Regional patterns of macrofaunal diversity and abundance determined by antagonistic ecosystem engineers in soft-sediment intertidal habitats

Katrin Berkenbusch & Ashley Rowden*

New Zealand Marine Sciences Society & Oceania Chondrichthyan Society 2019

^{*}NIWA & School of Biological Sciences, Victoria University of Wellington

Organisms as ecosystem engineers

Jones et al. 1994

- Physical processes that are not directly trophic or competitive.
- Modification, maintenance and / or creation of habitats.
- Profound impact on the availability of resources.
- Autogenic engineers: through their own physical structures.
- Allogenic engineers: through their behaviour and activity.

Intertidal ecosystem engineers

Burrowing shrimps

- Burrow construction & maintenance
- Deposit feeding
- Bioturbation & sediment disturbance

ightarrow Reduced abundance and diversity of associated fauna

Intertidal ecosystem engineers

Seagrasses

- Production of shoots, leaves, roots
- Above ground habitat
- Buffering of flow & sediment stabilisation

ightarrow Increased abundance and diversity of associated fauna

Antagonistic ecosystem engineers

Burrowing shrimps

 Allogenic ecosystem engineers
> impacts via their behaviour and activity

Seagrasses

 Autogenic ecosystem engineers > impacts via own physical structures

Burrowing shrimps vs seagrasses

Southeastern NZ

- Papanui Inlet
- Blueskin Bay
- Otago Harbour

Pacific Northwest

- Netarts Bay
- Yaquina Bay
- Tillamook Bay

Burrowing shrimps vs seagrasses

NZ & USA

Shrimp vs seagrass

Biffarius filholi ↔ Zostera muelleri Neotrypaea californiensis ↔ Zostera japonica

Within each inlet in each region

 $\begin{array}{l} \mbox{High shrimp Hs:} > 40 \mbox{ mounds per m}^2. \\ \mbox{Low shrimp Ls:} < 20 \mbox{ mounds per m}^2. \\ \mbox{High seagrass Hz:} \ 8000 \mbox{ shoots per m}^2. \\ \mbox{Low seagrass Lz:} \ 2000 \mbox{ shoots per m}^2. \end{array}$

Mixed shrimp / seagrass Sz: 10-20 mounds & 4000 shoots per m².

Intertidal sampling

Set up

Intertidal sampling

Summer & winter

Macrofaunal assemblage (>500 micron)

Habitat variables:

- Seagrass biomass (above and below ground: shoots, leaves, dry weight)
- Shrimp (mound density, bioturbation rate)
- Sediment (chlorophyll α, grain size, organic content, CHN)

Multivariate analysis (Berkenbusch & Rowden 2007). Univariate analysis (current study).

Multivariate analysis * *

Macrofaunal assemblages:

- distinctly different between shrimp & seagrass sites.
- distinctly different between shrimp & mixed sites.
- similar between seagrass & mixed sites.

Consistent differences in each region. Consistent differences in summer and winter.

**Berkenbusch & Rowden (2007). Aquatic Ecology 41:129-147.

No. of species

Summer Otago Harbour

Tillamook Bay

Treatment

No. of indviduals

Summer

Preliminary assessment of patterns in univariate indices.

- Some differences between burrowing shrimp and seagrass sites.
- No universal pattern across sites and treatments (at least not in summer).

Acknowledgments

Many thanks to staff at the Portobello Marine Laboratory/University of Otago, the US Environmental Protection Agency, Dynamc Corp (Newport, Oregon).

This project was funded by the Foundation for Research, Science & Technology through a postdoctoral fellowship (NIWX0004).

