08 00.0-15 Observed captures 10 -0.04 a Captrues 00.0 5 6 0 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 Fishing year (e) Monthly distribution, all years (d) Effort, and observer coverage All effort --- Obs effort -A- Obs captures Observed Unobserved Coverage month Thousands of hooks 30000. % hooks observed 60 25000 Percentage per 20000 - 3 40 15000 -2 10000 20 5000 0 - 0 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 Apr Month Oct Dec Feb Jun Fishing year

Figure B-25: Other albatrosses captures in small-vessel (< 28 m length) bottom-longline fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016–17 (Following confidentiality rules, 97.0% of total effort is shown), (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

(b) October 2016 to September 2017

Aug

#### Other albatrosses captures in small-vessel (< 28 m length) surface-longline fish-B.5.2 eries

Table B-46: Annual fishing effort and number of hooks observed in small-vessel (< 28 m length) surfacelongline fisheries, number of observed captures of other albatrosses and observed capture rate (captures per thousand hooks), estimated captures and capture rate of other albatrosses (mean and 95% credible interval).

|         |           | Observed |      | Observed Est. captures |           | st. captures | Est. capture rate |             |
|---------|-----------|----------|------|------------------------|-----------|--------------|-------------------|-------------|
| Year    | Effort    | % obs.   | Cap. | Rate                   | Mean      | 95% c.i.     | Mean              | 95% c.i.    |
| 2002-03 | 8 572 516 | 0.0      | 0    |                        | 405.63318 | 247-655      | 0.47              | 0.29-0.76   |
| 2003-04 | 5 730 829 | 2.4      | 1    | 0.07                   | 265.55822 | 155-440      | 0.46              | 0.27-0.77   |
| 2004-05 | 3 044 211 | 4.7      | 3    | 0.21                   | 140.57146 | 80-230       | 0.46              | 0.26-0.76   |
| 2005-06 | 3 028 099 | 3.2      | 5    | 0.51                   | 168.04823 | 98-274       | 0.55              | 0.32-0.90   |
| 2006-07 | 2 332 763 | 8.0      | 56   | 2.99                   | 187.82184 | 128-285      | 0.81              | 0.55 - 1.22 |
| 2007-08 | 1 678 054 | 8.1      | 4    | 0.29                   | 85.65292  | 46-145       | 0.51              | 0.27-0.86   |
| 2008-09 | 2 306 403 | 6.5      | 5    | 0.33                   | 99.87756  | 57-166       | 0.43              | 0.25 - 0.72 |
| 2009-10 | 2 516 706 | 7.3      | 20   | 1.09                   | 148.14293 | 94-230       | 0.59              | 0.37-0.91   |
| 2010-11 | 2 684 809 | 6.4      | 4    | 0.23                   | 123.95502 | 71-198       | 0.46              | 0.26-0.74   |
| 2011-12 | 2 548 687 | 6.8      | 16   | 0.92                   | 113.14393 | 72-174       | 0.44              | 0.28-0.68   |
| 2012-13 | 2 389 412 | 3.1      | 4    | 0.55                   | 116.53998 | 68-191       | 0.49              | 0.28 - 0.80 |
| 2013-14 | 1 896 434 | 6.8      | 3    | 0.23                   | 90.82634  | 52-148       | 0.48              | 0.27 - 0.78 |
| 2014-15 | 1 790 036 | 6.0      | 6    | 0.56                   | 102.09995 | 57-176       | 0.57              | 0.32-0.98   |
| 2015-16 | 2 302 691 | 13.0     | 15   | 0.50                   | 129.39905 | 79-213       | 0.56              | 0.34-0.93   |
| 2016-17 | 2 092 486 | 16.5     | 4    | 0.12                   | 97.30560  | 55-167       | 0.47              | 0.26-0.80   |

(a) Estimated captures



(c) Observed captures



Unobserved ---- Coverage

(d) Effort, and observer coverage

Observed

10000

8000

6000

4000

2000

Thousands of hooks



(b) October 2016 to September 2017



% hooks observed - 0 0 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 Oct Dec Apr Month Aug Feb Jun Fishing year

10

.5

Figure B-26: Other albatrosses captures in small-vessel (< 28 m length) surface-longline fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016–17 (Following confidentiality rules, 95.4% of total effort is shown), (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

### **B.6 White-chinned petrel captures**

### B.6.1 White-chinned petrel captures in large-vessel ( $\geq$ 28 m length) trawl fisheries

Table B-47: Annual fishing effort and number of tows observed in large-vessel ( $\geq 28$  m length) trawl fisheries, number of observed captures of white-chinned petrel and observed capture rate (captures per hundred tows), estimated captures and capture rate of white-chinned petrel (mean and 95% credible interval).

|         |        | Observed |      | oserved | E        | Est. captures Est. capture rat |      |             |
|---------|--------|----------|------|---------|----------|--------------------------------|------|-------------|
| Year    | Effort | % obs.   | Cap. | Rate    | Mean     | 95% c.i.                       | Mean | 95% c.i.    |
| 2002-03 | 54 200 | 11.9     | 13   | 0.20    | 143.8096 | 66-269                         | 0.27 | 0.12-0.50   |
| 2003-04 | 47 339 | 13.4     | 20   | 0.31    | 116.6087 | 60-212                         | 0.25 | 0.13-0.45   |
| 2004-05 | 44 156 | 17.2     | 54   | 0.71    | 232.3831 | 148-364                        | 0.53 | 0.34-0.82   |
| 2005-06 | 39 121 | 15.8     | 70   | 1.13    | 401.4360 | 240-658                        | 1.03 | 0.61-1.68   |
| 2006-07 | 35 193 | 20.6     | 31   | 0.43    | 145.7926 | 82-257                         | 0.41 | 0.23-0.73   |
| 2007-08 | 32 767 | 25.3     | 58   | 0.70    | 243.9200 | 150-394                        | 0.74 | 0.46-1.20   |
| 2008-09 | 29 976 | 24.7     | 104  | 1.40    | 287.6167 | 196-427                        | 0.96 | 0.65 - 1.42 |
| 2009-10 | 29 505 | 26.0     | 72   | 0.94    | 279.3798 | 175-441                        | 0.95 | 0.59-1.49   |
| 2010-11 | 27 397 | 22.7     | 114  | 1.83    | 395.2449 | 259-611                        | 1.44 | 0.95-2.23   |
| 2011-12 | 25 593 | 32.7     | 59   | 0.70    | 183.3328 | 118-282                        | 0.72 | 0.46-1.10   |
| 2012-13 | 23 980 | 49.3     | 293  | 2.48    | 398.9668 | 344-488                        | 1.66 | 1.43-2.04   |
| 2013-14 | 25 657 | 43.7     | 149  | 1.33    | 224.4385 | 187-284                        | 0.87 | 0.73-1.11   |
| 2014-15 | 25 648 | 43.9     | 276  | 2.45    | 387.7079 | 334-469                        | 1.51 | 1.30-1.83   |
| 2015-16 | 25 008 | 43.0     | 160  | 1.49    | 229.5775 | 193-292                        | 0.92 | 0.77 - 1.17 |
| 2016-17 | 25 750 | 38.4     | 142  | 1.43    | 261.2041 | 199-361                        | 1.01 | 0.77 - 1.40 |



Figure B-27: White-chinned petrel captures in large-vessel ( $\geq 28$  m length) trawl fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016–17 (Following confidentiality rules, 97.8% of total effort is shown), (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

# B.6.2 White-chinned petrel captures in large-vessel ( $\geq$ 28 m length) bottom-longline fisheries

Table B-48: Annual fishing effort and number of hooks observed in large-vessel ( $\geq$  28 m length) bottomlongline fisheries, number of observed captures of white-chinned petrel and observed capture rate (captures per thousand hooks), estimated captures and capture rate of white-chinned petrel (mean and 95% credible interval).

|         |            | Observed |      |       | Est. captures | Est. capture rate |       |             |
|---------|------------|----------|------|-------|---------------|-------------------|-------|-------------|
| Year    | Effort     | % obs.   | Cap. | Rate  | Mean          | 95% c.i.          | Mean  | 95% c.i.    |
| 2002-03 | 17 928 519 | 61.5     | 131  | 0.119 | 326.74213     | 182-671           | 0.182 | 0.102-0.374 |
| 2003-04 | 23 339 252 | 20.9     | 15   | 0.031 | 151.36832     | 36-465            | 0.065 | 0.015-0.199 |
| 2004-05 | 18 932 296 | 13.7     | 11   | 0.042 | 508.45052     | 139-1 395         | 0.269 | 0.073-0.737 |
| 2005-06 | 14 888 023 | 24.4     | 13   | 0.036 | 172.32359     | 40-572            | 0.116 | 0.027-0.384 |
| 2006-07 | 12 759 288 | 14.2     | 13   | 0.072 | 403.22839     | 102-1 218         | 0.316 | 0.080-0.955 |
| 2007-08 | 14 127 896 | 21.8     | 7    | 0.023 | 256.71364     | 55-810            | 0.182 | 0.039-0.573 |
| 2008-09 | 12 861 501 | 24.9     | 1    | 0.003 | 199.33208     | 21-704            | 0.155 | 0.016-0.547 |
| 2009-10 | 13 602 940 | 12.6     | 1    | 0.006 | 180.87281     | 18-662            | 0.133 | 0.013-0.487 |
| 2010-11 | 12 919 517 | 11.8     | 15   | 0.098 | 201.43853     | 47-637            | 0.156 | 0.036-0.493 |
| 2011-12 | 11 571 447 | 17.5     | 1    | 0.005 | 93.85732      | 6-381             | 0.081 | 0.005-0.329 |
| 2012-13 | 8 234 145  | 3.3      | 0    | 0.000 | 123.78536     | 13-420            | 0.150 | 0.016-0.510 |
| 2013-14 | 16 459 721 | 11.7     | 36   | 0.187 | 458.11169     | 144-1 163         | 0.278 | 0.087-0.707 |
| 2014-15 | 14 060 072 | 2.5      | 11   | 0.308 | 326.65792     | 88-937            | 0.232 | 0.063-0.666 |
| 2015-16 | 18 604 396 | 10.8     | 72   | 0.358 | 433.52574     | 179-1 020         | 0.233 | 0.096-0.548 |
| 2016-17 | 22 157 051 | 17.6     | 12   | 0.031 | 389.08046     | 120-990           | 0.176 | 0.054-0.447 |



Figure B-28: White-chinned petrel captures in large-vessel ( $\geq 28$  m length) bottom-longline fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016–17 (Following confidentiality rules, 79.5% of total effort is shown), (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

# B.6.3 White-chinned petrel captures in small-vessel (< 28 m length) bottom-longline fisheries

Table B-49: Annual fishing effort and number of hooks observed in small-vessel (< 28 m length) bottomlongline fisheries, number of observed captures of white-chinned petrel and observed capture rate (captures per thousand hooks), estimated captures and capture rate of white-chinned petrel (mean and 95% credible interval).

|         |            | Observed |      |       | Est. captures | Est. capture rate |       |             |
|---------|------------|----------|------|-------|---------------|-------------------|-------|-------------|
| Year    | Effort     | % obs.   | Cap. | Rate  | Mean          | 95% c.i.          | Mean  | 95% c.i.    |
| 2002-03 | 19 869 259 | 0.0      | 0    | 0.000 | 291.8868      | 75-847            | 0.147 | 0.038-0.426 |
| 2003-04 | 19 910 503 | 1.1      | 0    | 0.000 | 184.4225      | 41-593            | 0.093 | 0.021-0.298 |
| 2004-05 | 22 930 292 | 1.3      | 0    | 0.000 | 361.9275      | 92-1 034          | 0.158 | 0.040-0.451 |
| 2005-06 | 22 260 510 | 0.7      | 0    | 0.000 | 310.6309      | 66-1 064          | 0.140 | 0.030-0.478 |
| 2006-07 | 25 371 652 | 2.0      | 1    | 0.020 | 435.3013      | 98-1415           | 0.172 | 0.039-0.558 |
| 2007-08 | 27 376 411 | 1.8      | 3    | 0.061 | 462.0015      | 115-1 446         | 0.169 | 0.042-0.528 |
| 2008-09 | 24 573 964 | 3.6      | 0    | 0.000 | 437.7446      | 117-1 324         | 0.178 | 0.048-0.539 |
| 2009-10 | 26 845 521 | 2.7      | 0    | 0.000 | 412.8458      | 106-1 201         | 0.154 | 0.039-0.447 |
| 2010-11 | 27 981 339 | 1.0      | 0    | 0.000 | 481.5467      | 125-1 441         | 0.172 | 0.045-0.515 |
| 2011-12 | 26 312 456 | 0.3      | 0    | 0.000 | 466.8686      | 107-1 479         | 0.177 | 0.041-0.562 |
| 2012-13 | 24 271 654 | 1.9      | 0    | 0.000 | 409.0070      | 96-1 265          | 0.169 | 0.040-0.521 |
| 2013-14 | 24 419 994 | 4.1      | 0    | 0.000 | 295.4345      | 81-837            | 0.121 | 0.033-0.343 |
| 2014-15 | 25 289 849 | 2.1      | 0    | 0.000 | 279.1107      | 67-849            | 0.110 | 0.026-0.336 |
| 2015-16 | 24 887 264 | 2.5      | 7    | 0.111 | 326.9893      | 86-936            | 0.131 | 0.035-0.376 |
| 2016-17 | 24 396 916 | 4.5      | 19   | 0.171 | 292.8936      | 85-821            | 0.120 | 0.035-0.337 |



Figure B-29: White-chinned petrel captures in small-vessel (< 28 m length) bottom-longline fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016–17 (Following confidentiality rules, 97.0% of total effort is shown), (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

### **B.7** Sooty shearwater captures

### B.7.1 Sooty shearwater captures in large-vessel (≥ 28 m length) trawl fisheries

Table B-50: Annual fishing effort and number of tows observed in large-vessel ( $\geq$  28 m length) trawl fisheries, number of observed captures of sooty shearwater and observed capture rate (captures per hundred tows), estimated captures and capture rate of sooty shearwater (mean and 95% credible interval).

|         |        |        | Observed |      |          | Est. captures | Est. capture rate |             |  |
|---------|--------|--------|----------|------|----------|---------------|-------------------|-------------|--|
| Year    | Effort | % obs. | Cap.     | Rate | Mean     | 95% c.i.      | Mean              | 95% c.i.    |  |
| 2002-03 | 54 200 | 11.9   | 119      | 1.84 | 791.1907 | 506-1 239     | 1.46              | 0.93-2.29   |  |
| 2003-04 | 47 339 | 13.4   | 51       | 0.80 | 451.9960 | 257-743       | 0.95              | 0.54-1.57   |  |
| 2004-05 | 44 156 | 17.2   | 75       | 0.99 | 455.2939 | 271-727       | 1.03              | 0.61-1.65   |  |
| 2005-06 | 39 121 | 15.8   | 170      | 2.75 | 830.8946 | 525-1 309     | 2.12              | 1.34-3.35   |  |
| 2006-07 | 35 193 | 20.6   | 70       | 0.97 | 390.5882 | 233-648       | 1.11              | 0.66-1.84   |  |
| 2007-08 | 32 767 | 25.3   | 80       | 0.96 | 320.7489 | 199-506       | 0.98              | 0.61-1.54   |  |
| 2008-09 | 29 976 | 24.7   | 143      | 1.93 | 465.3363 | 316-715       | 1.55              | 1.05-2.39   |  |
| 2009-10 | 29 505 | 26.0   | 50       | 0.65 | 230.5107 | 133-382       | 0.78              | 0.45-1.29   |  |
| 2010-11 | 27 397 | 22.7   | 97       | 1.56 | 370.8431 | 242-569       | 1.35              | 0.88 - 2.08 |  |
| 2011-12 | 25 593 | 32.7   | 34       | 0.41 | 162.1774 | 88-287        | 0.63              | 0.34-1.12   |  |
| 2012-13 | 23 980 | 49.3   | 132      | 1.12 | 205.6899 | 162-277       | 0.86              | 0.68-1.16   |  |
| 2013-14 | 25 657 | 43.7   | 127      | 1.13 | 239.1827 | 178-330       | 0.93              | 0.69-1.29   |  |
| 2014-15 | 25 648 | 43.9   | 144      | 1.28 | 261.4428 | 197-366       | 1.02              | 0.77-1.43   |  |
| 2015-16 | 25 008 | 43.0   | 62       | 0.58 | 122.8181 | 87-183        | 0.49              | 0.35-0.73   |  |
| 2016-17 | 25 750 | 38.4   | 129      | 1.30 | 223.0257 | 171-308       | 0.87              | 0.66-1.20   |  |



Figure B-30: Sooty shearwater captures in large-vessel ( $\geq 28$  m length) trawl fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016–17 (Following confidentiality rules, 97.8% of total effort is shown), (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

# **B.7.2** Sooty shearwater captures in small-vessel (< 28 m length) trawl fisheries

Table B-51: Annual fishing effort and number of tows observed in small-vessel (< 28 m length) trawl fisheries, number of observed captures of sooty shearwater and observed capture rate (captures per hundred tows), estimated captures and capture rate of sooty shearwater (mean and 95% credible interval).

|         |        |        | Observed |      |          | st. captures | Est. capture rate |           |
|---------|--------|--------|----------|------|----------|--------------|-------------------|-----------|
| Year    | Effort | % obs. | Cap.     | Rate | Mean     | 95% c.i.     | Mean              | 95% c.i.  |
| 2002-03 | 75 965 | 0.5    | 0        | 0.00 | 251.6672 | 96-582       | 0.33              | 0.13-0.77 |
| 2003-04 | 73 470 | 0.2    | 0        | 0.00 | 183.0520 | 68-405       | 0.25              | 0.09-0.55 |
| 2004-05 | 76 309 | 0.2    | 0        | 0.00 | 216.8398 | 86-493       | 0.28              | 0.11-0.65 |
| 2005-06 | 70 822 | 0.6    | 0        | 0.00 | 228.0887 | 89-517       | 0.32              | 0.13-0.73 |
| 2006-07 | 68 115 | 1.0    | 14       | 2.04 | 242.6482 | 104-552      | 0.36              | 0.15-0.81 |
| 2007-08 | 56 770 | 1.3    | 2        | 0.27 | 170.8633 | 66-392       | 0.30              | 0.12-0.69 |
| 2008-09 | 57 574 | 4.1    | 11       | 0.47 | 148.3283 | 65-318       | 0.26              | 0.11-0.55 |
| 2009-10 | 63 384 | 2.1    | 0        | 0.00 | 172.9940 | 65-409       | 0.27              | 0.10-0.65 |
| 2010-11 | 58 692 | 2.1    | 19       | 1.54 | 182.2981 | 81-403       | 0.31              | 0.14-0.69 |
| 2011-12 | 58 827 | 1.7    | 0        | 0.00 | 163.0185 | 60-387       | 0.28              | 0.10-0.66 |
| 2012-13 | 59 857 | 1.0    | 0        | 0.00 | 158.5990 | 61-374       | 0.26              | 0.10-0.62 |
| 2013-14 | 59 452 | 3.3    | 0        | 0.00 | 155.0727 | 60-351       | 0.26              | 0.10-0.59 |
| 2014-15 | 53 118 | 4.3    | 1        | 0.04 | 156.7306 | 59-363       | 0.30              | 0.11-0.68 |
| 2015-16 | 53 024 | 4.2    | 0        | 0.00 | 154.5387 | 58-354       | 0.29              | 0.11-0.67 |
| 2016-17 | 52 420 | 7.3    | 4        | 0.10 | 154.0865 | 60-357       | 0.29              | 0.11-0.68 |

(a) Estimated captures





(d) Effort, and observer coverage



(b) October 2016 to September 2017



(e) Monthly distribution, all years



Figure B-31: Sooty shearwater captures in small-vessel (< 28 m length) trawl fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016–17, (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

#### **B.8 Black petrel captures**

#### B.8.1 Black petrel captures in small-vessel (< 28 m length) bottom-longline fisheries

Table B-52: Annual fishing effort and number of hooks observed in small-vessel (< 28 m length) bottomlongline fisheries, number of observed captures of black petrel and observed capture rate (captures per thousand hooks), estimated captures and capture rate of black petrel (mean and 95% credible interval).

|         |            | Observed |      | Е     | st. captures | Est. capture rate |       |             |
|---------|------------|----------|------|-------|--------------|-------------------|-------|-------------|
| Year    | Effort     | % obs.   | Cap. | Rate  | Mean         | 95% c.i.          | Mean  | 95% c.i.    |
| 2002-03 | 19 873 309 | 0.0      | 0    | 0.000 | 486.5755     | 263-892           | 0.245 | 0.132-0.449 |
| 2003-04 | 19 908 473 | 1.1      | 2    | 0.090 | 445.5020     | 242-814           | 0.224 | 0.122-0.409 |
| 2004-05 | 22 927 582 | 1.3      | 1    | 0.035 | 395.7914     | 209-714           | 0.173 | 0.091-0.311 |
| 2005-06 | 22 255 410 | 0.7      | 2    | 0.127 | 374.3051     | 191-714           | 0.168 | 0.086-0.321 |
| 2006-07 | 25 369 522 | 2.0      | 4    | 0.081 | 446.2224     | 224-877           | 0.176 | 0.088-0.346 |
| 2007-08 | 27 384 307 | 1.8      | 3    | 0.061 | 313.0142     | 164-585           | 0.114 | 0.060-0.214 |
| 2008-09 | 24 569 215 | 3.6      | 8    | 0.090 | 289.6282     | 155-533           | 0.118 | 0.063-0.217 |
| 2009-10 | 26 848 346 | 2.7      | 43   | 0.594 | 351.9233     | 198-633           | 0.131 | 0.074-0.236 |
| 2010-11 | 27 975 994 | 1.0      | 2    | 0.069 | 323.3318     | 171-586           | 0.116 | 0.061-0.209 |
| 2011-12 | 26 319 876 | 0.3      | 0    | 0.000 | 287.7724     | 145-538           | 0.109 | 0.055-0.204 |
| 2012-13 | 24 275 944 | 1.9      | 2    | 0.043 | 207.5917     | 115-363           | 0.086 | 0.047-0.150 |
| 2013-14 | 24 411 354 | 4.1      | 7    | 0.071 | 213.6599     | 118-386           | 0.088 | 0.048-0.158 |
| 2014-15 | 25 287 149 | 2.1      | 2    | 0.038 | 192.5565     | 102-345           | 0.076 | 0.040-0.136 |
| 2015-16 | 24 898 664 | 2.5      | 0    | 0.000 | 153.8243     | 80-276            | 0.062 | 0.032-0.111 |
| 2016-17 | 24 385 436 | 4.5      | 13   | 0.117 | 188.2046     | 104-345           | 0.077 | 0.043-0.141 |

(b) October 2016 to September 2017

(a) Estimated captures Estimated captures 600 400 200 0 03 05 07 09 11 13 15 Fishing year (c) Observed captures Dead 🔳 Alive -0.10 0.08 0.06 0.06 0.06 Bate 50 Observed captures 40 30 0.04 a 20 Captures 10. 0.02 6 0. 0.00 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 Fishing year (d) Effort, and observer coverage (e) Monthly distribution, all years • **A**• Obs captures Obs effort Observed Coverage All effort Unobsei housands of hooks 30000 40 hooks observed 25000 30 per 20000 15000 20 Percentage 10000 10 5000 0 -...... Λ 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 Apı Month Dec Feb Jun Aug Oct Fishing year

Figure B-32: Black petrel captures in small-vessel (< 28 m length) bottom-longline fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016–17 (Following confidentiality rules, 97.0% of total effort is shown), (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

### B.8.2 Black petrel captures in small-vessel (< 28 m length) surface-longline fisheries

Table B-53: Annual fishing effort and number of hooks observed in small-vessel (< 28 m length) surfacelongline fisheries, number of observed captures of black petrel and observed capture rate (captures per thousand hooks), estimated captures and capture rate of black petrel (mean and 95% credible interval).

|         |           | Observed |      | Е     | st. captures | E        | est. capture rate |             |
|---------|-----------|----------|------|-------|--------------|----------|-------------------|-------------|
| Year    | Effort    | % obs.   | Cap. | Rate  | Mean         | 95% c.i. | Mean              | 95% c.i.    |
| 2002-03 | 8 572 816 | 0.0      | 0    |       | 236.85907    | 115-524  | 0.276             | 0.134-0.611 |
| 2003-04 | 5 730 459 | 2.4      | 1    | 0.074 | 139.23963    | 67-291   | 0.243             | 0.117-0.508 |
| 2004-05 | 3 044 411 | 4.7      | 0    | 0.000 | 148.59720    | 60-377   | 0.488             | 0.197-1.238 |
| 2005-06 | 3 028 699 | 3.2      | 0    | 0.000 | 89.36557     | 39-202   | 0.295             | 0.129-0.667 |
| 2006-07 | 2 332 813 | 8.0      | 0    | 0.000 | 63.80035     | 27-143   | 0.273             | 0.116-0.613 |
| 2007-08 | 1 678 754 | 8.1      | 1    | 0.073 | 66.00475     | 29-148   | 0.393             | 0.173-0.882 |
| 2008-09 | 2 305 503 | 6.5      | 2    | 0.132 | 80.28961     | 36-178   | 0.348             | 0.156-0.772 |
| 2009-10 | 2 517 986 | 7.3      | 6    | 0.326 | 71.65017     | 35-143   | 0.285             | 0.139-0.568 |
| 2010-11 | 2 683 529 | 6.4      | 1    | 0.058 | 116.67741    | 54-257   | 0.435             | 0.201-0.958 |
| 2011-12 | 2 548 787 | 6.8      | 1    | 0.058 | 93.37031     | 42-201   | 0.366             | 0.165-0.789 |
| 2012-13 | 2 389 462 | 3.1      | 0    | 0.000 | 89.85382     | 40-201   | 0.376             | 0.167-0.841 |
| 2013-14 | 1 896 434 | 6.8      | 0    | 0.000 | 76.07646     | 32-173   | 0.401             | 0.169-0.912 |
| 2014-15 | 1 790 036 | 6.0      | 0    | 0.000 | 54.68716     | 21-134   | 0.306             | 0.117-0.749 |
| 2015-16 | 2 303 441 | 13.0     | 7    | 0.234 | 73.47776     | 35-163   | 0.319             | 0.152-0.708 |
| 2016-17 | 2 092 486 | 16.5     | 8    | 0.232 | 64.45427     | 31-143   | 0.308             | 0.148-0.683 |

(a) Estimated captures





(d) Effort, and observer coverage



(b) October 2016 to September 2017



(e) Monthly distribution, all years



Figure B-33: Black petrel captures in small-vessel (< 28 m length) surface-longline fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016–17 (Following confidentiality rules, 95.4% of total effort is shown), (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

### **B.9 Grey petrel captures**

### B.9.1 Grey petrel captures in small-vessel (< 28 m length) bottom-longline fisheries

Table B-54: Annual fishing effort and number of hooks observed in small-vessel (< 28 m length) bottomlongline fisheries, number of observed captures of grey petrel and observed capture rate (captures per thousand hooks), estimated captures and capture rate of grey petrel (mean and 95% credible interval).

|         |            | Observed |      | Es    | st. captures | Est. capture rate |       |             |
|---------|------------|----------|------|-------|--------------|-------------------|-------|-------------|
| Year    | Effort     | % obs.   | Cap. | Rate  | Mean         | 95% c.i.          | Mean  | 95% c.i.    |
| 2002-03 | 19 873 309 | 0.0      | 0    | 0.000 | 170.2314     | 51-460            | 0.086 | 0.026-0.231 |
| 2003-04 | 19 908 473 | 1.1      | 0    | 0.000 | 150.3081     | 44-402            | 0.075 | 0.022-0.202 |
| 2004-05 | 22 927 582 | 1.3      | 0    | 0.000 | 153.2716     | 44-415            | 0.067 | 0.019-0.181 |
| 2005-06 | 22 255 410 | 0.7      | 0    | 0.000 | 157.0095     | 43-451            | 0.071 | 0.019-0.203 |
| 2006-07 | 25 369 522 | 2.0      | 0    | 0.000 | 165.5600     | 44-504            | 0.065 | 0.017-0.199 |
| 2007-08 | 27 384 307 | 1.8      | 0    | 0.000 | 160.2579     | 42-496            | 0.059 | 0.015-0.181 |
| 2008-09 | 24 569 215 | 3.6      | 2    | 0.023 | 138.7634     | 38-398            | 0.056 | 0.015-0.162 |
| 2009-10 | 26 848 346 | 2.7      | 0    | 0.000 | 180.7171     | 49-527            | 0.067 | 0.018-0.196 |
| 2010-11 | 27 975 994 | 1.0      | 0    | 0.000 | 160.3883     | 46-437            | 0.057 | 0.016-0.156 |
| 2011-12 | 26 319 876 | 0.3      | 0    | 0.000 | 140.0420     | 42-389            | 0.053 | 0.016-0.148 |
| 2012-13 | 24 275 944 | 1.9      | 0    | 0.000 | 126.5652     | 36-353            | 0.052 | 0.015-0.145 |
| 2013-14 | 24 411 354 | 4.1      | 1    | 0.010 | 142.0145     | 40-392            | 0.058 | 0.016-0.161 |
| 2014-15 | 25 287 149 | 2.1      | 3    | 0.057 | 143.7579     | 42-407            | 0.057 | 0.017-0.161 |
| 2015-16 | 24 898 664 | 2.5      | 0    | 0.000 | 124.3566     | 33-367            | 0.050 | 0.013-0.147 |
| 2016-17 | 24 385 436 | 4.5      | 0    | 0.000 | 128.5712     | 33-390            | 0.053 | 0.014-0.160 |



Figure B-34: Grey petrel captures in small-vessel (< 28 m length) bottom-longline fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016–17 (Following confidentiality rules, 97.0% of total effort is shown), (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

### **B.10** Flesh-footed shearwater captures

### **B.10.1** Flesh-footed shearwater captures in small-vessel (< 28 m length) trawl fisheries

Table B-55: Annual fishing effort and number of tows observed in small-vessel (< 28 m length) trawl fisheries, number of observed captures of flesh-footed shearwater and observed capture rate (captures per hundred tows), estimated captures and capture rate of flesh-footed shearwater (mean and 95% credible interval).

|         |        |        | Observed |      | Est. captures |          | Est. capture rate |           |
|---------|--------|--------|----------|------|---------------|----------|-------------------|-----------|
| Year    | Effort | % obs. | Cap.     | Rate | Mean          | 95% c.i. | Mean              | 95% c.i.  |
| 2002-03 | 75 995 | 0.5    | 0        | 0.00 | 119.64468     | 57-246   | 0.16              | 0.08-0.32 |
| 2003-04 | 73 511 | 0.3    | 0        | 0.00 | 106.52499     | 53-208   | 0.14              | 0.07-0.28 |
| 2004-05 | 76 312 | 0.2    | 0        | 0.00 | 108.51249     | 55-205   | 0.14              | 0.07-0.27 |
| 2005-06 | 70 812 | 0.6    | 8        | 1.83 | 99.13418      | 54-174   | 0.14              | 0.08-0.25 |
| 2006-07 | 68 135 | 1.0    | 6        | 0.87 | 104.76162     | 52-194   | 0.15              | 0.08-0.28 |
| 2007-08 | 56 767 | 1.3    | 5        | 0.66 | 90.87781      | 47-164   | 0.16              | 0.08-0.29 |
| 2008-09 | 57 574 | 4.1    | 3        | 0.13 | 92.57321      | 47-171   | 0.16              | 0.08-0.30 |
| 2009-10 | 63 386 | 2.1    | 2        | 0.15 | 108.54398     | 54-205   | 0.17              | 0.09-0.32 |
| 2010-11 | 58 692 | 2.1    | 15       | 1.22 | 113.85657     | 63-213   | 0.19              | 0.11-0.36 |
| 2011-12 | 58 825 | 1.7    | 0        | 0.00 | 82.11644      | 40-161   | 0.14              | 0.07-0.27 |
| 2012-13 | 59 856 | 1.0    | 0        | 0.00 | 96.81084      | 47-196   | 0.16              | 0.08-0.33 |
| 2013-14 | 59 453 | 3.3    | 9        | 0.46 | 92.05922      | 48-176   | 0.15              | 0.08-0.30 |
| 2014-15 | 53 119 | 4.3    | 8        | 0.35 | 88.04023      | 46-168   | 0.17              | 0.09-0.32 |
| 2015-16 | 53 022 | 4.2    | 2        | 0.09 | 86.25887      | 40-176   | 0.16              | 0.08-0.33 |
| 2016-17 | 52 422 | 7.3    | 1        | 0.03 | 85.71664      | 38-182   | 0.16              | 0.07-0.35 |



Figure B-35: Flesh-footed shearwater captures in small-vessel (< 28 m length) trawl fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016–17, (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

# B.10.2 Flesh-footed shearwater captures in small-vessel (< 28 m length) bottom-longline fisheries

Table B-56: Annual fishing effort and number of hooks observed in small-vessel (< 28 m length) bottomlongline fisheries, number of observed captures of flesh-footed shearwater and observed capture rate (captures per thousand hooks), estimated captures and capture rate of flesh-footed shearwater (mean and 95% credible interval).

|         |            | Observed |      | Е     | st. captures | Est. capture rate |       |             |
|---------|------------|----------|------|-------|--------------|-------------------|-------|-------------|
| Year    | Effort     | % obs.   | Cap. | Rate  | Mean         | 95% c.i.          | Mean  | 95% c.i.    |
| 2002-03 | 19 869 259 | 0.0      | 0    | 0.000 | 493.5915     | 325-751           | 0.248 | 0.164-0.378 |
| 2003-04 | 19 910 503 | 1.1      | 3    | 0.134 | 431.0197     | 284-665           | 0.216 | 0.143-0.334 |
| 2004-05 | 22 930 292 | 1.3      | 9    | 0.314 | 407.9685     | 269-634           | 0.178 | 0.117-0.276 |
| 2005-06 | 22 260 510 | 0.7      | 0    | 0.000 | 321.7114     | 205-510           | 0.145 | 0.092-0.229 |
| 2006-07 | 25 371 652 | 2.0      | 0    | 0.000 | 333.2816     | 214-521           | 0.131 | 0.084-0.205 |
| 2007-08 | 27 376 411 | 1.8      | 0    | 0.000 | 289.5352     | 186-453           | 0.106 | 0.068-0.165 |
| 2008-09 | 24 573 964 | 3.6      | 16   | 0.180 | 301.6632     | 198-456           | 0.123 | 0.081-0.186 |
| 2009-10 | 26 845 521 | 2.7      | 14   | 0.194 | 286.8011     | 188-427           | 0.107 | 0.070-0.159 |
| 2010-11 | 27 981 339 | 1.0      | 0    | 0.000 | 318.4498     | 207-480           | 0.114 | 0.074-0.172 |
| 2011-12 | 26 312 456 | 0.3      | 0    | 0.000 | 280.2106     | 185-422           | 0.106 | 0.070-0.160 |
| 2012-13 | 24 271 654 | 1.9      | 2    | 0.043 | 292.3798     | 187-453           | 0.120 | 0.077-0.187 |
| 2013-14 | 24 419 994 | 4.1      | 31   | 0.313 | 293.4230     | 197-456           | 0.120 | 0.081-0.187 |
| 2014-15 | 25 289 849 | 2.1      | 8    | 0.152 | 265.5795     | 170-423           | 0.105 | 0.067-0.167 |
| 2015-16 | 24 887 264 | 2.5      | 13   | 0.206 | 243.5847     | 157-384           | 0.098 | 0.063-0.154 |
| 2016-17 | 24 396 916 | 4.5      | 2    | 0.018 | 239.0755     | 150-385           | 0.098 | 0.061-0.158 |



Figure B-36: Flesh-footed shearwater captures in small-vessel (< 28 m length) bottom-longline fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016– 17 (Following confidentiality rules, 97.0% of total effort is shown), (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

# B.10.3 Flesh-footed shearwater captures in small-vessel (< 28 m length) surface-longline fisheries

Table B-57: Annual fishing effort and number of hooks observed in small-vessel (< 28 m length) surfacelongline fisheries, number of observed captures of flesh-footed shearwater and observed capture rate (captures per thousand hooks), estimated captures and capture rate of flesh-footed shearwater (mean and 95% credible interval).

|         |           |        | Observed Est. capture |       | Est. captures | Est. capture rate |       |             |
|---------|-----------|--------|-----------------------|-------|---------------|-------------------|-------|-------------|
| Year    | Effort    | % obs. | Cap.                  | Rate  | Mean          | 95% c.i.          | Mean  | 95% c.i.    |
| 2002-03 | 8 572 816 | 0.0    | 0                     |       | 629.50000     | 285-1 301         | 0.734 | 0.332-1.518 |
| 2003-04 | 5 730 459 | 2.4    | 0                     | 0.000 | 401.07646     | 178-823           | 0.700 | 0.311-1.436 |
| 2004-05 | 3 044 411 | 4.7    | 1                     | 0.071 | 247.00700     | 90-587            | 0.811 | 0.296-1.928 |
| 2005-06 | 3 028 699 | 3.2    | 4                     | 0.411 | 240.53698     | 100-498           | 0.794 | 0.330-1.644 |
| 2006-07 | 2 332 813 | 8.0    | 3                     | 0.160 | 193.52224     | 77-418            | 0.830 | 0.330-1.792 |
| 2007-08 | 1 678 754 | 8.1    | 2                     | 0.147 | 161.98251     | 58-362            | 0.965 | 0.345-2.156 |
| 2008-09 | 2 305 503 | 6.5    | 0                     | 0.000 | 208.81834     | 81-457            | 0.906 | 0.351-1.982 |
| 2009-10 | 2 517 986 | 7.3    | 0                     | 0.000 | 205.32759     | 77-438            | 0.815 | 0.306-1.739 |
| 2010-11 | 2 683 529 | 6.4    | 2                     | 0.117 | 259.42129     | 101-575           | 0.967 | 0.376-2.143 |
| 2011-12 | 2 548 787 | 6.8    | 0                     | 0.000 | 204.84933     | 68-495            | 0.804 | 0.267-1.942 |
| 2012-13 | 2 389 462 | 3.1    | 0                     | 0.000 | 183.78961     | 63-428            | 0.769 | 0.264-1.791 |
| 2013-14 | 1 896 434 | 6.8    | 0                     | 0.000 | 160.38631     | 51-395            | 0.846 | 0.269-2.083 |
| 2014-15 | 1 790 036 | 6.0    | 1                     | 0.094 | 93.07396      | 24-238            | 0.520 | 0.134-1.330 |
| 2015-16 | 2 303 441 | 13.0   | 0                     | 0.000 | 134.61119     | 43-332            | 0.584 | 0.187-1.441 |
| 2016-17 | 2 092 486 | 16.5   | 0                     | 0.000 | 107.85557     | 28-282            | 0.515 | 0.134-1.348 |



Figure B-37: Flesh-footed shearwater captures in small-vessel (< 28 m length) surface-longline fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016– 17 (Following confidentiality rules, 95.4% of total effort is shown), (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

# **B.11 Other birds captures**

#### **B.11.1** Other birds captures in large-vessel ( $\geq$ 28 m length) trawl fisheries

Table B-58: Annual fishing effort and number of tows observed in large-vessel ( $\geq$  28 m length) trawl fisheries, number of observed captures of other birds and observed capture rate (captures per hundred tows), estimated captures and capture rate of other birds (mean and 95% credible interval).

|         |        |        | Observed |       | Est. captures |          | Est. capture rate |             |
|---------|--------|--------|----------|-------|---------------|----------|-------------------|-------------|
| Year    | Effort | % obs. | Cap.     | Rate  | Mean          | 95% c.i. | Mean              | 95% c.i.    |
| 2002-03 | 54 200 | 11.9   | 18       | 0.279 | 122.97276     | 74-196   | 0.227             | 0.137-0.362 |
| 2003-04 | 47 339 | 13.4   | 16       | 0.251 | 100.92929     | 61-165   | 0.213             | 0.129-0.349 |
| 2004-05 | 44 156 | 17.2   | 20       | 0.264 | 102.23663     | 63-167   | 0.232             | 0.143-0.378 |
| 2005-06 | 39 121 | 15.8   | 9        | 0.146 | 64.08921      | 35-107   | 0.164             | 0.089-0.274 |
| 2006-07 | 35 188 | 20.6   | 8        | 0.110 | 49.14668      | 25-85    | 0.140             | 0.071-0.242 |
| 2007-08 | 32 766 | 25.3   | 11       | 0.133 | 52.47701      | 29-88    | 0.160             | 0.089-0.269 |
| 2008-09 | 29 978 | 24.7   | 12       | 0.162 | 50.45427      | 29-83    | 0.168             | 0.097-0.277 |
| 2009-10 | 29 506 | 26.0   | 24       | 0.313 | 75.18216      | 48-119   | 0.255             | 0.163-0.403 |
| 2010-11 | 27 393 | 22.7   | 14       | 0.225 | 55.67341      | 33-91    | 0.203             | 0.120-0.332 |
| 2011-12 | 25 593 | 32.7   | 11       | 0.131 | 37.43228      | 21-61    | 0.146             | 0.082-0.238 |
| 2012-13 | 23 982 | 49.3   | 22       | 0.186 | 42.14443      | 30-61    | 0.176             | 0.125-0.254 |
| 2013-14 | 25 657 | 43.7   | 15       | 0.134 | 35.50375      | 23-55    | 0.138             | 0.090-0.214 |
| 2014-15 | 25 648 | 43.9   | 20       | 0.178 | 47.32634      | 32-70    | 0.185             | 0.125-0.273 |
| 2015-16 | 25 008 | 43.0   | 13       | 0.121 | 35.52899      | 22-56    | 0.142             | 0.088-0.224 |
| 2016-17 | 25 750 | 38.5   | 6        | 0.061 | 24.96302      | 12-45    | 0.097             | 0.047-0.175 |



Figure B-38: Other birds captures in large-vessel ( $\geq$  28 m length) trawl fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016–17 (Following confidentiality rules, 97.8% of total effort is shown), (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

# B.11.2 Other birds captures in small-vessel (< 28 m length) trawl fisheries

Table B-59: Annual fishing effort and number of tows observed in small-vessel (< 28 m length) trawl fisheries, number of observed captures of other birds and observed capture rate (captures per hundred tows), estimated captures and capture rate of other birds (mean and 95% credible interval).

|         |        |        | Ol   | oserved | E        | st. captures | Est. capture rate |             |
|---------|--------|--------|------|---------|----------|--------------|-------------------|-------------|
| Year    | Effort | % obs. | Cap. | Rate    | Mean     | 95% c.i.     | Mean              | 95% c.i.    |
| 2002-03 | 75 995 | 0.5    | 0    | 0.00    | 380.1287 | 174-780      | 0.50              | 0.23-1.03   |
| 2003-04 | 73 511 | 0.3    | 0    | 0.00    | 374.7151 | 171-778      | 0.51              | 0.23-1.06   |
| 2004-05 | 76 312 | 0.2    | 0    | 0.00    | 372.7661 | 172-775      | 0.49              | 0.23-1.02   |
| 2005-06 | 70 812 | 0.6    | 1    | 0.23    | 343.2554 | 157-710      | 0.48              | 0.22 - 1.00 |
| 2006-07 | 68 135 | 1.0    | 2    | 0.29    | 341.5012 | 156-711      | 0.50              | 0.23-1.04   |
| 2007-08 | 56 767 | 1.3    | 0    | 0.00    | 283.5705 | 125-588      | 0.50              | 0.22 - 1.04 |
| 2008-09 | 57 574 | 4.1    | 35   | 1.48    | 302.7239 | 156-584      | 0.53              | 0.27 - 1.01 |
| 2009-10 | 63 386 | 2.1    | 0    | 0.00    | 294.4995 | 135-607      | 0.46              | 0.21-0.96   |
| 2010-11 | 58 692 | 2.1    | 0    | 0.00    | 241.1227 | 112-500      | 0.41              | 0.19-0.85   |
| 2011-12 | 58 825 | 1.7    | 0    | 0.00    | 262.7216 | 118-538      | 0.45              | 0.20-0.91   |
| 2012-13 | 59 856 | 1.0    | 0    | 0.00    | 260.0560 | 122-533      | 0.43              | 0.20-0.89   |
| 2013-14 | 59 453 | 3.3    | 2    | 0.10    | 254.6189 | 119-511      | 0.43              | 0.20-0.86   |
| 2014-15 | 53 119 | 4.3    | 3    | 0.13    | 216.0362 | 104-429      | 0.41              | 0.20-0.81   |
| 2015-16 | 53 022 | 4.2    | 4    | 0.18    | 237.3901 | 111-480      | 0.45              | 0.21-0.91   |
| 2016-17 | 52 422 | 7.3    | 0    | 0.00    | 230.9425 | 105-473      | 0.44              | 0.20-0.90   |

(a) Estimated captures





(d) Effort, and observer coverage



(b) October 2016 to September 2017



(e) Monthly distribution, all years



Figure B-39: Other birds captures in small-vessel (< 28 m length) trawl fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016–17, (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.

# B.11.3 Other birds captures in small-vessel (< 28 m length) bottom-longline fisheries

Table B-60: Annual fishing effort and number of hooks observed in small-vessel (< 28 m length) bottomlongline fisheries, number of observed captures of other birds and observed capture rate (captures per thousand hooks), estimated captures and capture rate of other birds (mean and 95% credible interval).

|         |            |        | O    | oserved | E        | st. captures | Est. capture rate |           |
|---------|------------|--------|------|---------|----------|--------------|-------------------|-----------|
| Year    | Effort     | % obs. | Cap. | Rate    | Mean     | 95% c.i.     | Mean              | 95% c.i.  |
| 2002-03 | 19 869 259 | 0.0    | 2    | 3.64    | 388.5470 | 227-638      | 0.20              | 0.11-0.32 |
| 2003-04 | 19 910 503 | 1.1    | 5    | 0.22    | 347.6077 | 202-578      | 0.17              | 0.10-0.29 |
| 2004-05 | 22 930 292 | 1.3    | 3    | 0.10    | 337.4015 | 193-559      | 0.15              | 0.08-0.24 |
| 2005-06 | 22 260 510 | 0.7    | 10   | 0.64    | 289.1302 | 169-480      | 0.13              | 0.08-0.22 |
| 2006-07 | 25 371 652 | 2.0    | 3    | 0.06    | 304.7841 | 171-526      | 0.12              | 0.07-0.21 |
| 2007-08 | 27 376 411 | 1.8    | 6    | 0.12    | 287.0165 | 165-485      | 0.10              | 0.06-0.18 |
| 2008-09 | 24 573 964 | 3.6    | 8    | 0.09    | 285.5082 | 164-472      | 0.12              | 0.07-0.19 |
| 2009-10 | 26 845 521 | 2.7    | 1    | 0.01    | 289.0325 | 165-486      | 0.11              | 0.06-0.18 |
| 2010-11 | 27 981 339 | 1.0    | 0    | 0.00    | 349.6027 | 196-609      | 0.12              | 0.07-0.22 |
| 2011-12 | 26 312 456 | 0.3    | 1    | 0.12    | 326.5382 | 181-574      | 0.12              | 0.07-0.22 |
| 2012-13 | 24 271 654 | 1.9    | 2    | 0.04    | 286.7749 | 157-496      | 0.12              | 0.06-0.20 |
| 2013-14 | 24 419 994 | 4.1    | 15   | 0.15    | 270.8858 | 157-445      | 0.11              | 0.06-0.18 |
| 2014-15 | 25 289 849 | 2.1    | 2    | 0.04    | 248.0535 | 139-418      | 0.10              | 0.05-0.17 |
| 2015-16 | 24 887 264 | 2.5    | 2    | 0.03    | 231.4533 | 131-395      | 0.09              | 0.05-0.16 |
| 2016-17 | 24 396 916 | 4.5    | 3    | 0.03    | 221.7729 | 127-369      | 0.09              | 0.05-0.15 |

(a) Estimated captures



(c) Observed captures



(d) Effort, and observer coverage



(b) October 2016 to September 2017



(e) Monthly distribution, all years



Figure B-40: Other birds captures in small-vessel (< 28 m length) bottom-longline fisheries. (a) Estimated captures, with 95% bootstrap credible intervals, (b) Mapped effort and captures in 2016–17 (Following confidentiality rules, 97.0% of total effort is shown), (c) Observed captures, (d) Effort and observed effort, and (e) Monthly distribution of fishing effort, observed effort, and observed captures.