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Abstract

Four aspects of rock-paper-scissors ecosystems are considered. In the first, the

effects of variations in the population’s spatial structure are described. With a

lattice-based spatial structure, three-species coexistence is unstable when dis-

persal is long-range, but becomes stable at a critical threshold as the dispersal

distance is gradually reduced. A continuous-space model is constructed and

is shown to reproduce the three-species stability of the lattice model when in-

teractions are local. But unlike the lattice model, three-species coexistence can

be stable in the continuous space model even when dispersal is long-range.

In the second investigation, the pair approximation technique is applied to

the rock-paper-scissors system. The resulting equations fail to predict the sta-

bility of the three-species state. A local structure approximation based on four

neighbouring sites is shown to produce a more accurate result.

The third contribution is the presentation of two models in which rock-paper-

scissors is able to evolve from a simple two-species system. In both cases,

a two-species competitive cellular automaton is augmented with individual

variation in a phenotypic trait. In the first model, the trait determines the in-

dividual’s investment in interspecific versus intraspecific competition, and in

the second model, the trait determines the individual’s investment in the pro-

duction of an interspecific toxin versus its growth rate. When interactions are

local, selection can cause a divergence in the values of both traits such that

only individuals with extreme levels of the trait survive, while those with

intermediate levels of the trait die out. After this divergence, the resulting

polymorphic community competes in an intransitive rock-paper-scissors cy-

cle.

Finally, an assessment is made of the claim that competitive restraint in rock-

paper-scissors systems is caused by selection for stable subcommunities in a

process of community-level selection. It is argued that members of unstable

subcommunities may be as fit or fitter than identical individuals in stable sub-

communities, and that the invocation of the higher-level selective force does

not add to the understanding of the process of competitive restraint. Mea-

surements of community stability in cellular automata models of rock-paper-

scissors are undertaken and these provide no evidence for a community-level

selective force promoting restraint.
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Chapter 1

Rock-paper-scissors ecosystems

Rock-paper-scissors (RPS) is a children’s game in which two players each

make one of three moves: rock, paper, or scissors. Rock wins against scis-

sors, scissors wins against paper, and paper wins against rock; if both players

make the same move, it is a draw. In game theory, a simple version of RPS

can be described by the following matrix, describing the payoff to player 1:

Player 2

Player 1 r s p

r 0 1 -1

s -1 0 1

p 1 -1 0

Player 1 gains a point when playing rock (r) against scissors (s), but loses

a point playing rock against paper (p). RPS is the simplest game in which

the winner is decided by an intransitive dominance relationship between the

game’s moves. When the game is played repeatedly, none of the three pure

strategies r, s, or p has an advantage. If we include mixed strategies, where

each of the moves can be played with some probability, then the strategy in

which the three moves are played with equal probability cannot be beaten.

In evolutionary game theory, members of a population play pure strategies

against each other, and reproduce in proportion to their relative success. Strate-

gies are interpreted as different phenotypes or species and the underlying

gene frequencies in the population are ignored. In evolutionary rock-paper-

scissors, there is no evolutionary stable strategy; a population made up of any

one phenotype can always be invaded by one of the others (Maynard Smith,

1982). Depending on the exact payoff structure, the intransitivity in the game

can lead to either coexistence of all three strategies in constant proportions, or

1
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to endless oscillations in their populations (May and Leonard, 1975; Gilpin,

1975b).

The oscillations in the three populations are a direct result of the intransitiv-

ity, because an increase in the number of rock-playing individuals comes at

the expense of scissors-players. Fewer scissors leads to more paper, which

in turn leads to a decrease in rocks. So even though rock-players compete

with scissors-players, the rock-players benefit from the presence of scissors

because of the effect that scissors have on paper.

In natural ecosystems, indirect effects like this are common. Real multispecies

communities tend to contain multiple intransitive loops that transform ap-

parently competitive relationships into facilitative ones. One study has cal-

culated that in large competitive networks, 20-40% of interactions that would

be detrimental, if the two species involved were taken in isolation, turn out to

be beneficial when indirect effects are taken into account (Stone and Roberts,

1991).

It is hoped that the study of the simple RPS ecosystem will lead to a better un-

derstanding of the counterintuitive consequences of intransitive species rela-

tionships in general. But this is not the only motivation, because several exam-

ples of simple intransitive competition among three phenotypes are known to

exist in nature. The most well-known involves three mating strategies of the

male side-blotched lizard, in which the frequency of each type in the overall

population fluctuates as predicted by the evolutionary models (Sinervo and

Lively, 1996). Three-species intransitive competition has also been observed

among corals and other sessile (non-mobile) animals that compete for space

in reef environments (Buss and Jackson, 1979; Buss, 1980; Johnson, 1997), and

among strains of bacteria which produce toxins called colicins (Kerr et al.,

2002; Kirkup and Riley, 2004).

Spatial interactions in ecological models

Traditional models based on evolutionary game theory assume a population

that mixes completely at random, in such a way that any individual has an

equal probability of meeting any other individual. While this assumption

simplifies the models, accuracy may be sacrificed in the process, because spa-

tial structure can promote diversity and stability both in ecological models

(Hassell et al., 1994; Durrett and Levin, 1994a), and when added to traditional

game theory, even in games such as the prisoner’s dilemma where one strat-

egy dominates in the non-spatial form (Nowak and May, 1992).
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In RPS, whether the population mixes randomly or is spatially structured has

a crucial effect on the survival of the ecosystem, because spatially structured

populations tend not to oscillate, but remain stable over long periods of time,

with nearly constant proportions of the three species.

These spatial effects are illustrated by Frean and Abraham (2001) in three basic

models which are used throughout this thesis and which are summarised in

the next three sections.

1.1 The mean field model

Under the ‘mean-field’ assumption, the population is completely unstruc-

tured so that at any time, an individual is equally likely to interact with any

other individual.

Application of the mean field model to the rock-paper-scissors ecology is cov-

ered by Frean and Abraham (2001). The actual numbers of rock, scissors, and

paper individuals are abstracted away and the model tracks their ‘densities’,

the number of individuals as proportion of the total population. The model

consists of three differential equations describing the rates of change of the

three species densities, which can be derived from what Hofbauer and Sig-

mund (1998) call the ‘replicator dynamics’. For example, the density of rocks,

ρr, varies according to the following equation:

dρr

dt
= ρrρsrr − ρpρrrp (1.1)

where rr is the rate at which rocks grow over scissors, and rp is the rate at

which paper grows over rocks. The first term, ρrρsrr, represents the increase

in the proportion of rocks in the population from interactions in which rocks

invade space previously occupied by scissors, and the second term, −ρpρrrp is

the decrease in the proportion of rocks resulting from the invasions by paper

of space previously occupied by rocks. Similar equations can be written for

the dynamics of the densities of the other two species, ρs and ρp.

The mean field model predicts that the densities travel in stable orbits around

a fixed point as in figure 1.1. At this fixed point, the three densities are

ρr =
rs

rr + rs + rp

, ρs =
rp

rr + rs + rp

, ρp =
rr

rr + rs + rp

.

Many real ecosystems do not conform with the mean-field assumption. They

have spatial structure and individuals are typically limited in the distance that
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ρ
r

ρ
s

ρ
p

Figure 1.1: Oscillations in species densities under the mean-field RPS model of equa-
tion (1.1), for the invasion rates rr = 0.4, rs = 0.6, rp = 1. The five small circles
show five initial species densities (ρr, ρs, ρp) from the set {(0.3,0.5,0.2), (0.35,0.4,0.25),
(0.4,0.3,0.3), (0.45,0.2,0.35), (0.5,0.1,0.4)} and the lines show the trajectories followed
by the species densities (in a clockwise direction) from these initial points. The left-
most circle is the fixed point of the equations from which the densities remain con-
stant.

they can move, so in practice, the probability that two individuals i and j will

interact at a particular time will vary with i and j. Under these circumstances

we should expect the mean field model to be limited in its ability to predict

the long-term behaviour of the ecosystem.

1.2 Stochastic cellular automaton model

Stochastic cellular automata (Silvertown et al., 1992; Durrett and Levin, 1994b)

are often used in ecological modelling in order to overcome the limitations of

the mean field approach when dealing with spatially structured populations.

SCAs are agent-based: they explicitly represent every individual in the pop-

ulation by locating them at the vertices of a lattice or graph. Only individuals

that are joined by an edge are able to interact directly; the resulting localisa-

tion of interactions is what captures the spatial structure of the population.

The description that follows is similar to that of the SCA model given by Frean

and Abraham (2001). N individuals, each of which has a species in {r, s, p},

are located at the vertices of a square grid with N sites. The boundaries of the
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ρ
r

ρ
s

ρ
p

Figure 1.2: Comparison of the mean field prediction with a spatially explicit sim-
ulation, on a cellular automaton, of the RPS system using invasion rates rr = 0.4,
rs = 0.6, rp = 1. The initial population densities (0.45,0.2,0.35) are marked with an
open circle, the mean field trajectory is shown by the dotted line, the trajectory of the
SCA simulation is shown by the solid line, and the mean field fixed point is marked
with a star. Under the SCA model, the densities are attracted to stable proportions
very close to those at the fixed point of the mean field equations.

grid are periodic, so that sites on the top edge of the grid are adjacent to those

at the bottom, and sites at the left edge are adjacent to those at the right.

At each timestep, two individuals are chosen to interact. One site is chosen

uniformly from the entire population and a second is chosen from among the

direct neighbours of the first. The occupant of the first site replicates into the

second with a probability determined by the species of the two occupants and

the invasion rates: r invades s with probability rr, s invades p with probability

rs, and p invades r with probability rp; for any other combination of species in

the two sites there is no invasion and the grid state is unchanged.

A spatial simulation can be compared to the mean field model by initialising

the sites of the SCA so that the three species are in the same proportion as the

initial densities in the mean field equations (figure 1.2). The mean field trajec-

tory follows a stable orbit, but the trajectory of the SCA settles into an attractor

near to the mean field fixed point. In RPS ecosystems, spatial structure has a

stabilising influence on the composition of the population.
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Figure 1.3: Simulation of 1000 randomly-mixing individuals with invasion rates rr =
0.4, rs = 0.6, rp = 1. The initial population densities are marked by the open circle,
near the fixed point of the mean field model. The densities go through increasingly
large oscillations in which one species dominates until eventually one species (in this
case paper) goes extinct, after which its prey species takes over and the densities settle
at the rest point marked by the black circle.

1.3 Finite-population model with long-range

dispersal

The mean-field model is effectively an infinite-population model, because

there is no limit to how small the proportions described by ρr, ρs, and ρp can

become, provided they are greater than zero to begin with. The spatial SCA,

on the other hand, has a finite population of size N, so species densities are

always multiples of 1/N.

If we take the finite population of the SCA and the random-mixing assump-

tion of the mean field, we get a third model in which a pool of individuals

compete for slices of their fixed-size population. Individuals are said to have

‘long-range dispersal’ because rather than replicating into neighbouring sites,

they can replicate into any other site, as if they could disperse into far-flung

areas on a landscape.

In this case, oscillations in the densities slowly increase in amplitude until

one species goes extinct, followed soon after by a second species (figure 1.3).

The species with the fastest invasion rate usually goes extinct, and the ‘win-

ning’ species is usually the slowest. Frean and Abraham (2001) describe the
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phenomenon as ‘the survival of the weakest’.

1.4 Outline of the thesis

The thesis is in four parts, all of which deal with RPS, and in some cases other

ecosystems with intransitive competition. Part I presents some more realistic

models of spatial structure than those described in sections 1.2 and 1.3. Part

II describes some efficient methods for approximating spatial structure with-

out explicit representation of every agent in the system, and applies these

methods to RPS systems. Part III introduces models for the evolution of RPS

ecosystems through speciation events, and Part IV is a partial critique of a

particular explanation of apparently altruistic behaviour in RPS. The major

contributions of the thesis are described, part by part, in the remainder of this

section.

Part I: Spatially-structured populations

Completely well-mixed natural populations are uncommon, so the mean field

approximation often leads to inaccuracies by underestimating the degree of

spatial structure. However, lattice-based approximations such as the SCA can

overestimate the amount of spatial structure because it is also rare for individ-

uals to interact with a fixed set of neighbours. Chapter 2 attempts to gauge

the accuracy of the lattice approach. An agent-based, continuous-space, non-

lattice-based model of RPS is introduced and compared to the SCA model

given in section 1.2 and the non-spatial model of section 1.3, and concludes

that

(1) When dispersal is localised, the results of the grid-based model approx-

imate the non-lattice model quite well;

(2) The finite-population, random-mixing model of section 1.3 approximates

long-range dispersal in continuous-space quite poorly, at least for non-

mobile organisms.

Both the well-mixed and local grid-based SCA models suffer from a lack of

realism in their treatment of space, and there is also a huge disparity between

the likelihood of ecosystem collapse under the two models when populations

are finite. For the purely local SCA, stable coexistence (as in figure 1.2) is

almost certain, and for the long-range, finite-population model, extinctions
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(as in figure 1.3) are almost certain. In chapter 3, the effect of variation in

neighbourhood size on ecosystem stability is assessed using simulation, to

establish the nature of the transition between these two outcomes. The major

results are:

(3) When dispersal is changed slowly from long-range to local, there is a

point at which the stability of the ecosystem increases at a greater than

exponential rate;

(4) Very short-range dispersal produces more stability than completely lo-

cal dispersal.

Part II: Approximating spatial structure in non-agent-based

models

Agent-based models (like those in sections 1.2 and 1.3) represent every in-

dividual and simulate every interaction, which is time-consuming because

significant computation is required. The mean field model is more efficient

because it models density changes directly, abstracting away from the details

of individual interactions. Faster simulation makes for better generalisation

and understanding, because a thorough exploration of the model space be-

comes possible.

The mean field model described in section 1.1 has an unrealistic treatment of

space, and as a consequence it fails to predict the robust stability in a RPS

ecosystem. Ecological pair approximation models (Matsuda et al., 1987) have

shown that it is possible to model aspects of a spatially-structured population

without explicit agent representation, by describing the dynamics of pairs of

neighbouring individuals. In chapter 4, I apply the method to the RPS ecosys-

tem, but find that

(5) An approximation based on neighbouring pairs fails to predict the sta-

bility of the RPS system; it usually predicts extinctions instead; and

(6) A more detailed approximation based on a larger group of neighbours

predicts stability, but gives incorrect species densities at equilibrium.

A more ad-hoc model that forces stability on the mean field model is intro-

duced in chapter 5, with the result that

(7) It is easy to add stability to an efficient mean-field type model of RPS,

but it is not easy to reproduce the size of the early oscillations in the full
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spatial RPS model.

Part III: Evolution of cyclic species networks

In the well-known prisoner’s dilemma game (Axelrod, 1984), defectors do

better than cooperators when the two strategies are in direct competition, and

in the well-mixed evolutionary version of the game, cooperators are driven to

extinction. Some attempts to avoid these tragic consequences have involved

adding a third strategy in addition to cooperators and defectors, which can

transform the game into a nontransitive competition network in which di-

versity is preserved. For example, Szabó and Hauert (2002) investigated the

addition of ‘loners’, who choose not to play the game, and found that this

can create a cyclic network in which defectors beat cooperators, cooperators

beat loners, and loners beat defectors. In another example, the ‘policing’ be-

haviour modelled in Frank (1995), by which social insects suppress the effects

of competition, can be added to the standard prisoner’s dilemma resulting in

a three-strategy game in which defectors can beat cooperators, cooperators

can beat ‘police’, and police can beat defectors (Mansfield, 2001).

Part III introduces two models, both of which begin in a state with two com-

peting, asymmetric species. In the absence of evolution, one species is stronger

and drives the other to extinction just like in the standard prisoner’s dilemma.

With the addition of a trait that is subject to natural selection, however, a spe-

ciation event may occur, and transform the system into a stable polymorphic

intransitive network.

In the first model, a trait is introduced for intraspecific competition. Individ-

uals vary in the amount of effort they expend competing against members of

their own species versus the amount of effort spent competing against mem-

bers of the other species. Results show that

(8) A two-species ecosystem with evolving intraspecific competitiveness of-

ten results in a robustly stable community, even when the two species

are mismatched in their inherent strengths;

(9) When the population is spatially structured, a branching event in the

trait of at least one species splits individuals of the species into two

morphs; and

(10) The two morphs of the polymorphic species, along with the other species,

compete in an intransitive cycle.
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Few if any species directly trade interspecific competitiveness against intraspe-

cific competitiveness in this way. But toxin-producing species do something

similar; they trade toxin production against growth rate. The second, more re-

alistic model described in Part III is a model of a two-species system which is

augmented with an individual-level trait for the production of an interspecific

toxin. The following conclusions are drawn:

(11) A two-species system with evolving interspecific toxin production is sta-

ble for a wide range of toxin strengths and growth rates.

(12) One species’ toxin usually evolves to a minimum or maximum, and

the other species frequently undergoes a branching event and becomes

polymorphic, in which case competition among morphs is intransitive.

(13) The model suggests a possible mechanism for the origin of the high di-

versity which is observed in most natural communities in which toxin-

production is widespread.

Part IV: Competitive restraint

In all three of the RPS models, the fastest invader usually ends up with the

smallest population. Consequently, a species does better by slowing down

its rate of invasion; it increases its density and decreases its risk of extinction.

Frean and Abraham (2001) ran the RPS system while allowing rock’s invasion

rate to evolve while keeping the other two invasion rates fixed, and found

that the density of rocks decreases as their average invasion rate increases.

Johnson and Seinen (2002) found a more interesting result in a spatial RPS

system similar to that of section 1.2. When one of the three invasion rates is

allowed to evolve while the other two are held fixed, the evolving rate does

not increase forever but reaches a maximum value. They describe this phe-

nomenon as ‘competitive restraint’, because the evolving species reaches a

point at which it has to restrain its competitiveness, or else it goes extinct due

to the ‘survival of the weakest’ property of the system. The evolving species is

not, of course, ‘voluntarily’ restraining competitiveness, but individuals that

become very competitive tend to go extinct in their local region, while those

that remain slightly less competitive survive.

Johnson and Seinen take this explanation up to a higher level and claim that

the occurrence of competitive restraint is caused by competition among multi-

species subcommunities, and that in the competition among subcommunities,

those that are the most stable tend to win. They claim that evolving-species in-
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dividuals face two opposing selective forces: individual-level selection, which

tends to increase their competitiveness, and community-level selection, which

tends to decrease competitiveness in order to make the community more sta-

ble.

I examine this claim in Part IV, and argue the following points:

(14) The invocation of a higher-level selective force to explain the occurrence

of competitive restraint is unnecessary and does not add to our under-

standing of the process.

(15) Measurement of community stability (using different definitions) pro-

vides no evidence for the idea that competitive restraint is caused by a

process in which community and individual-level selective forces are in

balance at the equilibrium.
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Part I

The effects of spatial structure in

agent-based models

13





Chapter 2

Rock-paper-scissors in continuous

space

Agent-based simulations of rock-paper-scissors ecologies in the published lit-

erature have typically been performed using stochastic cellular automata. For

example, SCA models are used by Johnson (1997), Durrett and Levin (1998),

Frean and Abraham (2001), Johnson and Seinen (2002), and Szabó et al. (2004).

These authors have used lattice-based models under the assumption that they

are good approximations to real ecosystems. But in real ecosystems, although

individual organisms usually interact within spatial constraints, they are most

frequently not restricted to interactions with a fixed set of neighbours in quite

the same way as agents on a lattice.

The lattice assumption is useful because it provides spatial restrictions with-

out the computational overhead of keeping track of every agent’s precise lo-

cation, and in many cases, the spatial information in the lattice models is suf-

ficient to reproduce an ecosystem’s essential behaviour. For example, results

of the RPS laboratory experiments of Kerr et al. (2002) are predicted well by

the model in section 1.2 on page 4.

Because of the speed of SCA models, I have used them throughout this thesis.

But in order to confirm that the SCA is a reasonable approximation to the

biological reality, in this chapter I present a continuous-space model that is

capable of reproducing most of the essential features of RPS ecologies.

While continuous-space models are computationally expensive, they are be-

ing used more often in ecological modelling (for example, see Donalson and

Nisbet (1999)) as the available computing power has increased. The model

presented in section 2.1 is a simple model in which individuals do not move,

15
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Figure 2.1: Probability distribution for the random distance z between parent and
child.

but in which offspring are born, and interact, at arbitrary locations in space.

A comparison of this model with a SCA model, described in sections 2.2 and

2.3, shows that the two models produce very similar results in the case of local

dispersal, but different results for long-range dispersal. Some implications of

this discrepancy are discussed in section 2.4.

2.1 A continuous-space model for RPS

Each individual in the system is described completely by

(1) a point location in two-dimensional space, and

(2) a species in {r, s, p}.

Individuals have sizes described by a circle with identical radii around their

point location. No two individuals’ circles are allowed to overlap.

In the SCA models, the grid size is defined in terms of the number of in-

dividual sites it contains. In the continuous-space model I follow a similar

convention and give individuals’ circles a fixed diameter of one, so that it is

possible to describe the total size of the world as a multiple of the size of a

single individual. The space itself, like in the SCA, is defined using a square

with periodic boundary conditions, which represents the surface of a torus.

The model is initialised by scattering a number of individuals at random

across the space so that none of their circles overlap. The fixed invasion rates

of the three species, (rr, rs, rp), are then used to update the world, by repeating

the following three steps:
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(1) A single parent individual is chosen randomly, with a uniform distribu-

tion, from all the individuals currently in the system.

(2) A child is created, with the same species as the parent chosen in step

1, and this child is propagated in a random direction from the parent

out to a distance z from the parent’s centre, where z is chosen from an

exponential distribution with a minimum of 1 and a mean of 2 as shown

in figure 2.1. Because of the minimum distance, the child will never

overlap with its parent, and the shape of the distribution ensures that

interactions remain local.

(3) The fate of the child is determined by its invasion rate r versus its prey

species, and the locations of the existing individuals in the system as

follows:

(a) If no existing individuals overlap the child’s radius, then the child

is successfully born and remains at the location chosen in step 2.

(b) If any of the individuals that overlap the child are of the same

species as the child, or of the child’s predator species, then the

birth event is unsuccessful, the child is removed and the state of

the world is unchanged.

(c) If all n overlapping individuals are members of the child’s prey

species, then with probability rn, the child is successfully born and

the n overlapping individuals are removed, otherwise the birth

event is unsuccessful and the state of the world is unchanged.

Each iteration through steps (1)-(3) will be called an interaction, and the sys-

tem time is measured in the number of interactions since the initialisation of

the system.∗

Figure 2.2 shows some snapshots of the state of the world taken from a sim-

ulation initialised with a small population. The distribution of the distance

between parent and child means that the space begins filling up only in areas

close to the initial individuals.

∗In many ecological SCA models, system time is defined by grouping a number of interac-

tions equal to the total population size, like the ‘epochs’ used in Frean and Abraham (2001), or

the synchronous timesteps in Durrett and Levin (1994b). In the following chapters I use SCA

‘generations’ defined in terms of the population size, but for the remainder of this chapter I

use single interactions to measure time even when referring to SCA models.
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Figure 2.2: Typical behaviour of the continuous space model over time. The figures
show snapshots of the world at six stages in a simulation with an initial population
of 250 individuals, a 150 × 150 space, and invasion rates (1,0.6,0.4). Red, green and
blue dots mark locations of rock, scissors, and paper individuals.
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Figure 2.3: Initial and long-term fluctuations in species densities for the continuous-
space model (top row, 150 × 150 space) and CA (bottom row, 115 × 115 grid) with
invasion rates (1, 0.6, 0.4). For the continuous-space model, the black line shows the
size of the total population, and the red, green, and blue lines show the rock, scissors
and paper population sizes. In the CA grid, the total population size is fixed at 13,225
(115 × 115) so that it is close to the maximum population size in the continuous-space
simulation.

2.2 Comparison with the cellular automaton

model

When the continuous space has filled up, the fastest invader has an initial

population advantage, which is why there are large red areas (occupied by

rock) in the fourth and fifth diagrams in figure 2.2. Eventually the slowest

invader (in this case paper) tends to take over, but this takes some time to

happen.

The initial population fluctuations follow the same kind of pattern in both

the continuous space and grid models. The densities of each species over a

longer timeframe are graphed in figure 2.3. The densities are more variable in

the grid model than they are in the continuous space model for any particular
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Figure 2.4: Average species densities at equilibrium for 8 sets of invasion rates, using
the continuous space, grid and mean field models. Each colour corresponds to one
set of rates. For the continuous space model, the densities are the average over 10,000
density samples taken between 50 million and 100 million interactions in a 150 × 150
space. For the grid model, densities are the average over 5000 samples taken between
1 and 2 billion interactions on a 500 × 500 grid.

population size.

But although the densities fluctuations have a higher amplitude, the long run

averages of the species densities are similar in both models. Figure 2.4 shows

the long-run densities of both models for different invasion rates, along with

the fixed points of the mean field equations. Both the grid and the mean

field approximations tend to predict larger densities of the least populous

species, and consequently they will predict that the risk of ecosystem collapse

is smaller than the risk implied by the continuous-space model.

Frean and Abraham (2001) showed that the spatial organisation of species on

the grid have distinctive qualities for different sets of invasion rates. There is

a much greater degree of clumpiness at equilibrium when the invasion rates

are uneven than there is when rates are well-matched.

Three of the most distinctive patterns are shown in figure 2.5. The grid has

similar spatial patterns to the continuous-space model in the first two cases,

when either all three species are evenly matched, or when one species is much

slower than the other two. In the third example, where one species is much



2.2. COMPARISON WITH THE CELLULAR AUTOMATON MODEL 21

rates=(1.0, 1.0, 1.0) rates=(1.0,1.0,1.0)

rates=(1.0, 1.0, 0.2) rates=(1.0,1.0,0.2)

rates=(1.0, 0.2, 0.2) rates=(1.0,0.2,0.2)

Figure 2.5: Patterns of clustering of species at equilibrium for three sets of invasion
rates. Continuous space simulations are shown on the left (150 × 150 space), and
corresponding grid simulations on the right (300 × 300 grid).
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faster than the other two, the landscapes have a similar pattern but different

‘scales’, because the clusters are much larger in the grid model. This is par-

tially a result of using an exponential distribution, rather than a purely local

rule, in choosing the parent-child distance in the continuous space model. A

more detailed account of this phenomenon is given in chapter 3 when dis-

cussing SCA models with larger, but still partially local neighbourhoods.

2.3 Long-range dispersal

When the SCA model of RPS described in section 1.2 is altered so that interac-

tions are long-range, rather than local, the resulting model is just a pool of in-

dividuals with no spatial structure, who interact with one another at random

(see section 1.3, page 6). When a simulation is performed using this model,

oscillations in the species densities tend to increase in amplitude over time,

usually leading to the extinction of the predator of the slowest invader, and

subsequently to a monoculture of the slowest invader (Frean and Abraham,

2001).

In continuous space, with a variable population size, the instability seen in

the SCA model does not occur.

2.3.1 Continuous-space model with long-range dispersal

The easiest way to introduce long-range dispersal into the continuous-space

model described in section 2.1 is to replace the function for choosing the dis-

tance between parent and child shown in figure 2.1. The function can be

changed so that the child is born at a random location, chosen uniformly

over the entire space. However, such a model does not exhibit the instabil-

ity in species densities which is a feature of the ‘long-range’ version of the

grid model.

It turns out that long-range dispersal is not the primary cause of the instability

effect. The instability occurs only if every individual has an equal probability

of being selected for an interaction. This is not the same thing as long-range

dispersal, for two reasons:

(1) In the continuous space model, a single individual can interact with

more than one individual at once. At step 3 in the definition of the

model rules (on page 17), a single child individual can compete against
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Figure 2.6: The frequency with which a child overlaps (left hand side) and invades
(right hand side) zero, one, two, three, four or five existing individuals, in the local
and long-range versions of the basic continuous-space model described in section
2.1. An overlap with five is the maximum possible. The frequencies were obtained
by running a simulation (in a 45 × 45 space and invasion rates (1,0.6,0.4)) for an
initial 500,000 interactions (to ensure that the space is filled up), and then counting
the overlaps and invasions during one million subsequent interactions.

multiple existing individuals.

(2) Individuals are not located perfectly evenly over the space. So even if

the continuous space model were modified to ensure that interactions

could occur only between two individuals at once, some individuals

will still be less likely to be chosen, simply because they are in more

crowded regions of the space.

The effect of the two factors above is clarified by the consideration of a set of

models separating the effects.

2.3.2 1-1 versus 1-n interactions

Firstly, consider a simple change in the specification of the model that forces

interactions to be between two individuals at the most. Between steps 2 and

3, the child takes all the individuals it overlaps with, and selects only one

of these individuals, at random, to compete against, by ‘moving’ so that it

completely overlaps this competitor.

While this change ensures that interactions are at most 1-1, it also has the

following ‘side-effects’:

(1) The total population can never go down, because existing individuals

cannot be removed, only replaced. (The total population can go up,
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though, because children can still land in empty space.)

(2) Once the space is so full that there are no empty spaces, the number

of individuals in any subregion of the space can never change, because

there is no movement of individuals once they are initially placed.

The second side-effect means that even in the long-range dispersal version

of this model (where children land with equal probability on all parts of the

space), existing individuals in emptier regions, with larger ‘basins of attrac-

tion’, will be interacted with more often than those in close-packed regions of

the space.

Enforcing interactions to be 1-1 has a significant effect on the system. Fig-

ure 2.6 shows, for the original continuous-space model, how often children

land on zero, one, or multiple existing individuals (once the space fills up),

and how often they succeed in invading those individuals. 1-2 interactions

are the most common type in both the local and long-range dispersal models,

although successful invasions are much more likely to come from 1-1 interac-

tions because of the difficulty of successful competition against two individu-

als (probability r2 for invasion rate r), and also because of the small probability

that both individuals happen to be of the child’s prey species.

Successful invasions against two or more individuals are more likely in the

local model because the localised invasion entails that nearby individuals are

quite likely to be the same species (if they are different species, the rules dic-

tate that no invasion can occur). On the other hand, successful invasions

against a single individual are less likely in the local model because nearby

individuals are likely to be from the same species as the invader.

In both models, there are a significant number of successful invasions against

zero individuals (children falling on empty space). The continual presence

of empty space in the system is what makes the 1-n models so much more

stable than the 1-1 models (see the top two rows in figures 2.7 and 2.8). This

is because empty space is always invadable by all three species regardless of

their invasion rates or current densities, so it provides a ‘refuge’ into which

weak or threatened individuals will reproduce.

The stabilising effect of a fluctuating population is not unique to RPS ecosys-

tems. A similar effect has been previously noted by (Mitteldorf and Wilson,

2000), in which a fluctuating population with empty space prevents the ex-

tinction of altruists in competition against selfish individuals.
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Figure 2.7: Early density fluctuations in the 1-n, 1-1, and fixed population models
for very uneven invasion rates (1.0,0.2,0.3). The 1-n models (top row) are the basic
continuous-space model of section 2.1, and the long-range variant described in sec-
tion 2.3.1. The 1-1 models in the second row are the local and long-range versions of
the 1-1 model described in section 2.3.2. All these simulations start with populations
of 6000 in a space of 100 × 100. The ‘local, fixed neighbours’, and ‘long-range, uni-
form in pop’ models are equivalent to the SCA model from section 1.2 (81 × 81 grid)
and the ‘pool of individuals’ model from section 1.3 in which every individual has an
equal probability of being selected (fixed population of 81 × 81 = 6561).
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Figure 2.8: Long-run fluctuations for the six models described in figure 2.7 with inva-
sion rates of (1.0,0.4,0.6), and initial populations and space as in figure 2.7.

2.3.3 Fixed populations and equal interaction probabilities

As I have mentioned above, simply enforcing 1-1 interactions using the above

method does not reproduce the extinctions observed by Frean and Abraham

(2001) in fixed populations with long-range dispersal. The crucial difference

between the two models is that in the Frean and Abraham version, individu-

als are chosen uniformly from the entire population, and this is not true of the

1-1 model described above. Although the 1-1 model chooses the child’s loca-
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tion uniformly, and then chooses the victim uniformly from the set of overlap-

ping individuals, this does not amount to choosing the victim uniformly from

the population because some regions are more closely packed than others.

While this may seem like a small difference, it has a profound effect on the sta-

bility of the system that can be seen in figures 2.7 and 2.8. The middle right di-

agrams show the behaviour when victims are taken from the set of individu-

als overlapping the child, and the bottom right diagrams the behaviour when

victims are chosen uniformly from the entire population. Although there is

little difference between the two in the early stages (figure 2.7, in the long

run choosing from all individuals with equal probability leads to increased

fluctuations and eventually an extinction (figure 2.8).

This is because equal interaction probabilities lead to density oscillations that

are truly global in space and time. Oscillations spread out to all regions si-

multaneously, which means that all areas are ‘in phase’. Unequal interaction

probabilities, on the other hand, effectively produce a small time delay be-

tween regions, because the more probable individuals tend to be invaded a

little bit earlier than the less probable ones. The delay is just long enough

to keep the oscillations out of phase so that the dominant species in the low

probability regions is different from the dominant species in the high proba-

bility regions at any particular instant.

2.4 Discussion

When dispersal is localised, the SCA and continuous space models of RPS

have the same general characteristics. The grid model predicts slightly big-

ger density oscillations than the continuous space model, but it also predicts

slightly closer average densities for the three species. These two effects will

cancel somewhat when the risk of an extinction is being evaluated.

There is a big difference between the two models when dispersal is long-

range. This is because in continuous space, dispersal can be long-range and

the probabilities of interacting can vary from individual to individual because

they may have different sized ‘catchments’. This is not possible with long-

range dispersal on a grid-based model, because all individuals’ catchment

areas must be the same size on any lattice.

It turns out that non-uniformity in interaction probabilities tends to stabilise

the system, and even the small amount of nonuniformity in quite closely-
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spaced individuals (for example in the bottom right of figure 2.2) causes suf-

ficient stability to eliminate the likelihood of extinctions.

Whether or not extinctions occur in real ecosystems will depend on the rela-

tive rates of movement and interaction. The model here has presumed that

movement and interaction occur at exactly the same rate. The laboratory ex-

periments of Kerr et al. (2002) observed extinctions in a RPS system with long-

range dispersal, but the rate of movement was very high. They mixed three

strains of E. coli (in a cyclic dominance relationship) in a flask that was shaken

at a rate of 125 revolutions per minute. This rate of movement may have been

sufficient to ensure that interaction probabilities were effectively uniform.

Real ecosystems in earthly space are very likely to contain at least the small

amount of nonrandom interaction present in the long-range, continuous space

model. The implication for real RPS ecosystems is that we should expect them

to be very stable, even when individuals are able to mix relatively freely.



Chapter 3

The effect of grid size and

intermediate-range dispersal on

extinction in spatial RPS models

RPS ecosystems with local interactions exhibit a high degree of long-term sta-

bility in community composition, while those with random interactions tend

to be unstable until two species become extinct. This effect has been shown

both for real bacterial ecosystems (Kerr et al., 2002), and in cellular automata

simulations (Frean and Abraham, 2001).

The two situations which give these divergent results can be generalised into

a single system with one parameter. This is because random interactions and

local interactions are two end-points of a continuum of dispersal distance. At

one end, a stochastic CA with random interactions between all individuals

in the population models an ecosystem in which offspring are equally likely

to disperse any distance or in any direction across the space. An example

would be an ecosystem made up of plants whose seeds may be blown over

very long distances. At the other end, a CA with local interactions is better

suited for the modelling of plants which only grow by sending out runners

into adjoining space. In between are organisms such as most animals, which

can move longer distances with some maximum range.

There is a big difference between the outcomes at the two endpoints, and the

subject of this chapter is the nature of the transition between them. Specif-

ically, to answer the question of whether there is a gradual change towards

instability as the dispersal distance increases, or whether there is some sort of

critical threshold.

29
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We also know that larger RPS grids tend to be more stable than smaller ones,

so a secondary purpose is to find out whether a similar sort of transition from

stability to instability arises when decreasing the size of the grid rather than

increasing the dispersal distance.

In this chapter I describe the results of CA simulations that are intended to

answer these questions. The findings of these experiments are:

(1) RPS systems become increasingly stable as the square grid is increased

in size, and the stability increases at a faster than exponential rate with

respect to the grid size (when measured by the length of one side of the

square).

(2) RPS systems on a grid with a particular size become more stable as

the radius of the local neighbourhood is decreased, and the stability in-

creases at a faster than exponential rate with respect to decreasing neigh-

bourhood radius.

(3) The grid size and neighbourhood size variables affect stability indepen-

dently of one another, and a linear combination of the two can predict

the stability of the system.

(4) Although very long-range dispersal leads to extinctions, dispersal over

short distances can increase stability in comparison to purely local dis-

persal.

The rest of the chapter proceeds as follows. First I describe some details of the

stability measure used in the experiments. The effect of varying the size of the

grid is described in section 3.2, the effect of varying the interaction neighbour-

hoods is described in section 3.3, and section 3.4 shows the combined effect of

variations in both variables. The results are discussed in section 3.5.

3.1 Time to extinction (TTE) experiments

For the experiments described in this chapter, I have used a cellular automa-

ton model of the RPS system, with rules identical to the one described in

section 1.2 on page 4. To assess the stability of the model ecosystem with a

particular set of parameters, I just count the number of generations until an

extinction occurs. This number, which I call the time to extinction or TTE,

quantifies an ecological concept similar to ‘persistence stability’ as defined in



3.2. INCREASING THE GRID SIZE 31

Johnson and Mann (1988) and Johnson and Boerlijst (2002), a concept which

is explained in more detail in chapter 10. Persistence stability is usually not

concerned with the magnitude of changes in species densities over time; it

just measures whether species population sizes remain non-zero (Connell and

Sousa, 1983).

In a CA, the time during which all three species survive is a good measure

of the stability of the ecosystem, and it is easy to calculate for a particular

simulation, but it has the drawback of making it difficult to get a result for

very stable ecosystems.

Coexistence, extinction and stability in CA simulations

It will never be possible to say that coexistence in a particular CA simulation

is completely stable, because in a stochastic system it always remains possible

for some freak chain of events to bring about an extinction. All sites in a CA

grid are connected to at least four others, so it is theoretically always possible

to reach the state in which the population-N grid is saturated by species A

after only (1− ρA)N interactions. However, as the N increases this probability

of such an extinction becomes vanishingly small.

It is feasible to run simulations for a large number of generations and see

whether extinctions occur, and that is the approach I have taken in these ex-

periments. This allows systems of various sizes to be compared for stability,

but it is not possible to find a grid size at which a given system becomes in-

definitely stable using this method.

3.2 Increasing the grid size in a local dispersal

system

In the experiments detailed here spatial RPS simulations are run for many

different sized grids to find the nature of the transition from instability to

stability.

3.2.1 Two reasons why large grids increase stability

There are two reasons why larger grids should foster coexistence. The first

reason is not related to RPS ecosystems. It’s simply that even unfit species can
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be expected to survive longer in larger populations given the same species

densities. The unfit species starts out in greater numbers in the large pop-

ulation and survives longer through luck alone. For example, the absolute

minimum time to extinction of (1 − ρA)N described in 3.1 above scales with

the population size N.

The second reason is more interesting and relates to the apparent character-

istic cluster sizes seen in spatial RPS simulations with various invasion prob-

abilities, examples of which are shown in figure 2.5 (page 21). An intuitive

argument states that if there is a characteristic maximum cluster size for a

particular set of species, then grid sizes at or below this maximum cluster size

are likely to result in extinctions, while those well above the maximum cluster

size may be able to remain in a state of coexistence.

3.2.2 RPS versus random drift

These two effects are not easy to distinguish if time to extinction is used as the

only measure of stability. In order to separate the two effects, I will compare

the RPS system to a second system, which I call the ‘drift’ system, in which

individuals are able to invade one another at random, regardless of species.

In populations consisting of multiple types of individual each with equal fit-

ness, it has been shown that all but one type will eventually go extinct through

the process of genetic drift (see for example the explanation given by Suzuki

et al. (1989)). Dick and Whigham (2005) have modelled the genetic drift pro-

cess in a spatially structured environment and found that in the absence of

selection, even extremely spatially structured populations will evolve by ge-

netic drift to a state of extinction.

I will compare the RPS system to an interacting population with neutral fit-

ness effects in order to show the extent to which selection under the RPS rules

is responsible for the observed stability. The drift system should show coex-

istence caused by the first of the two effects described in section 3.2.1 above,

but not the second effect, because there should be no maximum cluster size.

The RPS system, on the other hand, will exhibit both effects, so by subtracting

the coexistence times found in the drift system, the stability effect due to RPS

can be found.

The CA simulations I provide below are asexual models for the purposes of

simplicity and so the system I am calling ‘drift’ is different to the genetic drift

in sexual populations studied by Dick and Whigham (2005).
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3.2.3 Invasion rates and averaging of TTE

In the simulations in this and the next section I give each species an invasion

rate of 1 against all other species in the drift system, and against the next

species in the cycle for the RPS system. Invasions involving two members of

the same species have no effect, and can be ignored, but because the sum of

all the invasion rates (for interactions involving different species) is twice as

high in drift as it is in RPS, there will be twice as many invasions on average

in the drift system than there are in the RPS system.

Because of the large variation between simulations with identical initial states,

TTEs over multiple simulations must be averaged out in order to get useful

comparisons.

3.2.4 TTE increases with grid size

Figure 3.1 shows TTEs for thousands of simulations with gradually increas-

ing grid sizes for the RPS and drift systems. With each increase in the grid

size, more and more of the CA simulations run for longer before an extinction

occurs. The average TTE, shown by the black lines, increases sharply in the

RPS system (fig. 3.1(a)) and only slowly in the drift system (fig. 3.1(b)).

3.2.5 Trends in average TTE

The character of these increases in average TTE is shown more clearly in figure

3.2, which also shows that the average TTE is far longer in the RPS system

than it is in the drift system for all the grid sizes (see the scale on fig. 3.2(b)).∗

Stability in RPS continues to climb steeply while the stability of the drift line

appears to be levelling out, indicating that the stability rise with grid size is

faster than exponential for RPS, but merely linear for the drift system.

Finally, as the grid size increases, the average TTE in the drift system becomes

very insignificant when compared to the extinction time in the RPS system,

indicating that increased coexistence caused purely by a larger population

becomes insignificant compared to coexistence caused by the characteristic

maximum cluster size of stable RPS systems.

∗As discussed above the drift system as implemented here has an effective dynamical

timescale that is twice as fast as that of the RPS system. But even when these different time-

scales are accounted for, RPS still has a longer TTE for all the grid sizes displayed in the

figure.
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Figure 3.1: Time to extinction for 10,000 simulations at each of ten different grid sizes:
21 × 21, 22 × 22, . . . , 30 × 30. (a) is a RPS system with equal invasion rates and
(b) is the three-species drift system in which all species have an equal probability of
invading one another. Each blue dot marks the TTE for a single simulation; the red
dots and black line show the mean TTE for the 10,000 simulations at each grid size.
The mean is not shown for the RPS system with a 30 × 30 grid because 28 of the 10,000
simulations had not reached an extinction after the maximum 2,000,000 generations.

3.2.6 Distribution of TTE

Figure 3.3 shows the distribution of TTEs of the simulations performed above.

The distributions all exhibit a characteristic long tail.

The drift distributions show a clear peak which appears to be lacking in the

case of RPS, but this doesn’t mean that only the drift system has a character-

istic extinction time: in fact a small peak is visible even for RPS upon exam-

ination of the extinctions which occur early in the simulations, examples of
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Figure 3.2: Average TTE for the RPS (red, right hand axis) and random drift (blue, left
hand axis) systems, shown on (a) linear and (b) log scales.

which are shown in figure 3.4. For these examples, RPS extinctions are less

likely to occur in the first 150 generations than they are at some later times, so

even the RPS distributions are peaked.

The shape of the distributions shown in figure 3.3 do not appear to change

with respect to the grid size, even though they are stretching out over longer

times. (Although the distribution of extinction times in RPS with a grid size

of 30 × 30 looks different to those from the smaller grid sizes, this is probably

because 28 simulations were cut from the distribution because their values

exceeded the maximum simulation length of 2,000,000 generations).

Figure 3.5 shows that in the first 150 generations, extinctions are actually

slightly more likely in RPS than in the drift system. However, as figures 3.3

and 3.4 showed, if one of these extremely early extinctions does not occur,

then extinctions are less likely under RPS for ever after.

3.3 Decreasing the dispersal range

The effect of the dispersal distance, for a given grid size, can be checked by

running CA simulations in which the interaction neighbourhood is altered.

As discussed in the introduction to this chapter, in all the CA models pre-

sented so far it has been assumed either that an individual can only interact

with its immediate (north, south, east, west) neighbours on the grid, or that

an individual can interact with any other individual in the entire population.

These two scenarios are special cases in which the neighbourhood radius is
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Figure 3.3: Distribution of TTE for the RPS and ‘drift’ systems, where each bar shows
the number of simulations (out of 10,000) whose TTEs fall into one of 70 equally
spaced bins. The overall shape of the distributions remains relatively constant with
respect to the system size.



3.3. DECREASING THE DISPERSAL RANGE 37

0 2500
0

100

200

(+3544)

S
iz

e
=

2
1

RSP

0 2500
0

200

400

600

(+108)

drift

0 2500
0

10

20

30

(+9203)

S
iz

e
=

2
6

Extinction time
0 2500

0

200

400

(+772)

Extinction time

Figure 3.4: Close-up of distributions of TTEs occurring in the first 2500 generations.
For each of the four cases, 10,000 simulations were run, and the numbers in brack-
ets indicate how many of those 10,000 simulations had extinctions after the 2500th
generation.
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Figure 3.5: Number of extinctions out of 10,000 simulations which occur within the
first 150 generations.

one or infinite. In between these extremes I have used increasing radii, three

examples of which are shown in figure 3.6.

A large neighbourhood radius reduces clustering and tends to homogenise

the grid state, as can be seen in the grid snapshots in figure 3.7.

3.3.1 The effect of neighbourhood size on TTE

In the case of dispersal distance it is the small neighbourhood radii which

lead to the most long-term stable coexistence. Therefore in these simulations I

show the effect of decreasing the neighbourhood size from some large number
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6.5 8.0 9.3

Figure 3.6: Examples of three neighbourhood sizes, or dispersal distances. The indi-
vidual in the black site can interact with all the sites shown in grey.

rates: 1.0,1.0,1.0; radius 1 rates: 1.0,0.5,0.5; radius 1 rates: 1.0,1.0,0.3; radius 1

rates: 1.0,1.0,1.0; radius 3 rates: 1.0,0.5,0.5; radius 3 rates: 1.0,1.0,0.3; radius 3

rates: 1.0,1.0,1.0; radius 8 rates: 1.0,0.5,0.5; radius 8 rates: 1.0,1.0,0.3; radius 8

Figure 3.7: The state of a 100 × 100 grid after 4000 generations for three sets of inva-
sion rates and three neighbourhood radii. Rocks are shown in black, scissors in grey,
and paper in white, and the invasion rates are listed in order rock, scissors, paper.
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Figure 3.8: Effect of decreasing neighbourhood size on average TTE (over 100 sim-
ulations) for the RPS and drift systems on 100 × 100 and 80 × 80 grids. For RPS,
stability increases dramatically when the neighbourhood size falls. For the drift sys-
tem, neighbourhood size does not affect stability.

for which the average TTE is similar to the average TTE for infinite dispersal.

Figure 3.8 shows average TTE for the RPS and drift systems when the neigh-

bourhood radius is reduced from 25 down to 13, on two different grid sizes.

The leftmost column on the x-axis, marked ‘Inf’, shows the TTEs for an infi-

nite dispersal range in which the entire grid is covered. In the RPS system TTE

increases at a faster than exponential rate with respect to decreasing neigh-

bourhood radius.

For the drift system, the neighbourhood size appears to have no effect on

coexistence, providing evidence for the hypothesis that the duration of coex-

istence in the drift system depends solely on the size of the population. This

is another good reason to believe that the drift system results are an appro-

priate way to separate large-population caused coexistence from any inherent

stability encoded in the RPS invasion rates.
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Figure 3.9: Distributions of TTE for 10,000 RPS simulations on 100 × 100 grids, for
three neighbourhood sizes: (a) full distributions showing all samples; (b) frequency
of simulations with TTE less than 2000 generations.

3.3.2 Neighbourhood size and TTE distributions

A decrease in neighbourhood size affects the shape of the distribution of TTE,

an outcome that is not observed when changing only the grid size. The full

distributions, shown in figure 3.9(a) stretch out in response to decreasing

neighbourhood radius.

Distributions over the first 2000 timesteps (fig. 3.9(b)) indicate the presence

of a minimum time before which extinctions are extremely unlikely. Unlike

the mean TTE, this minimum barely shifts in response to decreasing neigh-

bourhood size. Even with infinite dispersal, when we start with equal densi-

ties, the three species populations will go through several cycles before any of

them drop to zero.
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Figure 3.10: Variation of TTEs (average over 20 simulations, up to a maximum of
5,000,000 generations) with grid size and neighbourhood size, when rr = rs = rp. The
shading is linear with extinction time with pure black representing extinction by 100
generations through to pure white representing the maximum 5 million generations.

3.4 Combinations of grid size and dispersal

distance

Although there can be no hard stability threshold, for reasons discussed ear-

lier, the dramatic rise in stability indicates an effective threshold for both grid

size and dispersal distance which is shown in figure 3.10. The diagonal sep-

arating the black region of early extinction and the white region with stable

coexistence depends on both grid size and dispersal distance in a near-linear

combination.

3.4.1 Relative importance of grid size and neighbourhood

The slope of the boundary line in figure 3.10 suggests that a decrease of one

in neighbourhood radius is roughly equivalent, in terms of stability, to an

increase of five in the grid size.
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Figure 3.11: Variation of TTEs (average over 20 simulations, up to a maximum of
5,000,000 generations) with grid size and neighbourhood size, for rr = 1, rs = 0.5,
rp = 0.5 (top), and rr = 1, rs = 1, rp = 0.3 (bottom).
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3.4.2 Effect of invasion rates and cluster size

I suggested that the characteristic maximum cluster size might be a determin-

ing factor in whether or not a particular grid size or neighbourhood size could

bring about stability or extinction in the spatial RPS game. Figure 3.11, which

shows a similar threshold effect to the one in figure 3.10 for different sets of

invasion rates, provides evidence in favour of this claim.

Figures 3.10 and 3.11 show the effect of the grid size and dispersal parameters

for the systems displayed in figure 3.7, and it turns out that stability does in

fact decrease with increases in the cluster sizes. A crude measure of clustering

can be obtained by taking a few sites at random from a grid and for each of

these sites, counting the number of sites in one direction that are in the same

state. Table 3.1 shows the results of doing this for simulations using the three

sets of invasion rates from figure 3.7.

The third column of the table shows that the general trend towards instabil-

ity is quite well predicted by the amount of clustering in the grid with local

dispersal.

3.4.3 Stability is maximised for small, but not minimum

neighbourhoods

Cluster sizes do not fully predict the stability of the system, because for all

three sets of invasion rates in figures 3.10 and 3.11, systems with a very small

amount of non-contiguous dispersal (neighbourhood radius 2-3) are in fact

more stable than those with purely local dispersal (neighbourhood radius 1).

A comparison of the first and second rows of figure 3.7 shows that radius 3

systems are typically less clustered than radius 1 systems.

As neighbourhoods get even larger, clustering increases even further (see the

bottom row of figure 3.7), but now stability decreases rather than increases.

There is therefore no simple correspondence between cluster size and stability.

The extra stability brought about by a small amount of non-local dispersal is

caused by the ability of a species to leap over regions occupied by its ‘preda-

tor’ into a region occupied by its ‘prey’, which is impossible for pure local

dispersal. With pure local dispersal, large areas of species B that become sur-

rounded by their predator species A will normally face local extinction (except

in the case where their prey species C, pursuing the predator, breaks through

into areas occupied by the original species B). The extra mixing provided

by non-contiguous dispersal reduces the number of these local extinctions by
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Invasion rates Cluster measure Smallest stable grid

1.0 1.0 1.0 3.2 36 × 36

1.0 0.5 0.5 4.0 39 × 39

1.0 1.0 0.3 5.5 54 × 54

Table 3.1: Clustering for RPS simulations with three sets of invasion rates. For each
set of invasion rates, the measurement given in the second column is calculated in
the following way. First, 100 simulations were run for 4000 generations on a 100 ×
100 grid with purely local dispersal. For each of these grids, 100 distinct sites were
chosen at random from all over the grid, and for each random site, the number of
contiguous sites to its right occupied by the same species as the original site were
counted. Each number in the table is therefore the average over 10,000 sites from 100
different grids. The third column shows the smallest grid size from the simulations in
figures 3.10 and 3.11 for which all of the simulations reached the maximum 5 million
generations.

creating more alternative paths through the space.

The effect is more pronounced for uneven, more clustered environments, shown

by the especially large jump in stability between radius 1 and radius 2 neigh-

bourhoods for the most clustered system shown at the bottom of figure 3.11.

This is because the most clustered, uneven systems have small densities of

very fast invaders which come through in thin waves that are easy to jump

over with the addition of a very few non-local interactions.

3.5 Summary and discussion

In the spatial RPS game, there is a simple correspondence between the size of

the grid and the length of time before extinctions occurs. For a set of invasion

rates, the stability of the system grows faster than exponentially with every

increase in the size of the grid, and at any given timescale there will be an

effective threshold above which the system can be considered stable because

extinctions become vanishingly unlikely.

There is a similar, independent stabilising effect caused by neighbourhood

size in spatial RPS systems with non-local dispersal. Large dispersal distances

tend to amplify fluctuations in species densities that lead to global extinctions,

but these fluctuations decrease once the neighbourhood size becomes suffi-

ciently small. Subsequent decreases in neighbourhood size tend to cause a

greater than exponential increase in stability.
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However, for a critical range of grid sizes, the system can become less sta-

ble again when the neighbourhood size becomes very small, because of an

increase in extinctions at the local level.

This last result is especially surprising because it has generally been believed

that spatial structure provides a mechanism for the maintenance of diver-

sity (Hassell and May, 1973; Chesson, 2000; Durrett and Levin, 1994a; Hassell

et al., 1994; Tilman and Kareiva, 1997; Dieckmann et al., 2000). The effect has

been noted in RPS (Johnson, 1997; Durrett and Levin, 1998) and in many other

systems such as the spatial Prisoner’s Dilemma (Nowak and May, 1992), and

more general models of evolutionary altruism (Mitteldorf and Wilson, 2000).

The result presented here shows that the effect of spatial structure is more

complicated, because there are cases in which the addition of spatial structure

causes a decrease in system diversity.
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Part II

Approximations of spatial structure

47





Chapter 4

Pair and local structure

approximations for

rock-paper-scissors ecosystems

The equilibrium behaviour of rock-paper-scissors ecosystems depends cru-

cially on whether the population is spatially structured or well-mixed. Be-

cause it is rare for natural populations to be completely well-mixed, it is im-

portant to have good models for the more common situation where interac-

tions are non-random. Cellular automata help to fill this role, but they are

computationally expensive in comparison to mean field models using ordi-

nary differential equations. The amount of computation required can make

the task of exhaustively exploring the space of parameters and initial condi-

tions into quite a painstaking process.

Local structure approximations are a method for including a small amount of

spatial information in an ODE model that is computationally efficient to simu-

late numerically, and in this chapter I describe the application of the technique

to RPS ecosystems. Because these models provide more spatial information

than the mean field, we should expect them to produce more accurate mod-

els. However, I show that this is not always the case for RPS systems, and that

some of their properties are better predicted using the the simpler mean field

model.

49
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4.1 Pair and local structure approximations

Pair approximations originated in statistical mechanics, and were first used

for ecological models by Matsuda et al. (1987). They are a class of models

which include a limited amount of spatial information in a dynamical system

by approximating a limited number of the local interactions that would take

place in a full cellular automaton model.

The general technique is to track correlations between the types of neighbour-

ing pairs of individuals. So while the mean field model described in section

1.1 consists of equations for changes in species densities, a pair approxima-

tion model of the same system specifies equations that track the densities of

neighbouring pairs of individuals. Good examples of ecological pair approx-

imation models are given in Harada et al. (1995) and Matsuda et al. (1992).

‘Local structure approximations’ is a name given to the more general class of

models in which neighbouring groups larger than just pairs may be involved

(Hiebeler, 1997).

Although pair and local structure approximation models assume continuous

population densities, like the mean field models, they also assume some level

of discreteness of space, like the SCA models, because neighbour relations

must be represented explicitly. They are always significantly more complex

than corresponding mean field models, but very much simpler than stochas-

tic cellular automata, and in many cases have been successful in describing

the essential effects of spatial structure without the overhead of agent-based

models

The use of the pair approximation technique has been shown to improve sig-

nificantly on the mean-field model for some populations (Sato and Iwasa,

2000; van Baalen, 2000; Hiebeler, 2000; van Baalen and Rand, 1998; Caraco

et al., 2001), although there are also cases in which it fails to improve predic-

tions (Ives et al., 1998; de Aguiar et al., 2004). RPS systems appear to fall into

the latter category. In the next few sections I show that for the most important

statistical property of a RPS ecology, species composition, two simple local ap-

proximations that are relatively easy to derive do not deliver an improvement

in predictive accuracy over the spatially deficient mean field model. Szabó

et al. (2004) have obtained similar results.
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4.2 Application to RPS

RPS ecosystems are especially sensitive to assumptions about discreteness of

individuals and spatial structure. As discussed in Frean and Abraham (2001),

and shown in figure 1.2 on page 5, spatially explicit models make very differ-

ent predictions to the mean field model about the stability of the system.

The basis of pair approximations is to think of the population as being on a

graph in which an edge between two sites x and y indicates that individuals

occupying those sites are able to interact with one another. For simplicity, and

for ease of comparison with the cellular automaton model, I will use a regular

grid rather than a general graph.

Because the pair approximation is an approximation to a cellular automaton,

it can only be expected to provide more accurate predictions of an ecosystem

insofar as the SCA’s predictions are accurate. Real ecosystems are usually not

lattice-based, and will probably have properties more like those of the models

described in Part I of this thesis.

4.2.1 Pair transformation dynamics

In the RPS system the mean field dynamics are shown in figure 4.1(a), where

rock sites can turn into paper sites, paper sites can turn into scissors sites,

etc., through invasions. The pair dynamics are shown in figure 4.1(b) and (c).

Figure 4.1(b) shows the ways in which pairs of sites can change into other

pairs if invasions are allowed in both sites at once, and figure 4.1(c) shows

the ways in which pairs change into other pairs through the effect of a single

invasion in one site.

4.2.2 Symmetry in pair types

There are 32 = 9 possible configurations of three species in two sites, but

these are reduced to six different nodes in the diagrams because of the sym-

metry of the invasion rules: the density of pairs of the form [ab] will be the

same as that of [ba] pairs, so a single node is used to represent both. For the

remainder of this chapter I will write the nine pair states where ordering is

important in square brackets: {[rr], [rs], [rp], [sr], [ss], [sp], [pr], [ps], [pp]}; and

the six unordered states without square brackets: {rr, ss, pp, rs, sp, pr}.

The density ρxy will refer to the proportion of pairs of which one is in state x
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(a)

r p

s

rr pr pp

rs sp

ss

rr pr pp

rs sp

ss

(b) (c)

Figure 4.1: The rock-paper-scissors system: (a) Dynamics of single sites (b) Dynamics
of pairs when invasions at both sites are allowed (c) Dynamics of pairs of sites with
invasions at a single site only.

and the other is in state y, regardless of the order, and ρ[xy] is the density of

pairs where the first is in state x and the second is in state y. So ρxx = ρ[xx],

and when x 6= y, then ρxy = ρ[xy] + ρ[yx].

4.2.3 Counting of pairs

There are two common approaches to counting the pairs. Rand (1999), for

example, presents an account which applies to arbitrary graphs, in which all

edges are counted twice, so for two sites x and y, the edge from x to y is

distinct from the edge from y to x. This means that for the regular lattice

with Q neighbours per site, there are Q times as many pairs as there are sites.

When all edges are counted twice, this will ensure that ρ[xy] = ρ[yx] = 1
2 ρxy,

a property that should be expected to hold in the long run in the SCA because

the invasion rules are symmetric. Two examples of the ways in which edges

are counted are shown in table 4.1.

If the task is simply finding correlations between the states of neighbouring
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r s r s

r p r r

(1) (2)

ordered pairs, unordered, unordered

counted in both directions one direction densities

[rr] [rs] [sr] [sp] [ps] [rp] [pr] rr rs pr sp ρrr ρrs ρpr ρsp

(1) 2 1 1 1 1 1 1 1 1 1 1 1/4 1/4 1/4 1/4

(2) 4 2 2 2 2 1/2 1/2

Table 4.1: Two approaches to counting pairs in the 2 × 2 grids (1) and (2), assuming
non-periodic boundaries. When the order of pairs is important and the edges of the
graph are counted in both directions, there are 8 pairs; when order is unimportant
and edges are counted once, there are only four. The densities of unordered pairs
remains the same no matter which method is used.

sites, it is unnecessary to distinguish, for example, between pairs in state [rs]

and those in state [sr]. Therefore the unordered pair state descriptions will

generally be used in the following sections. When counting unordered pairs,

edges can be counted once only, and there will only be Q/2 times as many

pairs as there are sites.

4.2.4 Homogeneous and heterogeneous pairs

It can also be seen from the diagrams in figure 4.1 that structurally there are

really only two different types of pairs, the ‘aa-type’ pairs, in which each site

of the pair is occupied by the same species (rr, ss, and pp), and the ‘ab-type’

pairs in which the two cells are occupied by different species (rs, sp, and pr).

In figure 4.1, all three homogeneous or aa-type pairs occupy similar positions

in relation to the other pairs, as do the three heterogeneous or ab-type pairs.

The development of the model in the following section will make use of the

similarity within the two pair types, because it can be used to reduce the num-

ber of equations.



54 CHAPTER 4. PAIR APPROXIMATIONS FOR RPS ECOSYSTEMS

4.3 Derivation of pair correlation equations

Figure 4.1(c) shows the possible state changes if invasions are allowed to oc-

cur at only one of the two sites in a pair of neighbours. Using only single

invasions at one site, we can model a system similar to the SCA simulation

where at each timestep, we pick two neighbouring sites at random from a

grid, see if the first successfully invades the second, and if so, update any pair

densities which are affected. The pair densities that will change after a suc-

cessful invasion are the densities of those pairs in which at least one of the

pair is in the same state as the invaded site.

4.3.1 Rate of change of homogeneous pairs

From figure 4.1(c), we can see that the aa-type pairs all have only one arrow

leading into them and one arrow leading out, corresponding to the ways in

which these pairs can be created and destroyed from other pairs. The corre-

sponding equation for the rate of change of each of the aa-type pairs will have

two terms, each corresponding to an arrow in the diagram.

For example, with the rate of change of rr pairs, there will be two terms in

the equation: a positive term corresponding to the arrow going out of rr to

pr, and a negative term corresponding to the arrow going into rr from rs. The

resulting equation is of the form

dρrr

dt
= R[rs → rr] − R[rr → pr]

where R[rs → rr] is the rate at which rr pairs are created when a rock invades

the scissors in a rs pair, and R[rr → pr] is the rate at which rr pairs are de-

stroyed (and turn into pr pairs) when one rock in an rr pair is invaded by a

paper.

In general, for all of the homogeneous pairs, there is an equation for the rate

of change. So we have three equations represented by

dρaa

dt
= R[ab → aa]− R[aa → ca] (4.1)

for all a, b, c ∈ {r, s, p} such that b = prey(a) and c = predator(a), where

prey(r) = s, prey(s) = p, prey(p) = r, and

predator(r) = p, predator(s) = r, predator(p) = s.

Equation (4.1) is just a general way to represent the rate of change of all three

aa-type pairs using a, b, and c to represent the three species.
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4.3.2 Rate of change of heterogeneous pairs

Similarly, the rate of change of the heterogeneous ab-type pairs has four terms

corresponding to the four edges which terminate on the ab-type nodes in fig-

ure 4.1(c):

dρab

dt
= R[bb → ab] + R[ca → ab]− R[ab → bc]− R[ab → aa] (4.2)

for all the same values of a, b, c as in equation (4.1).

4.3.3 Rates of transformation of pairs

The terms of the form R[wx → yz] in equations (4.1) and (4.2), which describe

the rates of transformation of pairs in state wx to pairs in state yz, need to be

expressed using the invasion rates rx of single sites, and pair densities ρxy.

There are only three kinds of transformation when only one invasion is al-

lowed: R[ab → aa], R[aa → ca], and R[ca → ab], when b = prey(a) and

c = predator(a). I will discuss an example of each type.

Case 1: ab → aa

An example of R[ab → aa] is R[rs → rr]. The only way in which rr pairs can

be created is when an r invades the s of an rs pair; any invasion by an s or a p

cannot increase the density of rr pairs.

The overall rate will be determined by the proportion ρrs of pairs in state rs

and the rate rr at which the r successfully invades s in these pairs. If the proce-

dure were to occur in the same way as the simulations described in section 1.2,

we could think of the ρrs as the chance that the random potential invader and

neighbouring victim picked are r and s. The required selection and invasion

that will produce rr will only happen ρrsrr of the time.

When the invasion is successful, one rr pair is created from the initial rs pair,

but there may be additional rrs created, because the s that was invaded has

Q − 1 other neighbours, and each of those neighbours might also have been

in state r. The notation qx|yz is used to represent the probability that any one

of the Q− 1 neighbours of the y in a yz pair is in state x. The expected number

of rr pairs created by the invasion of an s by an r is therefore 1 + (Q − 1)qr|sr,

and the overall transformation rate is

R[rs → rr] = ρrsrr(1 + (Q − 1)qr|sr). (4.3)
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Case 2: aa → ca

R[aa → ca] is simpler. For example, consider R[rr → pr]. The invading p has

to come from somewhere, which means that one of the r’s must be part of a

pr pair before the invasion, so we only need to consider a successful invasion

by a p when a pr pair was initially selected, and this happens ρprrp of the time.

The expected number of prs created in this case is (Q − 1)qr|rp, so the overall

rate is

R[rr → pr] = ρprrp(Q − 1)qr|rp. (4.4)

Case 3: ca → ab

Finally, consider R[pr → rs], an example of R[ca → ab]. Here the required

transformation can only occur when an s invades a p, which will occur ρsprs

of the time, and will create an expected (Q − 1)qr|ps new rs pairs, so

R[pr → rs] = ρsprs(Q − 1)qr|ps. (4.5)

4.3.4 The pair closure

The transformation rates R[wx → yz], on a true grid, are dependent on all the

neighbouring cells. If for example cells interact with their four closest neigh-

bours (Q = 4), then the relevant cells for all interactions with the original pair

[wx] are all of the cells

y z

y w x z

y z

A y could invade w from any of the three cells marked y above, and a z could

invade x from any of the cells marked z, so the transformation rate R[wx →

yz] depends on the densities of all the ordered triples [ y
w x ], [ywx], [w

y
x ], and

the triples [w
z
x ], [wxz], [w x

z ].

Terms like qy|wx and qz|xw are used to indicate that we don’t care which of the

w’s neighbours is in state y, or which of the x’s neighbours is in state z. All of

these qx|yz terms can be rewritten using only pair densities if we assume the

‘pair approximation’, which is referred to by Rand (1999) as the ‘pair closure

with Bernoulli trials’. To avoid having to describe these conditional proba-

bilities in terms of the densities of triples, the qx|yz terms are approximated

by

qx|yz ≈ qx|y
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which claims that the chance of one of the neighbours of the y in an yz pair

being in state x is approximately the same as the chance that a neighbour of a

y is in state x.

It is easy to see why this assumption will often be unrealistic. If xs disperse

locally throughout the grid, for example, then we would expect to see some

local clustering of xs, and qx|yx would probably be significantly higher than

qx|y. In general, the greater the clumpiness, the less realistic the pair approxi-

mation will be. But the pair approximation is necessary to close off the set of

equations, otherwise the rate of change of triples will need to be calculated,

which would themselves depend on the densities of quadruples and even

larger clusters of sites.

The pair approximation allows the densities of triplets to be rewritten as

ρ[xyz] ≈
ρ[xy]ρ[yz]

ρ[y]
=

ρ[xy]ρ[yz]

∑i ρ[yi]
.

The conditional probabilities in the pair transformation rate equations can be

rewritten as

qx|yz ≈ qx|y =
ρ[xy]

ρ[y]
=

ρ[xy]

∑i ρ[yi]
(4.6)

so that all the pair transformation rates can be expressed in terms of pair den-

sities and invasion rates. In equations (4.1) and (4.2) there are only three types

of pair transformation, corresponding to the three kinds of edges in figure

4.1(c), examples of which were given in equations (4.3), (4.4), and (4.5). Use

of the pair approximation simplifies the q terms so that the three generalised

equations can be written as

R[ab → aa] = ρabra(1 + (Q − 1)qa|b)

R[aa → ca] = ρcarc(Q − 1)qa|a

R[ca → ab] = ρbcrb(Q − 1)qa|c (4.7)

for a, b, c as in equation (4.1). It might seem strange that equations (4.7) use

the unordered density for the original pair (paa, pab), whereas ordered pair den-

sities ρ[xy] are used in the expansion (equation (4.6)) of the conditional terms

qc|a, qa|b. This is because once the initial pair has been settled on, the order-

ing of the second pair relative to the first becomes important. In fact, because

the pair in which the invasion occurs must always be a heterogeneous pair, it

wouldn’t make any difference if we used the ordered pair densities in equa-

tion (4.7) anyway.

Together, equations (4.1), (4.2), and (4.7) describe a system of six differential

equations expressing the rates of change of all six unordered pair densities
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in terms of the pair densities at the previous timestep and the three invasion

rates.

4.3.5 Rate of change of singleton densities

Because every site has the same number of neighbours, the change in sin-

gleton densities can be found by summing the changes of the relevant pair

densities. For example,

dρr

dt
=

dρrr

dt
+

1

2
·

dρrs

dt
+

1

2
·

dρpr

dt

The fraction 1
2 occurs for the rates of change of non-homogeneous pairs be-

cause these pairs are unordered: ρrs is the density of both [rs] and [sr] pairs.

The singleton densities are just the sum of ordered pairs, for example, ρr is

calculated by summing over adjacent pairs of sites which have an r in the

left hand position only. This sum can be expanded using (4.1) and (4.7), and

becomes

dρr

dt
= R[rs → rr] − R[rr → pr]

+
1

2

(

R[ss → rs] + R[pr → rs] − R[rs → rr] − R[rs → sp]
)

+
1

2

(

R[rr → pr] + R[sp → pr] − R[pr → pp] − R[pr → rs]
)

=
1

2

(

R[rs → rr] + R[ss → rs] + R[sp → pr]

− R[rr → pr] − R[rs → sp] − R[pr → pp]
)

=
1

2

(

ρrsrr(1 + (Q − 1)qr|s) + ρrsrr(Q − 1)qs|s + ρrsrr(Q − 1)qp|s

− ρprrp(Q − 1)qr|r − ρprrp(Q − 1)qs|r − ρprrp(1 + (Q − 1)qp|r)
)

=
1

2

(

ρrsrr

(

1 + (Q − 1)(qr|s + qs|s + qp|s)
)

− ρprrp

(

1 + (Q − 1)(qr|r + qs|r + qp|r)
)

)

.

Because qr|x + qs|x + qp|x = 1, this becomes

dρr

dt
=

Q

2
(ρrsrr − ρprrp). (4.8)

Equation (4.8) does not need to be part of the dynamical system but it is in-

teresting to compare it with the mean field equation (1.1) on page 3, which

has the same form except that pair densities (such as ρrs) are used in place
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Figure 4.2: Examples of trajectories of species densities for the RPS pair approxima-
tion equations given in section 4.3. The black dot shows the initial singleton densities,
the black line the trajectory of the densities over time, and the yellow dot the final
stable densities. The red cross and dotted line show the mean field fixed point and
trajectory for the same combination of initial densities and invasion rates. Initial den-
sities are equal on the left and (0.4,0.2,0.4) on the right; invasion rates are (1,0.2,0.1)
on the left and (1,0.5,0.6) on the right.

of the multiples of singleton densities (such as ρrρs). The factor Q/2 appears

because there are Q/2 times as many pairs as singletons for the reasons men-

tioned above in section 4.2.3.

4.4 Failure of the pair approximation for RPS

RPS depends on spatial interactions for stability, so one would expect the pair

approximation, which includes more spatial information than the mean field
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model, to be more likely to predict a stable outcome. But this is not the case.

Sometimes the pair approximation equations predict a stable community at

the same fixed point as the mean field, as shown on the left hand side of

figure 4.2. More commonly, as shown on the right hand side of figure 4.2, the

pair approximation shows ever increasing fluctuations around the fixed point

until one of the two species goes extinct, in a similar way to the non-spatial,

finite-population trajectory shown in figure 1.3 on page 6.

4.4.1 Importance of neighbourhood size

The first of the three equations in (4.7) suggests that the effect of the neigh-

bourhood size Q is to change the relative frequency of the creation of homo-

geneous and heterogeneous pairs. For small Q, the equations suggest that ho-

mogeneous pairs will be produced more often than they are destroyed, other

things being equal.

Exactly what the ultimate effect will be on the system’s behaviour is difficult

to predict, but for the examples in figure 4.2, Q appears to have an effect on the

speed with which the system reaches its equilibrium. Convergence is faster

when Q is low (figure 4.2, top diagrams), and slower when Q is high (bottom

diagrams).

4.4.2 Extinctions more common than coexistence

The instability of the RPS pair approximation has been noted in Szabó et al.

(2004), however they do not mention that there are cases in which the pair

approximation correctly predicts stable coexistence. This is possibly because

such cases are relatively rare, as shown in figure 4.3.

The small circles in the diagram indicate extinctions, and this is the predom-

inant outcome for the five initial points shown by black crosses. Coexistence

is only predicted when one of the three species has a much higher invasion

rate than the other two (points in the corners of the triangle). Figure 4.2 sug-

gests that where the pair approximation predicts coexistence, it predicts the

same mixture of species as the mean field, and this appears to be the case, as

the large circles in the first five (pair approximation) diagrams have the same

shading as the corresponding circles in the mean field diagram.

As the initial densities are moved away from the centre, extinctions become

more likely in the corners that are furthest from the initial point.
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Figure 4.3: Equilibrium species densities for the RPS pair approximation system with
Q = 4. Each circle represents a final species density. Small circles indicate extinc-
tions with the winning species indicated by the colour of the circle (where rock = red,
scissors = green, paper = blue). The larger circles indicate coexistence at equilibrium
where the colour is a mixture with red, green, and blue proportional to the densi-
ties of rock, scissors and paper respectively (white circles are points without a result
because they took too long to converge). The first five diagrams show the final pair
approximation densities for five different initial densities indicated by black crosses.
Each circle shows the density for a different set of invasion rates with the circle’s posi-
tion in the simplex determined by the mean field fixed point for those invasion rates.
The mean field fixed point densities are shown in the sixth diagram.
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Figure 4.4: Examples of the pair approximation trajectories with Q = 4 when a corre-
lation quantified by ε is added to the initial pair densities. The resulting trajectories
initially deviate slightly from those with uncorrelated initial pair densities in figure
4.2. The final densities are unaffected by the initial correlations.

4.4.3 Effects of initial pair densities

In all the examples given so far in figures 4.2 and 4.3, initial pair densities were

uncorrelated, so that at time zero, ρxx = ρxρx, and ρxy = 2ρxρy for x 6= y.

Figure 4.4 shows that the addition of correlations between neighbouring sites

at the start of the simulation has little effect on the outcome. This is done by

defining a small bias ε, which is the amount by which there are fewer than

the expected uncorrelated number of heterogeneous pairs, and more than the

expected number of homogeneous pairs, so that

ρrs + ρsp + ρpr = (1 − ε)(2ρrρs + 2ρsρp + 2ρpρr),

ρrr + ρss + ρpp = ρ2
r
+ ρ2

s
+ ρ2

p
+ ε(2ρrρs + 2ρsρp + 2ρpρr).

The additional ε(2ρrρs + 2ρsρp + 2ρpρr) pairs are apportioned up among the
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homogeneous pairs proportionally to what their densities would have been

had there been no pair correlations. For example, if ρ′
rr

and ρ′
rs

are the densities

of rr and rs pairs in the correlated case,

ρ′
rr

= ρ2
r
(1 +

ε(2ρrρs + 2ρsρp + 2ρpρr)

ρ2
r
+ ρ2

s
+ ρ2

p

),

ρ′
rs

= 2ρrρs(1 − ε).

The examples in figure 4.4 show that there is a perceptible perturbation to the

initial trajectories of the system when ε is initially set to 0.5, but it has no effect

on the final outcome.

4.4.4 Pair approximation compared to SCA simulation

How well does the pair approximation match the SCA simulation in those sit-

uations in which coexistence is predicted? Figure 4.3 suggests that the com-

munity composition predicted by the pair approximation is the same as that

predicted by the mean field fixed point. Figure 4.5(a) shows that this predic-

tion can be more extreme than the result obtained in the SCA simulation. This

is especially true when one of the three invasion rates is high relative to the

other two.

Figure 4.5(b) and (c) show how the pair correlations change over time accord-

ing to the two models. In the pair approximation, the proportion of homoge-

neous pairs climbs steeply and then settles into oscillations which slowly set-

tle down and stabilise. In the SCA simulation, homogeneous pairs rise more

smoothly, and barely oscillate once they are close to their equilibrium level.

The pair approximation significantly underestimates the number of homoge-

neous pairs, which should be expected considering that a lot of information

about local correlations is thrown away by the pair approximation assump-

tion given in equation (4.6).

4.4.5 Summary

In general, the pair approximation fails to predict the essential feature of the

spatial RPS system: large regions of stable coexistence of all three species.

In those cases where the pair approximation gives good results for the equi-

librium species densities, it significantly underestimates the amount of local

correlation.
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Figure 4.5: Comparison of the pair approximation to the SCA simulation. (a) Trajecto-
ries of the mean field (dotted red line), pair approximation (grey line) and 700 × 700
SCA simulation (blue line), for equal initial densities and invasion rates (1,0.2,0.25).
(b) and (c) show the pair approximation’s predicted proportions of homo- and het-
erogeneous pairs (grey solid and dashed lines) with the actual proportions of homo-
and heterogeneous pairs counted during the SCA simulation over time (blue solid
and dashed lines).

4.5 2 × 2 approximations

Hiebeler (1997) has compared the accuracy of mean field and pair approxi-

mation models with approximations that model the dynamics of larger (2 × 2

and 4 × 1) local blocks of cells, using a simple one-species basic contact pro-

cess like that modelled by Durrett and Levin (1994b). He found that a model

using approximations based on 2 × 2 blocks of cells will predict patch occu-

pancy probabilities about twice as accurately as the 2 × 1 pair approximation
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Figure 4.6: The rock-paper-scissors system: dynamics of 2 × 2 blocks of sites.

model, at the cost of significant complexity in the model. He also found the 2

× 2 approximation model to be more accurate than the 4 × 1.

A similar effect happens with the RPS system: a local structure approximation

based on 2 × 2 blocks of cells turns out to be much better at predicting the sta-

bility of the system than the pair approximation, although it is not successful

at predicting the exact equilibrium species densities.

4.5.1 RPS and 2 × 2 blocks

To apply the 2 × 2 approximation to the RPS ecosystem, we need to work out

all the possible states of a 2 × 2 block of cells. Fortunately, it’s not necessary to

keep track of all possible combinations of three states in each of four positions,

because there are 34 = 81 blocks of the form [wx
yz ] where w, x, y, z ∈ {r, s, p}.

Some blocks are just rotations of others, and we can assume that they will

occur with the same frequency because the cellular automata rules are sym-

metric. So if ρ[wx
yz ] is the proportion of [wx

yz ] blocks in the grid, then

ρ[wx
yz ] = ρ[zw

yx] = ρ[ yz
xw] = ρ[xy

wz], w, x, y, z ∈ {r, s, p}. (4.9)
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Similarly, the two blocks [xx
yz] and [xx

zy] will occur with the same frequency if

we are using what Durrett and Levin (1994b) call ‘von Neumann neighbour-

hoods’, where each cell can only interact with its closest four neighbours on

the grid, or ‘Moore neighbourhoods’, where each cell has eight neighbours,

including the four diagonal neighbours. This is because for each cell in the

first block, there is a corresponding cell in the second block in the same state,

and with the same immediate neighbours. I will therefore also assume that

ρ[xx
yz] = ρ[xx

zy], x, y, z ∈ {r, s, p}. (4.10)

With Moore neighbourhoods, it would also be possible to assume that [xx
zy] and

[xy
zx] occur with the same frequency, but this will not be true in general with von

Neumann neighbourhoods, which is the kind of neighbourhood structure I

will assume for the remainder of this section.

The equalities in (4.9) and (4.10) allow the reduction of the 81 ordered blocks

to 21 unordered block types. These 21 states are shown figure 4.6, with all the

possible transitions between them when an invasion occurs at one site only.

4.5.2 Block densities, ordered and unordered

Using the same notation as for the pairs, I have referred to blocks in which

the order of sites, rotation and reflection is important with square bracketed

terms like [wx
yz ]. For the block types in which the order is unimportant, I omit

the square brackets and use terms like wx
zy . As with pairs, ρ[wx

yz ] and ρ wx
yz are

used for the densities of ordered and unordered blocks.

The block densities are simpler to calculate than they were for the pairs be-

cause 2 × 2 blocks can be counted so that there are the same number of blocks,

N, as there are single sites. By contrast, in the pair approximation there were

NQ/2 pairs for N sites. The difference is because of the need (for example

when Q = 4) to count all north-south as well as east-west pairs to cover all

the pairs in the grid, whereas it is possible to cover all the 2 × 2 blocks with a

simpler tiling over the grid.

It will still be necessary to make use of the fact that each unordered block type

may count more than one ordered block. For example, equation (4.9) implies

that

ρ pr
rr

= ρ[pr
rr
] + ρ[rp

rr
] + ρ[rr

rp
] + ρ[rr

pr
],

and equations (4.9) and (4.10) together imply that

ρ pr
sr

= ρ[pr
sr
] + ρ[sp

rr
] + ρ[rs

rp
] + ρ[ rr

ps
] + ρ[sr

pr
] + ρ[ps

rr
] + ρ[rp

rs
] + ρ[ rr

sp
].
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The complete relationship between ordered and unordered blocks can be char-

acterised by the relation ordered:

ordered( aa
aa ) = {[aa

aa]}

ordered( ca
aa ) = {[ca

aa], [
ac
aa], [

aa
ac], [

aa
ca]}

ordered( aa
ba ) = {[aa

ba], [
ba
aa], [

ab
aa], [

aa
ab]}

ordered( cc
aa ) = {[cc

aa], [
ac
ac], [

aa
cc], [

ca
ca]}

ordered( ab
ba ) = {[ab

ba], [
ba
ab]}

ordered( ca
ab ) = {[ca

ab], [
ac
ba], [

ba
ac], [

ab
ca]}

ordered( ca
ba ) = {[ca

ba], [
bc
aa], [

ab
ac], [

aa
cb], [

ba
ca], [

cb
aa], [

ac
ab], [

aa
bc]}

for a, b, c as in equation (4.1). I will call the inverse relation unordered(), a

function I use below when deriving the rates of change of all the blocks.

4.5.3 Rate of change of block types

The rate of change of any type of 2 × 2 block can be determined in the same

way as for pairs of cells; it is the rate at which blocks of that type are created

minus the rate at which blocks of that type are destroyed. The equations can

be written by looking at figure 4.6, where each node of the diagram represents

one type of 2 × 2 block. There is one equation for each node in figure 4.6, and

each equation will have one term for each edge which is connected to the

corresponding node. The incoming edges on the diagram become positive

terms in the equation, and the outgoing edges become negative terms in the

equation.

Also, the structure of the upper seven nodes in figure 4.6 is identical to the

structure of the seven nodes at the bottom right of the graph and the seven

nodes at the bottom left of the graph, so the 21 equations can be summarised

by the seven below, where a ∈ {r, s, p}, b = prey(a), c = predator(a).

dρ aa
aa

dt
= R[ aa

ab → aa
aa ] − R[ aa

aa → ca
aa ]

dρ ca
aa

dt
= R[ aa

aa → ca
aa ] + R[ ca

ba → ca
aa ] + R[ ca

ab → ca
aa ]

− R[ ca
aa → ca

ac ] − R[ ca
aa → cc

aa ] − R[ ca
aa → aa

ab ]

dρ aa
ba

dt
= R[ ca

aa → aa
ab ] + R[ ab

ab → aa
ab ] + R[ aa

bb → aa
ab ]

− R[ aa
ab → aa

aa ] − R[ aa
ab → ca

ba ] − R[ aa
ab → ca

ab ]

dρ cc
aa

dt
= R[ ca

aa → cc
aa ] + R[ bc

ca → cc
aa ] − R[ cc

aa → cc
ca ] − R[ cc

aa → ca
ab ]
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dρ ab
ba

dt
= R[ ca

ba → ab
ab ] + R[ ab

bb → ab
ab ] − R[ ab

ab → aa
ab ] − R[ ab

ab → ab
cb ]

dρ ca
ab

dt
= R[ aa

ab → ca
ba ] + R[ ca

ca → ca
ba ] + R[ ab

bc → ca
ba ]

− R[ ca
ba → ab

ab ] − R[ ca
ba → ca

aa ] − R[ ca
ba → bc

ca ]

dρ ca
ba

dt
= R[ aa

ab → ca
ab ] + R[ cc

aa → ca
ab ] + R[ ab

bc → ca
ab ] + R[ ab

cb → ca
ab ]

− R[ ca
ab → ca

aa ] − R[ ca
ab → bc

ca ] − R[ ca
ab → bc

ac ] − R[ ca
ab → aa

bb ] (4.11)

4.5.4 Block transformation rates

The R[ st
uv → wx

yz ] terms can be translated using invasion rates and conditional

probabilities similar to the conditional probabilities of the form qx|yz that were

used in the pair approximations.

It is important to remember that all the basic events in the system are inva-

sions from a single cell to its neighbour, so these basic events depend on the

densities of pairs, not blocks. In other words, although the events are all what

Rand (1999) calls ‘edge events’, the effects of those edge events must be de-

scribed in terms of blocks, rather than edges.

Example: R[ rr
rr
→ pr

rr
]

For example, consider the rate at which rr

rr
blocks are transformed into pr

rr

blocks, R[ rr
rr

→ pr

rr
]. This can only happen when there is an existing rr

rr
block

which is successfully invaded by a neighbouring p cell, so the only event

which is important is the invasion p → r, an event which occurs in the system

at the overall rate of rpρpr.

When the p → r event takes place, the number of pr

rr
blocks that are created

is determined by the probability that the r of the original pr pair in which the

invasion takes place was part of a rr

rr
block, shown in the following picture:

The transformed block is on the right, and the overlapping pair in which the

p → r invasion takes place is shown on the left. The chance that a pr

rr
block is

created by the invasion is described by q rr
r
/
rp

, the conditional probability that

all the other sites in the overlapping r’s block are also in state r, given the
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original invasion pair.

The r in the invasion pair is potentially inside two transformed blocks: the

lower one, like the transformed block in the diagram, and an upper one as

well, so the overall transformation rate has a factor of two and is described by

R[ rr
rr
→ pr

rr
] = 2rpρprq rr

r
/
rp

.

Example: R[ rr

sr
→ rr

rr
]

A slightly more complicated example is the rate at which rr

rr
blocks are created

from rr

sr
blocks, R[ rr

sr
→ rr

rr
]. It is more complicated because of the possibility

that the invasion pair is itself part of a transformed block.

In this case the only relevant invasion is r → s, after which the invasion pair

will be in state rr, so if the immediate neighbours of the invasion pair were

also in state rr before the invasion, this will create a new rr

rr
block. The relevant

conditional probability is q r
r
|r
s
, the probability that two neighbours on the same

side of an existing rs pair are in state rr. These pairs are in addition to any

others that overlapped the original s without overlapping the original r, and

so the overall rate is

R[ rr

sr
→ rr

rr
] = 2rrρrs(q r

r
|r
s
+ q rr

r
/
sr
).

Unique block transformations

The 54 arrows shown in figure 4.6 are made up of three sets of 18 arrows, one

set for each species. Only the 18 unique types of block transformation rate are

listed here:

R[ aa
aa → ca

aa ] = 2rcρcaq aa
a/ac

R[ ca
aa → aa

ba ] = 2rbρbcq aa
a/cb

R[ ca
aa → cc

aa ] = 2rcρca(q a
a|

c
a
+ q aa

c /ac
+ q ac

a/ac
)

R[ ca
aa → ca

ac ] = 2rcρcaq ca
a/ac

R[ aa
ba → aa

aa ] = 2raρab(q a
a|

a
b
+ q aa

a/ba
)

R[ aa
ba → ca

ab ] = 2rcρcaq ba
a/ac

R[ aa
ba → ca

ba ] = 2rcρca(q ab
a/ac

+ q aa
b/ac

)

R[ cc
aa → cc

ac ] = 2rcρca(q c
a|

c
a
+ q cc

a/ac
+ q ca

c/ac
)

R[ cc
aa → ca

ba ] = 2rbρbc(q aa
c /cb

+ q ac
a/cb

)

R[ ab
ba → aa

ba ] = 2raρab(q b
a|

a
b
+ q ba

a/ba
)
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R[ ab
ba → ab

bc ] = 2rcρcaq ab
b/ac

R[ ca
ab → ca

aa ] = 2raρab(q c
a|

a
b
+ q ca

a/ba
)

R[ ca
ab → ab

ba ] = 2rbρbcq ba
a/cb

R[ ca
ab → bc

ac ] = 2rcρca(q a
b|

c
a
+ q ab

c /ac
+ q ac

b/ac
)

R[ ca
ba → ca

aa ] = 2raρab(q a
c|

a
b
+ q ac

a/ba
+ q aa

c /ba
)

R[ ca
ba → aa

bb ] = 2rbρbc(q a
a|

b
c
+ q aa

b/cb
+ q ab

a/cb
)

R[ ca
ba → bc

ca ] = 2rcρca(q ca
b/ac

+ q cb
a/ac

)

R[ ca
ba → bc

ac ] = 2rcρca(q b
a|

c
a
+ q bc

a/ac
+ q ba

c /ac
) (4.12)

4.5.5 The ‘2 × 2 block’ approximation

The conditional probabilities q vw
x /yz

and q w
y|

x
z

terms used in equations (4.12)

must now be described using only 2 × 2 block densities.

q w
y|

x
z

requires no simplifying approximation, and can be defined using the

same notion of conditional probabilities as used for the pair approximation:

q w
y|

x
z

=
ρ[wx

yz ]

ρ[x
z]

=
ρ[wx

yz ]

∑i,j ρ[ixjz]

On the other hand the q vw
x /yz

terms really depend on the densities of blocks of

six cells,

q vw
x /yz

=
ρ[vw∗

xyz ]

ρ[yz]
,

where the ∗ in the top line indicates a cell whose state doesn’t matter.

Probabilities of triplets were approximated in terms of pair densities using

the pair approximation given in section 4.3.4. The analogous local structure

approximation needed here is the assumption that in blocks of six such as

[uvw
xyz ], the [ux] part is independent of the [wz ] part, given the [vy] in the middle:

q u
x |

vw
yz

≈ q u
x |

v
y
.

This assumption allows the conditional probabilities to be rewritten using 2

× 2 blocks:

q vu
x /yz

=
ρ[vw∗

xyz ]

ρ[yz]
≈

ρ[vw
xy ]ρ[w∗

yz ]

ρ[wy ]ρ[yz]
=

ρ[vw
xy ] ∑i ρ[wi

yz]

∑i,j ρ[wi
yj ] ∑i,j ρ[ ij

yz]
. (4.13)
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Figure 4.7: Comparison of the 2 × 2 approximation and mean field model for the
same initial densities (shown by the black dot) and invasion rates as those in figure
4.2. The red dotted line shows the stable orbit of the three species densities under the
mean field model, and the red cross shows the mean field fixed point. The green line
and green point show the trajectory and rest point for the 2 × 2 model. In both cases
the initial densities of the 2 × 2 blocks were chosen to represent a situation in which
the states of all sites are uncorrelated.

The summation over blocks, and the ‘2 × 2 block’ approximation close off the

equations in (4.11) and (4.12) so that they can all be defined only in terms of 2

× 2 block densities and the invasion rates.

And because it is more convenient to keep track only of the densities of the

unordered blocks, the unordered() function mentioned previously can be used

to get the densities of the ordered blocks from equation (4.13) in terms of un-

ordered block densities, by taking the density of the corresponding unordered

block and dividing by the number of ordered blocks represented by that un-

ordered block:

ρ[wx
yz ] =

ρunordered([wx
yz ])

#ordered(unordered([wx
yz ]))

.

4.6 Behaviour of the 2 × 2 model

Unlike the pair approximation, the 2 × 2 block approximation correctly picks

that the spatial RPS system tends towards a stable attractor in which all three

species are present. However, it fails to accurately predict the composition

of the stable community, and for most parameter values the mean field fixed

point gives a better approximation.
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4.6.1 Stability

Figure 4.7 shows that the three species densities tend to settle to a stable fixed

point under the 2 × 2 approximation model. In this respect it reproduces the

result of the explicit SCA simulation in which there is a stable point attractor.

By contrast, the mean field model predicted a stable orbit but not a stable

point, and under the pair approximation, the central fixed point is a repeller

for most parameter values.

In the cases where the pair approximation model gives a stable central point,

such as in the left hand diagram of figure 4.2 on page 59, the 2 × 2 approx-

imation system converges to the fixed point more quickly, with fewer cycles

(figure 4.7).

4.6.2 Ecosystem composition

Figure 4.7 also clearly shows that the stable point of the 2 × 2 approximation

is in a different place from the fixed point of the mean field model. The 2 × 2

approximation predicts that the prey of the fastest invader will end up with

a lower density (at the expense of the other two species) compared with the

mean field result.

A variety of central fixed points are shown in figure 4.8 for the mean field,

pair approximation, 2 × 2 approximation, and SCA simulation. Each of the 15

colours represents a set of invasion rates, and each different shaped symbols

shows the central fixed point (if it exists) for one of the four models. The

accuracy of the approximations appears to depend on the relative invasion

rates of the three species in the following ways:

(1) When the invasion rates are evenly matched, the mean field, 2 × 2 ap-

proximation, and simulation all give similar results.

(2) When one species grows much slower than the other two (at the edges

of the diagram) the mean field fixed point stays close to the simulation

result, but the 2 × 2 approximation underestimates the density of the

slow-growing species, and overestimates the density of its prey.

(3) When one species grows much faster than the other two (in the cor-

ners of the diagram), the mean field does better than the 2 × 2 but

both approximations predict that the faster-growing (and lowest den-

sity) species is more vulnerable than it actually is according to the spatial

simulation.
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Figure 4.8: Comparison of fixed point locations of the species densities for 15 differ-
ent values of the invasion rates under the mean field, pair and 2 × 2 approximation
models, and SCA simulation. Each colour represents one set of invasion rates. The
diamond, circle, and square symbols show fixed points for the mean field, pair ap-
proximation, and 2 × 2 approximation respectively. The densities under the simula-
tions continue to fluctuate indefinitely. The plotted lines show the species densities
for the last 30% of the simulation, and the stars show the densities at the termination
of the simulation. Stable points for the pair approximation are only shown for the
three cases in which extinctions are not predicted by that model.

The difference between each approximation and a set of simulation runs is

shown in figure 4.9. The pair approximation, which predicts species extinc-

tions in most of the parameter space, gives by far the worst result, and the

other two are more accurate. But the mean field gives a slightly better result

than the 2 × 2 approximation everywhere. So despite their more accurate

treatment of space, neither the pair nor the 2 × 2 approximation model accu-

rately predicts the composition of species in the RPS system.
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Figure 4.9: Difference in predicted species densities between each of the three approx-
imations and the result of spatial SCA simulations on a 700 × 700 grid, for a range of
invasion rates. The error measurement used in each case, and shown on the colour
scale, is the distance in species-density space between the simulation and the approx-

imation,
√

∑i∈{r,s,p}(ρsim
i − ρ

approx
i )2. The ρsim

i values used here are the mean species

densities for the last 30% of timesteps in a 600-generation simulation, equivalent to
the mean of all the points on the lines plotted for the simulation in figure 4.8.

4.6.3 Neighbour correlations and species clustering

While the pair and 2 × 2 approximations are poor at finding the RPS equilib-

rium species densities, they are an improvement on the mean field approxi-

mation when predicting correlations between the states of neighbouring grid

sites.

Correlations between neighbouring pairs are shown for a simulation run and

for all three approximations in figure 4.10 for three sets of invasion rates. The
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Figure 4.10: Predictions of densities of cell neighbours for three different sets of
growth rates by simulation, 2 × 2 approximation, pair approximation and mean field
techniques. The first row shows the results of explicit spatial simulations of the RPS
ecosystem using three different sets of growth rates, on a 700× 700 grid after 800 time
steps. The red, green and blue areas represent sites occupied respectively by rocks,
scissors, and paper. The second row shows, for the three sets of growth rates, the state
of all the cells neighbouring rocks, firstly from the result of the simulation (Sim), and
the same proportions estimated using the pair approximation (PA), 2 × 2 approxima-
tion (2x2), and mean field (MF) (at its fixed point). The third and fourth rows show
the expected proportions of cells neighbouring scissors and paper respectively. In (b),
some pair approximation data are missing where the pair approximation predicts the
extinction of rocks and scissors. The mathematical approximations underestimate the
extent of clustering in the simulation.
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top row shows the state of a simulation, and the phenomenon that cluster-

ing is more pronounced when invasion rates are mismatched. The second,

third and fourth rows show the expected proportions of neighbours of cells

occupied by each species.

When one species grows much faster than the other two (rr = 0.2, rs = 1,

rp = 0.2, figure 4.10(a)), the grid becomes very clustered in the simulation,

but is less clustered as the growth rates become more equal in the diagrams in

(b) and (c). All three mathematical approximations underestimate the corre-

lations between neighbouring sites, and they tend to make worse predictions

with larger amounts of clustering.

The local structure approximations tend to do better than the mean field, but

this is not always the case. In (a) and (c), the pair approximation does best,

followed by the 2 × 2 and then the mean field. In (b), the pair approximation

predicts an extinction, and the 2 × 2 approximation predicts the same-species

correlations better than the mean field, but the mean field is actually slightly

more accurate than the 2 × 2 in two of the nine correlations, the scissors-rock

and paper-rock cases.

Clustering and inaccuracy in densities

Although the clustering is most extreme at the corners of the species density

simplex, and although it is at these points that the species densities predicted

by the approximations are least accurate, the underestimation of clustering in

these regions cannot be the primary reason for the failure of the density pre-

dictions. This is because the mean field does better than the 2 × 2 at predicting

the densities but is generally worse at predicting the clustering.

4.7 Discussion

The results presented in this chapter show that local structure approximations

are not always an appropriate way of modelling spatial systems of interact-

ing individuals. In RPS communities, the two local structure approximations

models fail to capture the effects of a spatially structured population, and give

misleading results (predicting extinctions rather than coexistence) in many

cases.

More generally, this suggests that explicit agent-based spatial computer mod-

els will remain an important tool in theoretical ecology. At the very least they
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will be needed to verify that infinite-population local structure approxima-

tions are able to correctly model the effects of heterogeneous spatial structure

for a given model ecosystem.
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Chapter 5

Direct approximation of the

stabilising effect of spatial structure

in the mean field

The local structure approximations discussed in the last chapter are poor ap-

proximations (compared with the mean field) when the goal is to predict equi-

librium species densities in a spatial RPS game. But sometimes equilibrium

densities are not the property of interest. For example, there are times when

it would be useful to estimate the vulnerability of a RPS ecosystem to collapse,

which can be represented by the minimum species density over time.

Given that local spatial interactions have a stabilising effect, it seems likely

that the mean field model would be inadequate for this goal, because its os-

cillations are constant and do not exhibit any dampening down over time to-

wards a stable point. To address this problem, in this section I describe a very

simple approximation which is similar to the mean field equations but with

an explicit spatial stability factor forcing the fixed point to be an attractor.

I show that the model does not help to predict the minimum species density

of the simulation, because SCA simulations usually exhibit a large initial os-

cillation; the simulated ecosystem’s vulnerability is higher on its first orbit

than the mean field predicts. The initial instability of the SCA is due to the

fact that sites are initialised in a random state.

79



80 CHAPTER 5. DIRECT SPATIAL STABILITY APPROXIMATION

5.1 Explicit spatial stability

Heterogeneous space has a stabilising effect on the RPS cellular ecosystem,

and causes the system to be attracted to a particular combination of species

densities, which is in most cases quite close to the fixed point of the mean field

equations (1.1), on page 3.

An interesting question is whether a model that explicitly adds spatial sta-

bility to the mean field can be useful. Such a model would be much less

computationally intensive than the SCA, would have the same fixed point as

the mean field model, but the fixed point would be an attractor. The model

should have more predictive accuracy than the mean field model, but at the

cost of the mysterious ‘space factor’, which is just assumed rather than justi-

fied using the nature of the known spatial structure of the system.

The spatial stability factor h

I propose a single constant parameter h, the spatial stability factor, which rep-

resents the amount of attraction towards the fixed point in one generation.

The changes in densities of the three species {r, s, p} using h are:

ρ̇r = ρr(ρsrr − ρprp)(1 − h) − (ρr −
rs

rr + rs + rp

)h

ρ̇s = ρs(ρprs − ρrrr)(1 − h) − (ρs −
rp

rr + rs + rp

)h

ρ̇p = ρp(ρrrp − ρsrs)(1 − h) − (ρp −
rr

rr + rs + rp

)h (5.1)

where the first terms are the same as in the mean field equation, multiplied by

1 − h, and the second terms change the densities explicitly in the direction of

the mean field fixed point where ρr = rs/(rr + rs + rp), ρs = rp/(rr + rs + rp),

ρp = rr/(rr + rs + rp). Equations (5.1) have therefore deliberately been written

so that they have a stable fixed point at the same place as the fixed point of

the mean field equations.

5.2 Behaviour of the approximation

Figure 5.1 shows an example of the behaviour of equations (5.1) for the same

initial densities and invasion rates for different values of h. When h = 0, the
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Figure 5.1: Behaviour of equations (5.1) for four values of h, with initial densities
(0.15,0.15,0.7) (marked by a star), and fixed invasion rates (0.25,0.3,0.45), which deter-
mine the fixed point (red dot).

system is the same as the mean field system in equations (1.1), but as h is

increased the stability of the system is also increased.

5.2.1 Extinction risk

By its definition, this quantification of spatial stability is not useful in pre-

dicting equilibrium species densities than the mean field model, but such a

system could provide a method for approximating the risk of an extinction in

the system.

If one of the three species goes extinct, then the species which preys on it will

go extinct soon afterwards. For a given set of invasion rates R and initial

densities P, there is an extinction risk which can be described in terms of the

minimum species density of any of the three species over time, or, on a sim-

plex plot, by the smallest distance to an edge at which one of the densities is

equal to zero.
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Figure 5.2: Minimum species densities for a spatial SCA (500 × 500 grid, green), mean
field approximation (red), and equations (5.1) (with h = 0.01, blue). Initial densities
are (0.15,0.25,0.6) (black cross) and invasion rates (0.25,0.45,0.3). The stable point is
marked with a star.

5.2.2 Predictions of extinction risk

Figure 5.2 shows a comparison between a spatial SCA simulation and the

mean field and explicit stability approximations.

On its first orbit around the fixed point, the SCA simulation actually has lower

minimum densities (and therefore higher predicted extinction risk) than the

mean field model for all three species. The model with explicit stability is

worse at predicting minimum densities than the mean field, even with a very

low h = 0.01, although it shows the stable nature of the fixed point. This is all

because the SCA simulation is very unstable on its first orbit.

The behaviour of the SCA simulation in figure 5.2 is fairly typical. Table

5.1 shows the average error of both approximations when predicting min-

imum species densities across hundreds of separate simulations, each with

randomly picked invasion rates and initial densities. The mean field is a bet-

ter predictor of minimum densities than equations (5.1) because the minimum

densities always occur on the first orbit, but even the mean field picks minima

which are consistently too high.

Table 5.1 shows that in the SCA, the greatest extinction risk happens when

the second species reaches its minimum, because the second minimum is

lower, on average, than either the first or third minima. It appears that the
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1st min 2nd min 3rd min mean

SCA Simulation 0.158 0.055 0.091 0.101

Mean field 0.165 0.072 0.114 0.117

(diff. from sim.) +0.007 +0.017 +0.023 +0.016

Eqns (5.1), h = 0.01 0.182 0.094 0.166 0.147

(diff. from sim.) +0.024 +0.038 +0.075 +0.046

Table 5.1: Difference between simulated minimum species densities (on a 500 × 500
SCA grid) and predicted minimum densities for mean field and explicit space mod-
els, based on the average over a total of 1204 simulations in which none of the three
species densities fell below 0.0001 during the first 400 generations. Each simulation
started with random species densities and invasion rates.

first species tends to reach its minimum density before the SCA reaches its

maximum instability, and that the third species reaches its minimum after the

system has begun to stabilise.

I suspect that there is no simple modification of the mean field equations that

can capture the initial instability and subsequent stability of the spatial SCA

simulation for RPS systems. A system that could capture the initial instability

would have to be non-Markovian, because both early trajectories going out-

wards, and later trajectories heading towards the central fixed point can pass

through the same point on the way. The SCA contains a kind of ‘memory’

effect in the configuration of its sites. The most obvious visible instantiation

of this memory is the amount of clustering of same-species individuals. An

SCA that is initialised at random tends to go through a stage in which very

large clusters sweep across the grid before breaking up into smaller ones like

those of figure 2.5 on page 21.

The initial non-Markovian behaviour of the SCA is a consequence of the un-

realistic initialisation of the simulation in which each site is put into a random

state independently of its neighbours. If the well-mixed state is judged to be

an improbable starting point, then it may be unnecessary to initialise a model

of a real ecosystem in this way. The approximation presented here may there-

fore be applicable to systems which begin with small perturbations from the

equilibrium, or which begin with a near-monoculture of one species and so is

already in its most ‘unstable’ state.
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Part III

The evolution of competitive cycles
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Chapter 6

The evolution of intransitive

competition from intraspecific

competition

This chapter investigates a possible solution to the problem of how stable

cyclic competitive ecosystems such as RPS can originate. The proposed solu-

tion involves a SCA model of a two-species system with intraspecific competi-

tion, devised by Marcus Frean. In this model a speciation event separates one

of the two species into two disjoint morphs. These two morphs, along with

the monomorphic second species, make three separate groups which compete

together in an intransitive cycle.

Section 6.1 provides an introduction to the problem and describes ‘adaptive

dynamics’, which is a framework that has recently proved successful for mod-

elling speciation events. I then explain why this framework cannot be success-

ful as a solution for this particular problem.

Section 6.2 defines the intraspecific competition model and 6.3 describes some

basic features of the model’s behaviour. The important features are:

(1) As long as both species survive early density fluctuations, they will usu-

ally stabilise with equal densities.

(2) As long as the two species are reasonably competitive, speciation tends

to occur in at least one of the two, and cyclic competition will occur

among the resulting morphs.

The reasons for these two phenomena are explained further in chapters 7 and
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8 respectively.

Section 6.4 assesses the model specifically in initial two-species states that

could be considered plausible in nature. In these cases, the emergence of a

cyclic ecosystem is unlikely under the model unless the intergenerational rate

of phenotypic change is high.

Finally, section 6.5 explains why the model’s assumptions are so restrictive

that it cannot serve as a general model of intraspecific competition in natural

ecosystems. This conclusion motivates a revision to the model which forms

the basis of chapter 9.

6.1 Modelling speciation

The question of how RPS and other non-transitive cyclic competition systems

become established has not yet been answered. Recent work has shown that

it is possible for ecosystems containing more than three species to collapse,

through one or more extinction events, into a RPS system (Cranefield, 2001).

In this chapter I look at the possibility of a RPS ecosystem evolving, via a

speciation event, from a simpler two-species ecosystem.

In three-species cycles, there is an asymmetry in the competitiveness of any

two of those species in the absence of the third. If any of the three species is

removed from RPS, its predator species goes extinct soon afterwards.

Therefore, any two-species system from which RPS can evolve must be un-

stable. Because of the instability of this pre-existing system, a third species

must appear at just the right time in order to stabilise it, or else it will quickly

collapse. This may be part of the reason why few RPS ecosystems have been

found in nature.

In this chapter I examine a model which shows that the simple addition of

an evolving intraspecific competitiveness trait to the pre-existing population

results in exactly the kind of speciation event that stabilises the system.

6.1.1 Sympatric speciation

An increase in species diversity is usually thought to require either the phys-

ical isolation of two populations of a species (allopatric speciation), or the

occurrence of an evolutionary branching event in a mixing population (sym-



6.1. MODELLING SPECIATION 89

patric speciation). Recent work in theoretical ecology has suggested that sym-

patric speciation may be responsible for most currently observed species di-

versity (Dieckmann and Doebeli, 1999; Day and Young, 2004; Doebeli and

Dieckmann, 2004).

Before going on to discuss the new model in the next section, I will sum-

marise the essential features of a class of mathematical models called adap-

tive dynamics (Dieckmann, 1997; Metz et al., 1996) that have recently been

very successful in modelling sympatric speciation events. I will then explain

why the framework of these models renders them unable to account for the

origin of RPS.

6.1.2 Assumptions of adaptive dynamics models

An evolutionary branching event is a process in which a relatively homo-

geneous population splits into two distinct phenotypes (Doebeli and Dieck-

mann, 2000). Adaptive dynamics (AD) models attempt to model such a pro-

cess using a very simple population structure.

Infinite population

Numbers of individuals of a species are typically described in terms of pro-

portions of the total population, so the population size is effectively infinite

as in the mean field model of RPS.

Single phenotypic trait

Individuals vary only in respect of a single phenotypic trait. In most AD mod-

els, this trait value is represented by a continuous variable even though the

underlying genetics is discrete. The variable therefore represents a complex

trait determined by the addition of small effects at a large number of genetic

loci, each of which has two (or few) alleles, or a trait determined by a large

number of possible alleles at a single locus.

Initially, populations are assumed to be monomorphic for the trait, meaning

that all individuals are clustered tightly around a single mean phenotypic

value.
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Disruptive selection

Evolutionary branching points are found by looking for the points at which a

population faces ‘disruptive selection’, or selective pressure in opposite direc-

tions on a phenotypic trait (Bell, 1997) at a single instant. In a monomorphic

population facing disruptive selection, individuals with trait values on either

side of the mean will be fitter than those whose trait values are equal to the

mean. Other things being equal, the distribution of phenotypes will slowly

become bimodal as the more extreme phenotypes reproduce more rapidly

than the mean-valued phenotypes.∗

Asexual population or assortative mating

Because the trait is additive, random pairings in sexual populations will tend

to produce intermediate phenotypes, so unless there is assortative mating,

mean-valued phenotypes will continually appear, extreme trait values will

be diluted and the population will remain monomorphic (Seger, 1985; Dieck-

mann and Doebeli, 1999).†

While some AD models have been extended to model sexual populations

(Kisdi and Geritz, 1999; Bürger, 2002a,b), the majority restrict their analysis

to asexual populations, as does the SCA model presented in section 6.2. This

is primarily for simplicity, but it also has the advantage that mutations which

take the phenotype in one direction through trait space can accumulate over

time, otherwise speciation would be impossible.‡

∗ Disruptive selection is not just a theoretical construct: it has been observed in real pop-

ulations. For example, among sticklebacks, a fish which inhabits Canadian lakes, disruptive

selection is caused by intraspecific competition for two different types of resource. Limnetic

sticklebacks live in the open water and eat plankton. They are morphologically different to

benthic sticklebacks, which live in the vegetated parts of lake and eat bottom-dwelling prey.

Under heavy intraspecific competition, monomorphic stickleback populations (in which in-

termediate individuals are able to use both resource types moderately well) have been shown

to become dimorphic (with each morph becoming specialised in the use of one resource)

through disruptive selection (Lavin and McPhail, 1985; Schluter and McPhail, 1992; Bolnick,

2004).
†In the case of the stickleback, for example, dimorphic populations are maintained

through mate choice on behalf of both the male and female (Ridgeway and McPhail, 1984).
‡There is disagreement in the biological literature on exactly what counts as a species for

asexually reproducing organisms (for example see Ghiselin (1987); Hull (1988)). For the pur-

poses of the single-trait models of evolutionary branching discussed in this chapter, ‘species’

is used to refer to any group of individuals which is similar with respect to the phenotypic

trait in question, and which is also related by descent.
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6.1.3 Evolution in AD models

The properties described in section 6.1.2 are not particularly unique to the

AD models; many of these assumptions will also be used in the SCA model.

The defining assumption of AD models is the way in which they treat the

evolutionary process.

AD models assume that mutations are rare, so a population always has time to

reach an equilibrium state between the introduction of new mutations. From

the initial state in which individuals of all species cluster around a single phe-

notypic trait value, the evolutionary process proceeds by repeating the fol-

lowing steps:

(1) a rare mutant phenotype is introduced whose trait value is close to the

mean, and then

(2) the population densities are allowed to reach a stable state given the trait

values of the mutant and any resident phenotypes.

Usually the result of step (2) is that the mean phenotype changes to that of the

mutant, or the mutant dies out straight away.

The assumption that densities reach equilibrium between each mutation al-

lows the direction of the selective force to be found by examining the way

a mutant’s fitness changes with respect to its trait value. The details of how

the evolutionary branching points are found are described in the appendix,

because the concept of invasion fitness used in that method turns out to be

useful in the explanation (in chapter 7) of an aspect of the behaviour of the

model in the next section.

6.1.4 Adaptive dynamics and RPS systems

AD methods are unsuitable for finding evolutionary branching points in an

asymmetrical two-species competition system because AD makes the assump-

tion that the population densities reach a stable point between mutations.

In other words, it assumes a complete separation between the evolutionary

timescale at which the phenotypic trait values change, and the ecological

timescale at which the population densities change. The true situation will

be approximated by such a separation only when mutations are very rare, or

when ecological interactions and invasions are very frequent.

The emergence of RPS is a problem precisely because any two-species system
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will be ecologically unstable up until the point at which one of the species

goes extinct. If the AD timescale assumption were applied, an extinction of

one species would occur in step (2), before any mutations could arise.

Therefore, emergence of RPS from two species requires that the ecological and

evolutionary processes be able to work in parallel. This is a characteristic of

the model introduced in the next section.

6.2 The intraspecific competition model

I describe a version of an unpublished cellular automaton model devised by

Marcus Frean, in which an individual trait for intraspecific (within-species)

competition is assumed to vary across the population, and to vary continu-

ously.

The motivation for the model is to show how such a trait may diverge as

extreme valued phenotypes are favoured by selection while intermediate val-

ued phenotypes are selected against. These results are presented in the next

section.

6.2.1 State description

The model uses an SCA grid with periodic boundaries, representing a spa-

tial landscape. Each site on the grid is occupied by an individual, and each

individual belongs to one of two species numbered 0 and 1.

Intrinsic species-determined competitive ability

Each individual has an intrinsic level of competitiveness which is completely

determined by its species, either c0 for species 0, or c1 for species 1. Both of

these species-level competitive abilities are assumed to be greater than zero,

and can be thought of as the relative efficiency with which each species con-

verts its available resources into competitive energy. Because this is the sort of

property that is unable to evolve quickly, c0 and c1 remain constant through-

out the period of a simulation.
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si sj pi→j si sj pi→j

0 0 c0xi A A xi

0 1 c0(1 − xi) A B 1 − xi

1 0 c1(1 − xi) B A β(1 − xi)

1 1 c1xi B B βxi

(a) (b)

Table 6.1: The outcome of a single interaction is determined by the probability pi→j

that an individual i invades a site occupied by another individual j. si and sj refer to
the species of individuals i and j respectively.

Individual variation in degree of within- or between-species competition

Every individual varies in its intraspecific competitiveness x, which is as-

sumed to be an additive, polygenic trait ranging between zero and one. If an

individual i’s intraspecific competitiveness xi = 0, i can only compete against

individuals from the other species, if xi = 1, i can only compete against other

individuals of its own species, and if xi = 1
2 , i is equally competitive against all

others regardless of their species. So each individual faces a very simple lin-

ear tradeoff between using its competitive resources for within- or between-

species competition.

6.2.2 Ecological interactions

The ecological process is performed by repeatedly choosing a grid site and

one of its four (north, south, east, west) neighbours at random to interact. In

a single interaction between two neighbouring individuals i and j, the chance

pi→j of i invading j is the competitive ability of i’s species multiplied by either

i’s intraspecific competitiveness xi (if i and j are the same species), or by i’s

interspecific competitiveness 1 − xi (if i and j are different species). These

probabilities are summarised in table 6.1(a). pi→j is i’s chance of invading j

once i has been chosen as a potential attacker and j as a potential victim, so this

probability is always positive and nonzero even when j is more competitive

than i.

When describing the behaviour of the system, a ‘generation’ of the simulation

will refer to a number of individual interactions equal to the number of sites

in the grid.
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6.2.3 The evolutionary process

Upon a successful invasion, the victim’s site becomes occupied by a new

‘child’ of the invader. The child’s level of intraspecific competitiveness is cal-

culated from the parent’s by adding a small Gaussian mutation (with stan-

dard deviation σ), and then restricting the result so that it remains within the

range [0,1].

6.2.4 Initial state description

The grid sites are assigned randomly at the beginning of the simulation. In

general, the initial state of a simulation can be described by the following

quantities:

c0,c1: The competitive abilities of the two species, which are assumed

not to change over time,

ρ0(0), ρ0(1): The initial densities of the two species,

p(x0), p(x1): The initial distributions of the intraspecific competitiveness

traits for individuals of each species, and

σ: The standard deviation of the mutations.

Simplified initial state

For the rest of this section it is assumed that one species is capable of outcom-

peting (or competing equally against) the other, and I will call the stronger

species A and the weaker species B. The parameter β describes the ratio of

B’s competitive ability cb to A’s competitive ability ca. It will be assumed that

ca = 1, that ca ≥ cb > 0, and therefore 0 < β ≤ 1. The invasion probabilities

pi→j are shown in terms of β in table 6.1(b).

Also, because the entire lattice is always completely occupied, the two species

densities must sum to one throughout the simulation, so the single quantity ρ

will be used to refer to the density of species A, with ρ0 being A’s density at

the start of the simulation. Throughout the rest of this chapter it will be con-

venient to drop the parentheses and refer to the variable densities of A and B

during the simulation as ρA and ρB. Because these could be confused with the

initial density ρ0, I will always use the term ‘initial densities’ to disambiguate.

As a result of these simplifications a simulation’s initial state can now be char-

acterised using two fixed quantities β and σ, the initial density ρ0, and the two
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initial trait distributions p(xA), p(xB).

6.3 Behaviour of the model

There are a number of features of the model which are not obvious from its

definition. These are summarised in the rest of this section.

6.3.1 Stable coexistence

It is very common for both species to coexist indefinitely, even in cases when

the relative strengths of the two species are unequal.

Whether or not one of the two species goes extinct depends on the initial

conditions. Figure 6.1 shows the winning species on an 80 × 80 grid when

the initial trait distributions are chosen randomly, and σ = 0.01. Coexistence

is the most common outcome, and would be more likely on a larger grid.

Extinctions appear at the edges of the figure (shown by the yellow and light

blue dots), either when species strengths are very uneven (β is small), or when

the initial species densities are very uneven (ρ0 is close to zero or one).

For by far the majority of this parameter space, if there is coexistence after

10,000 generations, then the species densities at equilibrium are close to half

and half — indicating a very low risk of an extinction occurring. The ro-

bust stability of the coexistent equilibrium state at ρ = 1/2 is independent

of whether interactions in the model are local or long-range, and this implies

that it is a different sort of stability to that of the RPS model. The causes of the

model’s stability are analysed in more detail in chapter 7.

6.3.2 Early oscillations in species densities

It is not surprising that when one species is very much stronger than the other

(β is very small), it is the weaker species that is likely to go extinct, which is

why there is a yellow band at the bottom of figure 6.1.

But the winning species is unpredictable when the extinction is caused by

unevenness in the initial densities, because the more vulnerable species is not

always the one that is initially rare. This is shown by the combination of

light blue dots (species B) and yellow dots (species A) at the left and right



96 CHAPTER 6. INTRASPECIFIC COMPETITION

β

initial density of B
0.003 0.997

0.003
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Figure 6.1: The winning species or final density of species A after 10,000 generations
on an 80 × 80 grid when p(xA), p(xB) are uniform distributions. Each point shows
the result of one simulation for a particular combination of β and an initial density of
Bs. The yellow and light blue points indicate saturation by As and Bs respectively;
all other colours, including black, indicate coexistence after 10,000 generations. In the
regions of coexistence the shading from blue through black to orange represents the
final species densities: black is close to half A, half B, blue is close to all B and orange
is close to all A.
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Figure 6.2: Large fluctuations in species densities at the beginning of a simulation.
The graph shows the species densities ρA, ρB and the mean levels of intraspecific
competitiveness for the first 250 generations of a 1000 × 1000 grid simulation for
initial species densities (0.18,0.82), β = 0.6, σ = 0.01, and uniform initial distributions
p(xA), p(xb).

edges of the figure. The behaviour is a result of oscillations in species densities

which occur when the initial densities are uneven. An example of the density

oscillations is shown in figure 6.2.

When species A is initially very common, species A individuals tend towards

intraspecific competition very quickly because there is very little chance of

meeting an individual of species B. Species B, which now faces very little

competition from species A, increases in population size until it becomes the

common species, which in turn leads to a tendency to intraspecific compe-

tition in species B, and so on. For both species, high levels of intraspecific

competition (high x) follow periods of high species density (ρ) with a short

time lag. Similarly, periods of high interspecific competition (low x) follow

periods of low species densities.

Vertical bands of extinctions of the same colour are visible on the left and right

hand sides of figure 6.1, and these are due to the timing of the oscillations.

This can be confirmed by noting that there is an order in which the species

reach their minimum densities. Even though species A is initially rarest in

figure 6.2, the initial trajectories of the densities ensure that species B is in fact

more likely to go extinct, because it reaches a lower minimum density. Its low-

est density of 0.10 occurs after 26 generations at the point marked min(ρB),

and A’s lowest density of 0.16 occurs after 95 generations at the point marked
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min(ρA).

6.3.3 Evolutionary branching

In many cases an evolutionary branching event occurs in one or both species,

in which the values of the traits of the individuals diverge. This produces a

competitive cyclic ecosystem with three or four distinct morphs. Individual

competitiveness tends towards extreme interspecific or extreme intraspecific

competition; distributions of x bunch up at zero or one and individuals with

intermediate values of x die out.

Whether the branching event occurs depends primarily on the initial state of

the simulation; there is very little variation due to randomness. Several other

possible outcomes are described in section 6.3.4.

An example of the emergence of RPS cycles is shown in figure 6.3(a), where a

simulation of 250,000 individuals begins with uniform distributions of x, and

ends with extreme values of x for most individuals.

The final distribution of x is stable and an attractor. For example, even if the

simulation begins with fixed intermediate values for all the xi, as shown in

figure 6.3(b), the xi values still tend towards zero and one and the two simu-

lations have converged to similar patterns after 2500 generations. The equi-

librium state has the same dynamics as the three-species spatial RPS game,

with intransitive competition occurring between interspecific A, interspecific

B, and intraspecific A. Interspecific A beats interspecific B, which beats in-

traspecific A, which in turn beats interspecific A.

Figure 6.4 shows the trait distributions over time. Initially, individuals of both

Figure 6.3: SCA simulations of the model described in section 6.2. The pictures show

the composition of a 500 × 500 grid over time with β = 0.6, ρi = 0.5, σ = 0.01 for two

different initial distributions of the individual levels of intraspecific competition xi.

Sites occupied by the stronger species A are shaded from dark brown for interspecific

competitors (x = 0) through to orange for intraspecific competitors (x = 1), and sites

occupied by the weaker species B are shaded similarly from dark to light blue. In

(a), the initial xis are uniformly distributed in [0,1], and in (b), initial xis are fixed at

0.4 for species A, and at 0 for species B. In both cases, intermediate shades of brown

and blue disappear and eventually only separate regions of orange, dark brown and

dark blue remain, indicating a tendency in species A to move away from a mixture of

interspecific competition and intraspecific competition to a focus on one or the other

exclusively, and a tendency in species B towards interspecific competition. →
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Species A

t=0
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t=250
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Figure 6.4: Histograms showing the distribution of inter- and intraspecific competi-
tors of each species over time for a simulation on a 1000 × 1000 grid with β = 0.6,
ρi = 0.5, σ = 0.01 and a uniform initial distribution of x.

species are uniformly distributed, but slowly bunch up at zero and one. In this

example, the distributions at time t = 3000 are stable. Some individuals with

x between 0 and 1, are always present in the final distribution, because ongo-

ing invasion and mutation means there will always be individuals who have

mutated away from the optimum. The number of such individuals present in

the final distribution depends on the size of the mutations σ (see figure 6.5).

While the stability of the coexistent state occurs regardless of whether interac-

tions are local or long-range, evolutionary branching in the population is very
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Figure 6.5: Distributions of x for each species after 15,000 generations on a 1000 ×
1000 grid for several values of β and three values of the mutation size σ.
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(a) (b)

Figure 6.6: Net invasion rates among the pure strategies where x = 0 or x = 1. A0
and B0 are interspecific (x = 0) competitors of species A and B respectively, and A1
and B1 are intraspecific (x = 1) competitors of species A and B respectively. The
labels on the arrows are the net invasion rates between these strategies from table 6.1.
(a) shows the net invasion rates between the four strategies that are present when
β is high, and (b) shows the net invasion rates between the three strategies that are
present when β is at an intermediate level.

much dependent on local dispersal. Dimorphic populations like the species

A population in figure 6.4 only occur when there is some clustering of similar

individuals on the landscape. I suggest some reasons for this dependency in

chapter 8.

6.3.4 Attracting states in the model

The system frequently reaches a stable state, but not always the RPS-like state

of figure 6.3. Sometimes there is a branching event in both species, and some-

times both species remain monomorphic.

With enough simulations, it is possible to see what kinds of attractors the

system falls into at equilibrium, as a function of the model parameters. The

simulations are initialised with equal densities of each species and uniform

trait distributions, and run for a long time, after which the distribution of

inter- and intraspecific competitors of each species is plotted. This results in a

set of distributions like those shown in figure 6.5.

When the two species are evenly matched (β close to 1), there is a branching

event in both species. If β is below a threshold around 0.85, and above about

0.2, only the stronger species splits into two morphs while the weaker one

stays interspecific only. There are a range of equilibrium distributions occu-
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Figure 6.7: Variation in equilibrium trait distributions with β and σ. A total of 1000
simulations were run on 1500 × 1500 grids, for ten values of σ and 100 values of β,
with trait distributions initially uniform and with equal initial species densities. The
trait distributions after 15,000 generations were then classified into seven types (a)-(g)
described in the text.

pying the region where the species are very mismatched (β less than about

0.2), but if β is reduced far enough, the result is a two-morph system in which

the strong species is fully intraspecific and the weak species fully interspecific.

The reasons for this can be partially explained by considering the net invasion

rates among the ‘pure-strategy’ morphs in which x = 0 or x = 1, shown in

figure 6.6. Figure 6.6(a) shows the situation among four morphs. As β is

reduced, B1 invades B0 more slowly and A0 invades B0 more quickly, cutting

B1 out of the loop by predating on its resource. B1 is thus the most vulnerable

of the four pure strategies. Among the three remaining pure strategies shown

in figure 6.6(b), the situation is like RPS in which we have seen in section 1.1

that the density of a species is proportional to the invasion rate of its prey. As

β is reduced further, A0 becomes the most vulnerable because its prey B0 has
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Figure 6.8: Examples of the state of the grid for the main categories (a)-(f) of attract-
ing equilibrium distribution described in the text. The arrows below the histograms
show the net frequency of changes in occupant over time for ten randomly selected
cells, where the trait space has been divided into ten equal-sized bins in [0,1]. Darker
arrows show the most common transitions and lighter arrows the less common ones.
Transitions between bins that are very close to one another have been removed.

the smallest invasion rate.

Mutation size

The effect of the size of mutations, σ, is visible in the figure 6.5 distributions.

When σ is small, child phenotypes remain close to the parent and individual

phenotypes are tightly bunched up around the mean of the morph. When σ is

large the mutations move children farther away, so the distributions are more

spread out.

Distribution categories

Figure 6.7 shows a classification of the equilibrium distributions into seven

categories (labelled (a)-(g) in the figure) depending on whether each species



106 CHAPTER 6. INTRASPECIFIC COMPETITION

had concentrations of individuals with x close to, zero, one, or at some inter-

mediate value.

The characteristics of the categories are described below, and examples of

each category are shown in figure 6.8.

Case (a): Figure 6.8(a). When β is high, the equlibrium distribution is com-

posed of four main clusters of individuals (highly intraspecific and

highly interspecific competitors of both species) in a nontransitive,

cyclic competitive configuration among four groups. Interspecific

A invades intraspecific B invades interspecific B invades intraspe-

cific A invades interspecific A.

Case (b): Figure 6.8(b). The ‘three-species’ RPS dynamics of figure 6.3. The

stronger species A splits into extreme interspecific and extreme in-

traspecific morphs, while species B concentrates on interspecific com-

petition.

Case (c): Figure 6.8(c). Species A has one concentration at x = 1 and another

intermediate concentration, while species B concentrates on inter-

specific competition, sometimes with a small number of intraspe-

cific competitors as well.

Case (d): Figure 6.8(d). Species A concentrates on intraspecific competition

while species B has two established concentrations of individuals

with x = 0 and x = 1.

Case (e): Figure 6.8(e). Species A concentrates on intraspecific competition

while species B has a concentration of individuals with intermedi-

ate x, and also sometimes smaller concentrations near x = 0 and

x = 1.

Case (f): Figure 6.8(f). The population consists primarily of two groups, in-

terspecific B and intraspecific A, and a relatively stable spatial dis-

tribution with a very low turnover of species in most regions of the

grid.

Case (g): The weaker species goes extinct when β is close to zero, resulting in

a monoculture of intraspecific A.

In very large portions of the parameter space, cases (a)-(d) in figure 6.7, the

system reaches a state with at least one dimorphic population and intransitive

competition.
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6.4 Realistic scenarios

In the last section, most simulations started with equal species densities and

large variations in intraspecific competitiveness. Those initial states made it

easier to assess the equilibrium model behaviour, but they were also unre-

alistic. If more plausible initial population structures are considered, early

extinctions become much more likely.

Unequal initial species densities

When two competing species initially come into contact, it is unreasonable to

assume that they could be equal in number or randomly-mixed. It is more

likely that the contact begins with a single immigrant, or a very small group

of immigrants invading a large resident population, so I will consider these

scenarios only.

There is little point in examining the case when a new immigrant is at a disad-

vantage and goes extinct quickly. I consider the situation where single immi-

grant i has a higher invasion probability versus the resident j than the resident

has versus the immigrant, pi→j > pj→i.

Extreme intraspecific competitiveness levels

Populations come together out of geographic isolation only rarely. So it is

likely that both the population from which the new immigrant is drawn, and

the resident population, will have reached an equilibrium state at the time

of the introduction. Therefore I consider populations that are either fully in-

terspecific or fully intraspecific, because that is the equilibrium state of the

majority of populations that are subject to local spatial effects.

6.4.1 Scenario types

There are three possible scenarios for the meeting of two monomorphic, ex-

treme populations:

(1) Two relatively evenly matched species are competing interspecifically,

but one is slightly stronger and is slowly driving the other towards ex-

tinction. The immigrant is a single individual of the stronger species A,

the resident population is made up of Bs. Everyone’s intraspecific com-

petitiveness xi starts at zero, so the immigrant invades the resident at a
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net rate of 1 − β. Stable coexistence requires the immigrant to expand at

the start and to evolve intraspecific competitiveness before the resident

is wiped out.

(2) A resident population, which has become extremely intraspecific in the

absence of a competitor, is being invaded by a more interspecific immi-

grant population. The immigrant is an interspecific species B individ-

ual, and the resident population is made up of intraspecific species A

individuals, so the immigrant invades the resident with a net rate of β.

Stable coexistence requires the resident to evolve interspecific competi-

tion before it is wiped out by the invading immigrant.

(3) Two isolated intraspecific populations come into contact, but they can-

not compete with one another directly until one evolves interspecific

competitiveness. In this case the species do not initially compete, so

there is plenty of time for an interspecific mutant to arise.

While scenario 3 may be plausible, it turns out to be similar to scenario 2.

There is plenty of time for the initial interspecific mutant to appear in one of

the two species. But after that the system will be unstable, because the new

interspecific mutant of one species will wipe out the second species entirely

unless an interspecific mutant of the second species appears quite quickly.

While waiting for the second mutant, the situation is similar to scenario 2,

where an interspecific immigrant is driving out an intraspecific resident. I

will therefore ignore scenario 3 and present results of simulations of scenarios

1 and 2.

Of these remaining scenarios, I consider the second to be the most plausible,

because an isolated species with no competitors is likely to be fully intraspe-

cific. I will also look at the behaviour of the first, because it possible for species

to be ‘pre-adapted’ to a potential competitor for other reasons.

6.4.2 Simulations of scenarios 1 and 2

In scenarios 1 and 2 one of the two species is always represented by a single

individual, so the initial densities are very uneven. We have already seen in

figure 6.1 (page 96) that extinctions are common but not inevitable in such

conditions.

Figure 6.9 shows the densities and mean trait values for examples of simula-

tions which don’t result in extinctions. The scenario 1 example begins farther

from equilibrium, and there is a massive spike in the resident’s intraspecific
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Scenario 1, local interactions, β=0.85, σ=0.015

0 t=6000
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Scenario 2, local interactions, β=0.25, σ=0.015

Figure 6.9: Examples of simulations on a 1000× 1000 grid leading to stable coexistence
from the starting conditions of scenarios 1 and 2 in section 6.4.1. The solid lines show
the densities of the two species, and the dotted lines their mean levels of intraspecific
competitiveness. The scenario 1 simulations start with one species A individual with
x = 0.01, and 999,999 species B individuals with x = 0.01. The scenario 2 simulations
start with one species B individual with x = 0.01 and 999,999 species A individuals
with x = 0.99.

competitiveness before it settles back down to its equilibrium level once the

species densities even out. In the scenario 2 example, the adjustment hap-

pens smoothly. In both cases, the densities are slow to change, so the system

spends a long time in a state where the immigrant species is at risk because of

its low numbers.
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Effect of β and σ

Whether the system stabilises depends on both β and σ. The total population

size has an effect too, but it is less important once the population is sufficiently

large.

The invasion speed of the immigrant is determined by β. In scenario 1, inva-

sion is slowest when β is high, and in scenario 2, invasion is slowest when β

is low. Slow invasion does not always increase the likelihood of coexistence,

however, because a slow invader spends more time at risk in the early stage

with very low numbers.

The responsiveness of the resident to the invader is determined by σ. In both

scenarios, high σ gives a greater likelihood of coexistence.

This dependence on β and σ is pictured in figure 6.10 which shows results of

simulations of both scenarios for 22,500 different combinations of β and σ.

Extinctions in scenario 1

In scenario 1, species A is initially rare, but is stronger and invades species

B at a net rate of 1 − β. Some simulations are won by species B just because

species A is initially so rare that it is wiped out at the beginning through bad

luck, before it has time to expand. These are the earliest extinctions, and they

appear as scattered dark blue dots in the top picture in figure 6.10. There are

more of these extinctions when β is high, because A’s population expands

faster when β is low.

Secondly, some simulations are won by species A because A has a higher in-

vasion rate, and wipes B out before A’s intraspecific competitiveness levels

are able to respond to A’s increasing population. These simulations appear as

a brown triangular region at the bottom left of the top picture. σ has an impor-

tant effect on these secondary extinctions; whether species A wins appears to

depend on a linear combination of β and σ.

There is also a dark brown strip at the bottom of the diagram. This is the

region labelled (g) in figure 6.7. In this region B always goes extinct at equilib-

rium, even when the initial densities are even and the initial xi are uniformly

distributed. The orange area at its border is region (f) in which A remains very

intraspecifically competitive, B very interspecifically competitive but the grid

is quite static.
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Figure 6.10: Regions of extinctions and coexistence in the β-σ parameter space for
simulations starting with the conditions of scenarios 1 and 2. Each point represents
the state of a SCA simulation on a 300 × 300 grid after 10,000 generations. If the
simulation ended with the extinction of one species, the winning species is marked
by a either dark blue point (for species B) or a brown point (for species A). All other
colours shown on the colour scale, from light blue through to white and then orange
indicate the species densities after 10,000 generations.
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Extinctions in scenario 2

In scenario 2, species B is initially rare and invades species A at a net rate of β.

The earliest extinctions happen when species A wipes out species B before it

has the chance to expand, and appear in the bottom diagram of figure 6.10 as

brown dots scattered over the whole picture. They are more common when β

is low because that is when species B expands slowest.

The early extinctions are much less common than the ones in scenario 1 be-

cause in this case, species A individuals start out as almost fully intraspecific,

so they have very little chance of winning any interactions with species B in-

dividuals. Even when the net invasion rate β of species B in scenario 2 is

higher than the net invasion rate 1 − β of species A in scenario 1, these early

extinctions are less common in scenario 2 because of the difference in the ini-

tial absolute invasion probabilities.

The second wave of extinctions occurs when species B slowly takes over the

grid before the intraspecific competitiveness levels have time to respond and

regulate the system, and these simulations appear as a blue triangle in the

upper left of the picture. These secondary extinctions are strongly affected by

σ as well as β.

The dark brown region (g) is the same shape as region (g) for scenario 1, which

is not surprising because these represent simulations that have gone past the

early extinction period to an equilibrium that does not depend on the initial

state of the grid.

6.4.3 Plausibility of mutation rates

While there are few limits on the values that β could take in real ecosystems,

σ is different because inter-generational phenotypic change is measurable. It

might be objected that the values on the x-axis in figure 6.10 are simply im-

plausible as mutation rates, given that genetic mutations have been estimated

to occur on the order of 10−9 per base pair per year in mammalian genomes

(Kumar and Subramanian, 2002), and 10−3 per genome per replication (or

cell-division) in all DNA-based genomes (Drake et al., 1998).

However, there are many complicating factors. For example, mutations are

known to occur at very different rates in different genes (Wolfe et al., 1989).

There are also known mechanisms of both prokaryotes and simpler eukary-

otes which allow faster evolution when populations are placed under stress,

for example when confronted with a host’s immune response, or starvation
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(Moxon et al., 1994; Adams et al., 1998). Some of these mechanisms can in-

crease the bacterial mutation rate by a factor of 104 (Miller, 1996; Bjedov et al.,

2003).

Even though I have often referred to σ as the ‘mutation rate’ or the ‘size of

mutations’, it does not represent genetic mutations alone. It includes all the

ways in which a phenotype can change from one generation to the next: such

as the genetic mutation in all the alleles that make up the trait, crossover (for

sexual species), and potentially even environmental elements such as learn-

ing which can be passed on to children. A large number of mechanisms are

involved (Poole et al., 2003), and σ is the sum of all these and represents the

total ‘evolvability’ of the two species.

6.5 The intraspecific competitiveness trait

An important objection to the intraspecific competition model is the lack of

realism in the way the trait affects individual interactions. In section 6.2, xi

is described as “i’s level of intraspecific competitiveness”. However, there

is no general form that intraspecific competitiveness takes, and in the real

world such a trait will differ greatly from species to species. In this section I

will explain why although many biological traits play a part in intraspecific

competition, few of these traits are likely to fit the model’s assumptions used

in determining the invasion probabilities.

Assumptions of the model

The crucial assumptions about the invasion probabilities are contained in ta-

ble 6.1 on page 93, and they place quite specific restrictions on the way the x

trait affects individual competitive interactions. The definition of pi→j implies

that

(1) Some aspects of competitiveness are determined by the x trait, for which

individuals face a smooth, linear tradeoff; but

(2) Other aspects of competitiveness are determined by the β ratio and these

aspects depend on the individual’s species, and don’t change percepti-

bly during the timeframe under consideration.

(3) An individual’s ability to invade another’s territory is largely deter-

mined by its trait, but the same individual’s susceptibility to being colo-
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nised is determined by its species.

(1) Tradeoff between intraspecific and interspecific competition

The tradeoff is inherent in the fact that i’s intraspecific competitiveness is de-

fined as xi and i’s interspecific competitiveness by 1 − xi. On its own, this

assumption is reasonable; there are lots of traits under the control of a large

number of genes, which will be subject to evolutionary tradeoffs. An example

is the tradeoff facing sticklebacks (see the footnote on page 90) over adapta-

tion to a particular niche. Competitiveness versus particular species is bound

to be affected by such traits.

(2) Species-determined competitiveness

The asymmetric competitiveness of the two species, represented by the ratio

β, is more restrictive but not unrealistic. Competitive asymmetry between

species is common in the natural world, and the competition is not always

in direct contests — some species are just better adapted at using resources

efficiently than others.

In the model, it is assumed that this species-determined competitive ability is

independent of any individual’s intraspecific competitiveness trait, so some

very fundamental characteristics such as the species’ basic morphology or re-

source niche must be relatively immutable during the time periods under

consideration. If a species’ primary nutrients are difficult to change, while

its method of territorial colonisation is more plastic, then such a species is

represented well by the second assumption above.

(3) An individual’s susceptibility to specialists is not dependent on its own

specialisation

The third assumption is problematic. This is the assumption that all the char-

acteristics that go to make up individual i’s susceptibility to colonisation are

based wholly on i’s species, and hence must be independent of i’s investment

in intraspecific or interspecific competitiveness.

This is manifested in the model in table 6.1(b). The individually-varying fac-

tor of an individual’s invasion probability (whether xi or 1 − xi appears in

the third column) depends on j’s species, while the species-dependent factor

(whether β appears in the third column) depends on i’s species.

This restriction probably rules out most morphological characters of animals
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and plants because it is very difficult to imagine a character which has a large

effect on ‘attack’, but negligible effect on ‘defence’. For example, body size

in animal contests is not the sort of trait that can be modelled by the sys-

tem. Even if large body size is advantageous in contests against species X

and small body size is advantageous against species Y, for the model to be

accurate, having a large body size would have to be equally advantageous

against both large and small individuals of species X, and small body size

would have to be equally advantageous against both large and small individ-

uals of species Y.

6.6 Summary

The adaptive dynamics framework cannot be used to explain the evolution of

RPS ecosystems, because it assumes a complete separation of the evolutionary

and ecological timescales.

A two-species CA model with individual variation in intraspecific competi-

tiveness can become a RPS ecosystem after a speciation event which occurs in

a large portion of the parameter space.

However, when more realistic two-species ecosystems are used as starting

points, early extinctions are very common. The emergence of cyclic competi-

tive ecosystems will require high rates of per-generation phenotypic change,

or species whose intrinsic levels of competitiveness are not especially uneven.

Also, the model can only apply when individuals’ method of attack or coloni-

sation is species-independent, while at the same time individuals’ susceptibil-

ity to attack is species-dependent. This assumption limits the model’s poten-

tial applicability to a narrow range of potential traits, and consequently the

model fails to represent intraspecific competition in general.

Toxin-producing organisms are a more promising area of application, because

toxins are potentially effective against specific species while at the same time

leaving others unaffected: susceptibility to toxins is often species-dependent.

An adaptation of the model for ecosystems involving toxin-producers is ex-

plored in chapter 9.
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Chapter 7

Stability of species densities in the

intraspecific competition model

One of the aspects of the intraspecific competition model of chapter 6 that

requires explanation is the near-universal stability of the two species densities

around ρ = 1
2 illustrated in figure 6.1 (page 96). The spatial RPS game is also

very stable with three species (see section 1.2, page 4) so it might not seem

surprising that the current model has stable species densities too, because we

know that the intraspecific model acts in many ways like RPS.

But the stability arises from different causes in the two models. Community

stability in the spatial RPS game is dependent on a spatially-structured pop-

ulation. When individuals play the game in a big pool (section 1.3, page 6),

there is no state with stable densities in which more than one species survives.

In contrast, densities in the intraspecific competition model are usually stable

in a well-mixed population (figure 7.1). Without spatial structure, there is

stability at ρ = 1
2 , and a uniform distribution (when β = 1) of phenotypic

trait values. The figure shows that although spatial structure is responsible

for divergence in the individual character traits, it is not responsible for the

stability in species densities.

In the remainder of this chapter I describe a simplified nonspatial, infinite-

population model of the intraspecific competition system. By analysing this

model, it is possible to show why the species densities are always centred

around the value ρ = 1
2 .

Nonspatial, finite-population simulations are then used to argue for the claim

that over-regulation by the traits attracts the densities to ρ = 1
2 .

117
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Figure 7.1: Average over 20 simulation runs of the distribution of inter vs. intraspe-
cific competitiveness after 15,000 generations, for two species, with no spatial in-
teractions (top row, population size 2,250,000), and with spatial structure and local
interactions (bottom row, 1500 × 1500 grid), for β = 1 and β = 0.6. In all four cases
ρ0 = 0.5, σ = 0.01, and the initial distributions p(xA) and p(xB) are normal, centred
around 0.6 and 0.52 respectively with standard deviation 0.05.

Finally, I show that despite the lack of trait divergence in the nonspatial sys-

tem, the effect of spatial structure on extinctions in the model is relatively

minor.

7.1 A nonspatial intraspecific competition model

In this section I describe a numerical model of mean phenotypic values simi-

lar to the adaptive dynamics model, with a relaxation of the requirement for

complete separation of the ecological and evolutionary timescales. With cer-

tain assumptions, it can be shown that the only factor affecting the direction

of the trait values is whether the species density ρ is greater than 1
2 , or less

than 1
2 .

7.1.1 Model definition

The population is made up of individuals from two species A and B, where

A is stronger than B and the ratio of strengths is described by β as it is in

the SCA model. Each individual i has a phenotypic trait zi which determines,

but is not equal to, its level of intraspecific competitiveness. To make the

model easy to work with, I allow z to vary outside the range zero to one,

but ensure that competitiveness levels stay between zero and one by scaling
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Figure 7.2: The phenotypic effect of the linear trait value x of the computer model
(dotted line) and the sigmoid trait value f (z) of the nonspatial model (solid line).

z with a sigmoid function. The function f (z) = 1/(1 + exp(2 − 4z)) is used

so that f (z) plays a similar role to the variable x in the computer model of

section 6.2. The difference in the effects of x and f (z) are shown in figure 7.2,

which shows that the two models concepts of intraspecific competitiveness

are similar when x and z are close to 1
2 .

Individual i’s relative competitiveness versus j is defined as

f (zi) − f (zj) when species(i) = species(j) = A,

(1 − f (zi)) − β(1 − f (zj)) when species(i) = A, species(j) = B,

β(1 − f (zi)) − (1 − f (zj)) when species(i) = B, species(j) = A,

β f (zi) − β f (zj) when species(i) = species(j) = B,

which are very similar to the invasion probabilities given in table 6.1 (page 93).

The difference is that here the net invasion probabilities (pi→j − pj→i) are being

described rather than the absolute ones, and f (zi), f (zj) have been substituted

in place of xi, xj.

7.1.2 Ecological dynamics

First consider two mean phenotypes, z̄A and z̄B of species A and B respec-

tively. Because the population is not spatially structured, the chance of meet-

ing an individual of species A in a single interaction is ρA, and the chance of

meeting an individual of species B is ρB. The following equations determine

how the mean phenotypes perform against mean phenotypes:

dρA

dt
= ρAρB

(

1 − f (z̄A) − β(1 − f (z̄B))
)

dρB

dt
= ρBρA

(

β(1 − f (z̄B)) − 1 + f (z̄A)
)

and because ρ = ρA = 1 − ρB, these can be simplified to

dρ

dt
= ρ(1 − ρ)

(

1 − f (z̄A) − β(1 − f (z̄B))
)

. (7.1)
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This equation simply describes how the densities of the two species would

evolve in the absence of any mutations in z̄A, z̄B. There are uninteresting fixed

points at ρ = 0 and ρ = 1, where one of the two species has gone extinct.

The densities are also fixed along the line at which 1 − f (z̄A) = β(1 − f (z̄B)),

where the mean levels of intraspecific competition exactly balance out the

asymmetric growth rates of the two species. But this line is unstable in the

sense that any slight deviation of z̄A or z̄B will push ρ towards one or zero.

7.1.3 Evolutionary dynamics

In the real world, the mean phenotypes will evolve through natural selection.

Because selection can only happen through mutations, the adaptive dynamics

method can be used, by examining the invasion fitnesses, or initial per capita

growth rates r′A and r′B, of mutants z′A and z′B (see equation (A.2) on page

221). These growth rates depend on the difference between the mutant’s level

of intraspecific competitiveness and the mean levels of intraspecific competi-

tiveness of each species in the population:

r′A = ρA

(

f (z′A) − f (z̄A)
)

+ ρB

(

1 − f (z′A) − β(1 − f (z̄B))
)

r′B = ρA

(

β(1 − f (z′B)) − 1 + f (z̄A)
)

+ ρB

(

β f (z′B) − β f (z̄B)
)

. (7.2)

So in the case of a species A mutant z′A, the reasoning behind the equation

for r′A goes like this: if it meets another species A individual (which it does

with chance ρA), its fitness is determined by how intraspecifically competitive

it is relative to its average opponent: f (z′A) − f (z̄A). If it meets a species

B individual (chance ρB), its fitness is determined by how interspecifically

competitive the mutant is: 1 − f (z′A), compared to its average opponent: 1 −

f (z̄B), moderated by their relative strength β. Because I assume the mutant is

rare, there is no term to describe what happens if the mutant meets a copy of

itself. A similar explanation applies for the species B mutant’s invasion fitness

r′B.

The changes in these initial per capita growth rates with respect to the mu-

tants’ phenotypic trait values are

∂r′A
∂z′A

= (2ρ − 1) f ′(z′A)

∂r′B
∂z′B

= β(1 − 2ρ) f ′(z′B), (7.3)

where

f ′(x) =
d

dx
f (x) =

4 · exp(2 − 4x)

(1 + exp(2 − 4x))2
.
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When equations (7.3) are evaluated at the mean phenotypes, (z′A = z̄A, z′B =

z̄B), the effects of selection on the mean phenotypes are obtained.

7.1.4 Evolutionary and ecological timescales

I assume that evolution drives the mean phenotypes proportionally to the

gradients of the mutant growth rates with respect to mutant trait values in

(7.3), and also assume that a ratio µ, describing the frequency of mutational

change in the mean phenotypes to the frequency of ecological interactions, is

constant.

A complete system can then be described by taking (7.1) and (7.3) together,

and using the ratio µ to describe the relative difference between the two time-

scales.

The resulting model is defined by the following three equations:

dρ

dt
= ρ(1 − ρ)

(

1 − f (z̄A) − β(1 − f (z̄B))
)

dz̄A

dt
= µ ·

∂r′A
∂z′A

|z′A=z̄A
= µ(2ρ − 1) f ′(z̄A)

dz̄B

dt
= µ ·

∂r′B
∂z′B

|z′B=z̄B
= µβ(1 − 2ρ) f ′(z̄B) (7.4)

7.1.5 Summary of model assumptions

It is possible that the class of model described here will be useful in the gen-

eral situation where the AD assumptions are too restrictive for the underlying

population.

The model described in this section makes the following assumptions:

(1) That the population is spatially unstructured, like the mean-field;

(2) The population is infinite and only species densities are of interest;

(3) Only the mean trait values are of interest;

(4) Mutants are rare;

(5) The evolutionary and ecological timescales operate in parallel with a

constant relative speed.
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Figure 7.3: The system defined by equations (7.4), for β = 0.6, µ = 0.01. (a) Tra-
jectories of ρ vs. f (z̄A) − f (z̄B) for six initial values of (ρ, z̄A, z̄B) in {(0.1,0.6,0.57),
(0.18,0.6,0.52), (0.26,0.6,0.47), (0.34,0.6,0.42), (0.42,0.6,0.37), (0.5,0.6,0.32)}, with these
initial values marked by red dots. The trajectory marked with a solid line in (a) ap-
pears in (b), plotted against time, along with the values of z̄A, z̄A.

7.2 Properties of the nonspatial model

In the system of equations (7.4) there is a fixed point when all three are equal

to zero, which happens when ρ = 1
2 and 1 − f (z̄A) = β(1 − f (z̄B)). Around

this point the system oscillates in a stable orbit centred on the fixed point,

as shown in figure 7.3 — the fluctuations in density and mean trait levels

continue with the same amplitudes forever.

Importance of ρ =
1
2

The densities fluctuate around 1
2 , and the difference in mean levels of in-

traspecific competition fluctuate around the point at which 1− f (z̄A) = β(1−

f (z̄B)). The sign of the changes in trait values, whether they increase or de-

crease, depends only on whether ρ >
1
2 . This is because the only terms which
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Figure 7.4: Behaviour of the system of equations (7.4) for variations in µ, the mutation
rate of the mean trait values when β = 0.6. The red and blue lines indicate the mean
trait values z̄A, and z̄B respectively, and the black line is the density of species A (ρ).
In all cases the initial values are ρ = 0.35, z̄A = 0.7, z̄B = 0.6.

can potentially go negative in the equations for dz̄A/dt and dz̄B/dt are the

terms 2ρ − 1 and 1 − 2ρ respectively.

So the densities are regulated by the intraspecific competition levels, with the

periods of the oscillations in densities keeping time with the oscillations in

intraspecific competition, for the same reasons as those described in section

6.3.2 on page 95 for the spatial simulation.

Importance of µ

The value of µ determines how quickly the intraspecific competitiveness trait

is able to respond to changes in density. This is shown in figure 7.4. When

µ = 0, the slower species goes extinct because the faster one never becomes

intraspecifically competitive. As µ increases, the oscillations become more

frequent, the large amplitudes in the fluctuations of the densities become

smaller, and the amplitudes of the fluctuations in the intraspecific competi-
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tion levels increase.

7.3 Nonspatial finite-population simulations

In the nonspatial system of equations (7.4), the species densities do not con-

verge to a stable point, instead they cycle endlessly. This is not what happens

in a nonspatial simulation where the population is finite rather than infinite.

Figure 7.5 shows the trajectory of ρ, x̄A, and x̄B for a nonspatial agent-based

computer simulation. The simulation is of the intraspecific competition model

described in section 6.2 (page 92), except that for each interaction two individ-

uals are chosen at random from the population and need not be neighbours.

The trajectories shown in figures 7.5(a) and (b) correspond to the trajectory

marked with the solid line in figure 7.3(a) and (b), which is the numerical re-

sult of equations (7.4) for the same parameter values. Comparing these figures

shows that the numerical model is accurate at describing the initial behaviour

in the agent-based simulations. However, in figures 7.5(c) and (d), where

the same simulations are shown for an extended time period, the behaviour

changes: eventually the agent-based model drifts toward stable values of ρ,

x̄A, and x̄B, whereas in the numerical model the equivalent variables cycle

forever in stable orbits.

In both nonspatial models, intraspecific competitiveness traits respond im-

mediately to the densities crossing the point at ρ = 1
2 , (figures 7.3(b) and

7.5(b)) whereas in the spatial case there is a delay from the time at which

species densities cross ρ = 1
2 until the mean trait values change direction (fig-

ure 6.2, page 97). In the spatial model the global species densities cannot affect

the majority of individuals straight away because individuals only experience

population densities at the local level.

7.3.1 Intraspecific competition vs. RPS

The fact that densities are attracted to 1
2 in the nonspatial finite-population

system is not what one would expect based on the difference between the

infinite and finite-population nonspatial models of the RPS system outlined

in sections 1.1 and 1.3.

Infinite population models of both systems predict that densities cycle for-

ever in stable orbits. But finite population models of the two systems show
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Figure 7.5: Agent-based simulation without spatial interactions for a population size
of 1,000,000. This is the agent-based simulation analog of the trajectory shown with
the solid line in figure 7.3: β = 0.6, initial ρ = 0.18, and the initial xis are normally
distributed (with standard deviation 0.05) around the means x̄A = 0.6, x̄B = 0.52.
The size of mutations σ = 0.01. (a) shows the change in ρ vs. x̄A − x̄B, and (b) the
change in ρ, x̄A, and x̄B vs. time for the first 250 generations, while (c) and (d) plot the
same quantities for 15,000 generations. Figures (e) and (f) show a running average
of x̄A and x̄B respectively (thick lines), taken over 150 generations for the first 8000
generations, with the thin lines showing a running average of one standard deviation
from the means.
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very different behaviour: in RPS, the species densities are unstable and grow

increasingly different over time until one species becomes extinct. In the in-

traspecific competition model, the two species densities are attracted to 1
2 , and

stable coexistence of both species is a likely outcome. So changing from infi-

nite to a finite population has the opposite effect in the two ecosystems.

Overshooting of mean phenotypes regulate densities

Frean and Abraham (2001) claim that the central fixed point is a repeller in

well-mixed finite-population RPS because the densities ‘overshoot’ the stable

orbits of the mean field model. In the intraspecific competition model, the fi-

nite population also appears to lead to overshooting of mean-field orbits, but

it is the traits which overshoot these orbits, not the densities. In the agent-

based model, figure 7.5(a) shows that the initial fluctuations in ρ decrease

with time while the fluctuations in x̄A, x̄B increase with time. In the intraspe-

cific competition model, overshooting in trait values away from the fixed point

leads to an overcorrecting effect on the densities towards the fixed point. This

is the case in spite of the fact that densities are able to change faster than the

trait values (as long as µ < 1).

7.3.2 Mean traits versus trait distribution

A second reason for the disparity in the behaviour of the infinite and finite

population models is that an entire distribution of trait values is represented

explicitly in the finite population model, while the infinite population model

only represents the mean trait value.

In the finite population case, the distribution quickly spreads out from the

initial mean to cover a wide spectrum of possible phenotypes, shown in fig-

ures 7.5(e) and (f), until eventually all the possible phenotypes are present at

least in small numbers, as shown in the final trait distributions in figure 7.1.

Once this wide genetic variation is available, the system is able to dampen

large changes in densities very quickly because the necessary phenotypes no

longer need to evolve; they are already present in the population.

The infinite population system used the AD assumption that mutants are rare

in equations (7.2). This assumption becomes inaccurate as time passes, be-

cause the mutants don’t stay rare for very long.
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Figure 7.6: Nonspatial simulations. (a) With mutations (σ = 0.01), and (b) without
mutations. In both cases the population size is 2,250,000, β = 1, and ρ0 = 0.5.

7.3.3 Flat trait distributions in nonspatial simulations

While the numerical model explains why densities are regulated at 1
2 , it cannot

explain why the trait distributions eventually flatten out in figure 7.1, because

it doesn’t represent those distributions at all.

Symmetric competition

When competition is symmetric (β = 1), the uniformity of the xis is due to

small mutations slowly spreading out over the trait space. Once the mean

traits x̄A and x̄B are at 1
2 , single individuals are relatively indifferent about

their level of intraspecific competitiveness, because the other agents they meet

are effectively the average ones, so there is no force pushing trait values in

either direction.

The role of drift in flattening the distributions can be confirmed by turning

off mutations. Figure 7.6 shows two simulations, both of which start with an

initial non-uniform distribution with p(xi)s centred on 1
2 . The xi distribution

becomes uniform in the presence of mutations in figure 7.6(a), but remains

relatively static in their absence in figure 7.6(b), indicating that selection is
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Figure 7.7: Average over 20 nonspatial simulation runs of distributions of xis after
15,000 generations with 1, 000, 000 individuals for β in (0.25, 0.35, 0.45 0.55, 0.65, 0.75),
ρi, σ, p(xA), p(xB) as in fig. 7.1. The dotted lines indicate the mean value of x for the
species in the plot.

very weak.

Asymmetric competition

When competition is asymmetric, for example in figure 7.1(b) in which β =

0.6, mean levels of intraspecific competition tend to move towards the values

which balance out the innate mismatch in competitiveness between the two

species, as this is what keeps the densities stable at ρ = 1
2 .

With the infinite population model, the fixed point for the intraspecific com-

petitiveness trait is at 1 − f (z̄A) = β(1 − f (z̄B)). The corresponding relation-

ship,

1 − x̄A

1 − x̄B
= β, (7.5)

holds at the equilibrium in the finite population model as long as neither

species goes extinct. The species compete interspecifically exactly as much

as they need to in order to balance the difference in their relative strengths.

For example, the equality (7.5) is approximately true for all the simulations in

figure 7.7, where β ≥ 0.25. (Extinctions are quite common in the nonspatial

system when β < 0.25). As in the β = 1 case, mutations flatten out the

distribution — figure 7.7 shows results that are nearly the flattest distributions

which keep the mean xs at their stable values.
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Figure 7.8: Simulations with global interactions on a 1000× 1000 grid leading to stable
coexistence from the starting conditions of scenarios 1 and 2 in section 6.4.1. The solid
lines show the densities of the two species, and the dotted lines their mean levels of
intraspecific competitiveness. The scenario 1 simulations start with one species A
individual with x = 0.01, and 999,999 species B individuals with x = 0.01. The
scenario 2 simulations start with one species B individual with x = 0.01 and 999,999
species A individuals with x = 0.99.

7.4 Importance of spatial structure for coexistence

Because the spatially unstructured system produces stable densities at ρ = 1
2 ,

it is interesting to examine the effect of long-range dispersal on the intraspe-

cific competition system.

Figure 7.8 shows the densities and mean trait values for some examples which

do not end in extinctions, and should be compared with the spatially struc-

tured versions in figure 6.9 on page 109.
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Figure 7.9: Regions of extinctions and coexistence in the β-σ parameter space for sim-
ulations with global interactions starting with the conditions of scenarios 1 and 2.
Each point represents the state of a population of size 90,000 after 10,000 genera-
tions. If the simulation ended with the extinction of one species, the winning species
is marked by a either dark blue point (for species B) or a brown point (for species
A). All other colours from light blue through to white and then orange indicate the
species densities after 10,000 generations.
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When interactions are global, there are large oscillations in species densities,

which occur on a much faster timescale than the spatially structured sys-

tem, and which continue for much longer. Mean trait levels only respond

to changes in densities when those densities cross the line ρ = 1
2 , but they

respond immediately rather than with a time lag as in the spatial case.

If the system avoids early extinctions, the trait values will eventually reach

the levels that bring ρ to 1
2 and the system becomes stable. However, as the

graphs show, the species densities can get very close to zero on the way, so the

likelihood of early extinctions is much higher when interactions are global.

Figure 7.9 shows the species densities for finite population simulations of

non-spatially structured populations. The only difference between these sim-

ulations and those with local interactions in figure 6.10 on page 111 is that the

secondary wave of extinctions (see section 6.4.2) is more likely when interac-

tions are global, implying that a well-mixed population will need to have a

slightly faster rate σ of phenotypic change in order to stabilise.

7.5 Summary

In the RPS game, stability is due to a spatially-structured population, but the

intraspecific competition model is inherently stable in the absence of spatial

effects.

An analysis of an infinite-population, mean-field approximation to the in-

traspecific competition model shows that mean values of the intraspecific

competitiveness trait act immediately to repress density fluctuations when-

ever the densities move away from ρ = 1
2 .

This leads to stable orbits in the infinite-population model, but in a finite pop-

ulation, perhaps because more phenotypic variation is available, the traits

overshoot the orbits, pushing the densities towards 1
2 .

In the scenarios described in section 6.4, a well-mixed population will spend

more time with densities close to zero, and consequently such a system is

more likely to collapse than its spatially structured equivalent when the im-

migrant is invading at a fast speed and the mutation rate is low.
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Chapter 8

Disruptive selection in the

intraspecific competition model

In the intraspecific competition model, the individual-level trait is often sub-

jected to disruptive selection in many examples. As a result, levels of intraspe-

cific competitiveness tend towards zero or one while intermediate phenotypes

are selected against.

Figure 7.1 on page 118 proves that this divergence is dependent on spatial

structure and local interactions, because when spatial structure is removed

from the population, individual traits no longer diverge, but smoothly dis-

tributed across the trait space.

In this section I try to show why this is the case for the situation in which

β = 1, arguing the following points:

(1) A small amount of local clustering of individuals of the same species

(and with similar xis) must necessarily occur because of the nature of

the system’s invasion dynamics, so occupants of neighbouring cells are

more similar on average than occupants of random cells;

(2) Therefore, a phenotype that is particularly well adapted to colonising

one neighbouring cell is also likely to be better adapted than average at

colonising that cell’s neighbours; and

(3) Individuals with xi close to zero or one are the fastest invaders in a clus-

tered environment.

133
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8.1 Spatial interactions create local clustering

It is a necessary consequence of the model’s dynamics (sections 6.2.2 and 6.2.3,

page 93) that neighbouring cells are more likely to contain similar individuals

than cells selected at random.

Because invasions can only happen between neighbouring cells, and because

children have the same species and similar value of x to their parent, once

there has been a single successful invasion, there will be a single cluster of

two similar cells.

Over time, these invasions increase the clustering. In a population of N indi-

viduals there are N interactions in one generation, but some of these interac-

tions will involve the same potential invasion victim. The expected number

of unique items m′ in m draws from a list of M distinct items is E(m′) =

M(1 − (1 − 1/M)m) (Cohn, 1992), so the expected number of unique vic-

tims in a generation Nu is N(1 − (1 − 1/N)N). This number is approximately

0.63 × N for reasonable values of N greater than about 100.

The consequence of this is that even if all individuals have the same invasion

probability p against every other individual, after one generation there will

have been around pNu successful invasions. So as long as the mean invasion

probability p > 1/Nu there will be related neighbours in the population.

8.2 The three-cell model

Once it is accepted that neighbours in the population are more likely to be

similar to one another than non-neighbours, a necessary consequence that in-

dividuals with extreme levels of intraspecific competition will do better in the

short term than those with intermediate levels, because the extreme-valued

individuals are faster invaders.

8.2.1 A measure of short-term invasion fitness

To why this happens on a very small scale, I consider three neighbouring in-

dividuals, a, i, and j, of species sa, si, sj and with intraspecific competitiveness

levels xa, xi, xj. I assume that a and i are neighbours and that i and j are neigh-

bours, but a and j are not neighbours:

a i j
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The intuition which motivates the argument is that when there is local cluster-

ing, if a successfully invades i, then a’s probability of subsequently invading j

is greater than would be expected without any local clustering, because i and

j are likely to be similar. Being well-adapted to invading any one neighbour

will on average result in fractionally more than one successful invasion.

As an approximation of a’s short-term invasion fitness, I consider the prob-

ability that the third (rightmost) cell is occupied by a type a individual after

two interactions: an interaction between the left pair of cells followed by an

interaction between the right pair of cells. I write aij as shorthand for the

initial state shown above, and I will call the probability that the rightmost

cell is occupied by a after two interactions p1,2(aij → aaa). This quantity is

a’s two-interaction invasion fitness. In the following paragraphs I evaluate

p1,2(aij → aaa) for different amounts of local clustering and show how it

varies with xa.

8.2.2 Quantification of clustering

Local interactions will produce clustering of individuals of the same species,

and also clustering of individuals with similar levels of intraspecific competi-

tion, so clustering needs to be specified by two numbers. The first, ps, is the

chance that two neighbouring individuals are the same species. If all individ-

uals are equally likely to be of either species and if there are no local interac-

tions, then ps = 1
2 , because there are two species. If there is local clustering of

conspecifics then ps >
1
2 .

The second measure of clustering, r, can be thought of as the average related-

ness of two neighbouring individuals who happen to be of the same species.

In genetic terms it is the chance that a single allele in an individual k (which

contributes to k’s polygenic trait xk) is also shared by k’s conspecific neigh-

bour∗.

For the purposes of this discussion I use r to describe the chance that any two

neighbours i and j are related given si = sj, where ‘related’ means that they

share a recent common ancestor and so xi ≈ xj. Without any local clustering,

r will be close to zero.

Because mutations are so small, I will assume that in the initial few rounds

∗Knowing that two individuals are related entitles us to infer that their phenotypes are

similar, but knowing that two individuals have similar phenotypes does not imply that they

are genetically related, because it is assumed that there are many different alleles in the pop-

ulation that have similar phenotypic effects.
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of a simulation, neighbouring i and j are identical with probability psr, even

though in fact they will just be very similar.

8.2.3 Neighbour relationships

When describing interactions there are three possible kinds of relationships

between any two individuals that must be considered in order to determine

the chance that an individual invades its neighbour: The two neighbours can

be either

(1) the same species and closely related (with probability psr), or

(2) the same species but unrelated (probability ps(1 − r)), or

(3) different species (probability 1 − ps), which also implies that they are

unrelated, since children always inherit their parent’s species.

8.2.4 Possible phenotypes in the initial state

Because I have assumed that related individuals are identical, all the possi-

ble individuals occupying the initial three cells will be simplified into three

categories, where sa = A, and the other species is B:

(1) Phenotypes identical to a,

(2) Random (unrelated to a) phenotypes of species A, which I will call a′,

a′′, etc., and

(3) Random species B phenotypes, which I will call b′, b′′, etc.

8.2.5 Nine initial states

In the initial state the leftmost cell is always occupied by a, and there are two

relationships to consider, the relationship between a and i, and the relation-

ship between i and j. Because each of these two relationships can be in one

of the three states listed in section 8.2.3, there are nine different initial states,

shown in table 8.1, in which the contents of cells i and j are either replaced by

a copy of a, or by a random phenotype from the set {a′, a′′, b′, b′′}.

I assume here that sa and sj are independent given si, and that xa and xj are
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Relationships State State

Species Traits a i j frequency

sa = si = sj xa = xi = xj a a a psrpsr

sa = si = sj xa = xi a a a′ psrps(1 − r)

sa = si 6= sj xa = xi a a b′ psr(1 − ps)

sa = si = sj xi = xj a a′ a′ ps(1 − r)psr

sa = si = sj a a′ a′′ ps(1 − r)ps(1 − r)

sa = si 6= sj a a′ b′ ps(1 − r)(1 − ps)

sa 6= si = sj xi = xj a b′ b′ (1 − ps)psr

sa 6= si = sj a b′ b′′ (1 − ps)ps(1 − r)

si 6= sj = sa a b′ a′ (1 − ps)(1 − ps)

Table 8.1: The nine initial states and their frequencies.

independent given xi.
∗

8.2.6 Approximation of the system dynamics

The short term invasion fitness of a, p1,2(aij → aaa), (over two interactions)

is the probability that the rightmost cell j is occupied by a after an interaction

between the left pair of cells followed by another interaction between the right

pair. This two-interaction fitness quantity is described in terms of invasion

probabilities of single interactions.

To model a single interaction between any two neighbours k and l, I assume

there is a probability of 1
2 that k has the opportunity to invade l first, and that if

k fails to invade, then l has an opportunity to invade k. I am concentrating on

the β = 1 case where both species are equally competitive, so the values of xk

and xl alone determine the success of invasions. Because x is an individual’s

competitiveness with a member of the same species, and 1 − x an individ-

ual’s competitiveness with a member of the other species, then p(k → l), the

∗In fact, in a real grid, if there is any local clustering produced by the system, then there

is quite likely to be some amount of relatedness between a and j independent of i. However,

because the relatedness of individuals that are two or more cells distant is underestimated

here, this assumption will not weaken the argument.
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probability that k wins the contest between k and l, and invades l’s cell, is

p(k → l) = 1
2 xk + 1

2(1 − xl)xk

= xk(1 − 1
2 xl) when sk = sl;

p(k → l) = 1
2(1 − xk) + 1

2(1 − (1 − xl))(1 − xk)

= (1 − xk)
1
2(1 + xl) when sk 6= sl.

These dynamics are different to the way the simulations in section 6.2 are run.

In the simulation, the potential killer has a chance to invade the potential vic-

tim, and that is the end of the interaction. In this model, the two individuals

have equal chances at getting the first attack. If the first attacker fails, the at-

tacked individual has an opportunity to invade the first attacker. This change

has been made here to simplify the system so that only two interactions need

to be analysed, while retaining the possibility of invasions occurring in either

direction.

8.2.7 Interaction fitness and invasion probabilities

The invasion probabilities above are being used here as part of a measure of

a’s fitness, but they are not exactly the same thing as a’s fitness. The benefit to

the copy of a in the leftmost cell of copies of a in the rightmost cell is the same

whether or not the leftmost copy successfully invades the rightmost one.

p1(aij → aaj) describes the probability that the second cell is occupied by a

copy of a after the first interaction, and p2(aaj → aaa) the probability that the

third cell is occupied by a copy of a after the second interaction.

When i 6= a, p1(aij → aaj) is the same as a’s invasion probability p(a → i)

described above. When i = a, a’s expected fitness is always one because a

is indifferent as to whether or not she successfully invades a copy of herself.

The interaction fitness of a is defined by

p1(aaj → aaj) = 1,

p1(aij → aaj) = p(a → i), i 6= a,

p2(aaa → aaa) = 1,

p2(aaj → aaa) = p(a → j), j 6= a.

For the nine initial states, a’s single interaction fitness is listed in the second

and fourth columns of table 8.2.
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i p1(aij → aaj) j p2(aaj → aaa) mean p1,2(aij → aaa)

a 1 a 1 1

a 1 a′ xa(1 − 1
2 xa′)

3
4 xa

a 1 b′ (1 − xa)
1
2(1 + xb′)

3
4(1 − xa)

a′ xa(1 − 1
2 xa′) a′ xa(1 − 1

2 xa′)
7
12 x2

a

a′ xa(1 − 1
2 xa′) a′′ xa(1 − 1

2 xa′′)
9
16 x2

a

a′ xa(1 − 1
2 xa′) b′ (1 − xa)

1
2(1 + xb′)

9
16 xa(1 − xa)

b′ (1 − xa)
1
2(1 + xb′) b′ (1 − xa)

1
2(1 + xb′)

7
12(1 − xa)2

b′ (1 − xa)
1
2(1 + xb′) b′′ (1 − xa)

1
2(1 + xb′′)

9
16(1 − xa)2

b′ (1 − xa)
1
2(1 + xb′) a′ xa(1 − 1

2 xa′)
9
16 xa(1 − xa)

Table 8.2: Frequencies and invasion probabilities for each of nine possible relation-
ships between three neighbouring cells.

8.2.8 Expected two-interaction fitness

a’s fitness after two interactions, p1,2(aij → aaa), is just the product a’s fitness

from the two single interactions:

p1,2(aij → aaa) = p1(aij → aaj)× p2(aaj → aaa),

and this is calculated for each of the nine initial states in table 8.2. For example

in the case on row 5 of the table, where i and j are both of species A but all

three individuals are unrelated,

p1,2(aa′a′′ → aaa) = p1(aa′a′′ → aaa′′) p2(aaa′′ → aaa)

= x2
a(1 − 1

2 xa′)(1 − 1
2 xa′′).

Nothing is known about xa′ and xa′′ here, because a′ and a′′ are completely

unrelated to a, and to one another. However, if it is assumed that xa′ and xa′′

are uniformly distributed in [0,1], then a’s expected fitness can be found by

integrating:

E(p1,2(aa′a′′ → aaa) =
∫∫ 1

0
p1(aa′a′′ → aaa′′) p2(aaa′′ → aaa) dxa′ dxa′′

=
9

16
x2

a.

Expected fitnesses can be expressed for all nine states by integrating out all

occurrences of xa′ , xa′′ , xb′ , and xb′′ . The resulting mean fitnesses are listed in

the last column of table 8.2.
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8.2.9 Total expected short-term invasion fitness

The total expected fitness of a over two interactions is obtained by summing

over the mean values of p1,2(aij → aaa) for each of the nine states in the last

column of table 8.2, weighted by the frequencies of the nine states given in

the second column of table 8.1:

p1,2(aij → aaa) = psrpsr

+ psrps(1 − r)3
4 xa

+ psr(1 − ps)
3
4(1 − xa)

+ ps(1 − r)psr
7
12 x2

a

+ ps(1 − r)ps(1 − r) 9
16 x2

a

+ ps(1 − r)(1 − ps)
9
16 xa(1 − xa)

+ (1 − ps)psr
7
12(1 − xa)2

+ (1 − ps)ps(1 − r) 9
16(1 − xa)2

+ (1 − ps)(1 − ps)
9
16 xa(1 − xa). (8.1)

8.2.10 Invasion fitness in clustered environments

The mean invasion fitness of equation (8.1) is invariant with respect to xa as

long as there is no clustering (i.e. when ps = 1
2 and r = 0). As soon as there

is some clustering, however, p1,2(aij → aaa) rises. Figure 8.1(a) shows how

the values of ps and r typically rise at the start of grid simulations without

mutations. During the first four generations, ps rises from 0.5 to 0.67 and r

rises from 0 to 0.49. Figure 8.1(b) shows how p1,2(aij → aaa) varies with xa

for the values of ps and r which were measured in the simulation of figure

8.1(a). Invasion fitness as measured by p1,2(aij → aaa) is highest when xa = 0

and xa = 1, and at its lowest around xa = 1
2 .

Although there is no method for estimating the extent of clustering that will

occur in any particular SCA simulation, the fact that xi values do indeed tend

towards zero or one indicates that p1,2(aij → aaa) is a good measure of inva-

sion fitness.

8.3 The fastest invaders survive

In the long term, it is phenotypes with x close to zero and one that will tend

to survive in the grid simulations described in chapter 6. It is also these phe-
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Figure 8.1: (a) Average values for ps and r over five simulation runs on a 500 × 500
grid after 0,1,2,3, and 4 generations, without mutations. In the non-spatial case, ps

and r remain at 0.5 and 0 respectively. (b) Individual invasion fitness p1,2(aij → aaa)
as defined in equation (8.1) for the five values of ps, r shown in (a).
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notypes that have the highest two-interaction invasion probabilities.

In the short term, the success of these fast invaders will tend to reinforce the

clustering. On average, they invade new territory slightly faster once there is

a small amount of clustering in the system, so slightly larger areas will be oc-

cupied by these fast invaders. These areas will then be more likely to be colo-

nised first by other individuals with the best-adapted x to those clusters, and

the ones with the best-adapted x will themselves be fast-invading extreme-x

individuals.

Intermediate-x individuals will on average succumb to invasion more slowly,

but they cannot take advantage of the clustering as well as the faster invaders.

Any slightly faster mutants of these slower individuals will face a short-term

advantage and intermediate phenotypes will eventually lose out.

8.4 Asymmetric competition

The above argument only applies to the case in which both species are equally

matched (β = 1), but the general principle should apply when β < 1. The

preconditions for extreme divergence in xis also apply when competition is

asymmetric: clustering will still be prevalent in the grid, and individuals with

x close to zero or one are still expected to be the fastest invaders. However,

these potential fast invaders will only be the actual fast invaders if there is

someone for them to invade. In the competition between these fast, extreme

phenotypes, the identities of the most likely survivors were established in

section 6.3.4 on page 103.

8.5 Summary

In the basic case where β = 1, the divergence in x values occurs only when

the interactions in the system are local, as shown in figure 7.1 (page 118), so it

is spatial structure that is responsible for the observed specialisation in inter-

or intraspecific competitiveness.

The profitability of specialisation can be explained with the definition of short-

term invasion fitness, which shows that the extreme-x phenotypes have a

slight advantage when looking ahead only two grid interactions.
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Their advantage comes about because local interactions cause spatial cluster-

ing of similar phenotypes. An individual that successfully invades one victim

is statistically more likely than average to also be successful at invading that

victim’s neighbour, because the neighbour is more likely than average to be

similar to the first victim. The result is large clusters of specialists, who are

most likely to be invaded first by other specialists. All this specialisation,

however, also makes individuals vulnerable, and a constantly shifting land-

scape is the result.
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Chapter 9

Cyclic competition among

toxin-producers

The intraspecific competition model described in chapter 6 requires narrowly

targeted species-specific forms of competition. This restriction limits its po-

tential usefulness, and motivates the question of whether there are ecosystems

that work in this way.

It turns out that in ecosystems where toxin-based competition is prevalent,

there is a close correlation with the model’s assumptions, for two reasons.

Firstly, toxins can be produced in varying quantities, so the offensive ability

of a toxin-producer is likely to be able to vary from individual to individual

rather than being completely species-dependent. Secondly, toxins are often

effective against a large class of organisms, sometimes against entire species

or even families of species, while individuals outside the class are often com-

pletely immune to the toxin’s effects.

In this chapter I show how intraspecific competition can lead to RPS-like com-

petition in an ecosystem of interacting toxin-producers. In the next section I

describe some of the features of ecosystems made up of toxin-producing mi-

crobes, and review several recent theoretical models of these kinds of ecosys-

tems. I then show in section 9.1.3 that the model presented in the last chapter

is not exactly applicable to known systems of toxin-producers in nature. Sec-

tion 9.2 defines a variant of the model which is a better fit to real ecosystems,

and sections 9.3–9.5 describe the behaviour of this variant, and show that it

produces an amazing diversity of monomorphic and polymorphic equilib-

ria, including many involving cyclic competition. Section 9.6 outlines the be-

haviour of a more general class of models of which the section 9.2 model is a

part. Finally, section 9.7 discusses some implications of the behaviour of the

145
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models.

9.1 Modelling toxin-based competition

Microbial ecosystems are diverse. Cells of many different species or strains

interact in a complex web of competitive relationships, and both inter- and

intraspecific competition are intense. Intransitivity between species has been

observed, including spatial RPS games among bacterial strains (Kerr et al.,

2002).

It has been claimed that the diversity of microbial ecosystems is primarily a

result of the production of specific toxins (Pagie and Hogeweg, 1999; Czárán

et al., 2002). In bacteria for example, toxins called colicins are produced by

strains of E. coli which have been shown to inhibit or kill some other strains

while leaving still others unaffected (Reeves, 1972). Chemical warfare of a

similar nature is widespread among microorganisms in general (Riley, 1998),

and also common among the coral reef-dwelling organisms such as corals, al-

gae, and sponges (Bakus et al., 1986; Ates, 1989), organisms which are known

to compete for space in nontransitive relationships (Buss and Jackson, 1979).

9.1.1 Theoretical models of microbial toxin systems

Because of the ease with which bacteria can be studied in the laboratory, the

nature of some microbial toxins is quite well understood, and this has led

to a number of theoretical models of toxin-based competition. The primary

aim of most of these models is to explain why the observed diversity of the

ecosystems is so high. The following paragraphs summarise some of these

results before comparing the models with the intraspecific competition model

from chapter 6.

Frank (1994)

Frank presents a reaction-diffusion model of colicinogenic bacteria which de-

scribes competition for scarce resources between a colicin-producing strain

and a sensitive strain. One of the two strains wins out when there is no spa-

tial structure to the environment, and a stable polymorphism between the two

types results when there is variation in the habitat quality of different spatial

locations.
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The model does not produce stable polymorphisms due to cyclic competition,

but establishes the importance of a spatial population structure.

Durrett and Levin (1997)

Durrett and Levin compare colicinogenic and sensitive bacterial strains in

spatially structured and unstructured environments using stochastic cellular

automata. The model is complex, assigning parameters for birth rate, death

rate, and colicin-producing rate to each species.

In the well-mixed environment, one of the two strains goes extinct depending

only on their initial densities. In the spatially structured environment, one

of the strains also goes extinct, but in this case which of the two strains goes

extinct depends on the metabolic cost of the toxin production, and is indepen-

dent of the initial densities.

When the competition occurs between a sensitive type, a high-cost colicin-

producer, and a third ‘cheater’ type which produces colicin at a slower rate,

the three types will sometimes end up coexisting in a rock-paper-scissors con-

figuration, in which the colicin-producer beats the sensitive type, which beats

the cheater, which in turn beats the colicin-producer.

Iwasa et al. (1998)

Iwasa et al. analyse a two-species colicin system very much like Durrett and

Levin’s using pair approximations, and find that for some regions of the pa-

rameter space, the winner depends on its strengths as determined by the pa-

rameters, but that for other areas of parameter space the winner depends on

the initial densities. The pair approximation appears to give a result midway

between the completely nonspatial situation, in which initial densities almost

always determine the winner, and the explicit spatial models, in which they

almost never do.

Gordon and Riley (1999)

Gordon and Riley provide empirical results from experiments in which sev-

eral different strains of colicinogenic bacteria each compete with a sensitive

strain, and compare these results with those of a mathematical model which

makes realistic assumptions about the invasion dynamics of the cells in the

experimental setup. Colicin-producing cells are added to a sensitive popula-

tion at regular intervals, in a well-mixed environment, and the additions were

continued until the sensitive cells were no longer present.



148 CHAPTER 9. CYCLIC COMPETITION AMONG TOXIN-PRODUCERS

The speed with which colicin-producing strains invade sensitive strains in-

creased with the initial density of colicin-producing strain, and also increased

with the strength of the colicin.

Pagie and Hogeweg (1999)

Pagie and Hogeweg model a colicinogenic bacterial ecosystem with a large

number of different toxins present, in which each individual can produce,

and acquire immunity to none, some, or all of these toxins. The resulting

systems are very diverse, and after time the system falls into one of two states:

one called hyperimmunity mode, where bacteria produce few toxins but are

immune to most toxins; and another called multitoxicity mode, where many

toxins are produced but bacteria are not generally immune to toxins which

they don’t produce themselves. Which of these two modes the system falls

into depends on the growth penalty which the bacteria pay for being immune.

If the immunity penalty is low, the system tends towards hyperimmunity; if

the penalty is high, the system tends towards multitoxicity.

Czárán et al. (2002)

Czárán et al. present a model similar to that of Pagie and Hogeweg (1999), but

which they claim is intended to generalise over all microbial systems rather

than specifically applying to colicin-producing bacteria. There are 14 possible

toxins and 14 corresponding immunities, where the penalties are restricted

so that for each toxin there is a rock-paper-scissors like payoff structure as

suggested in Durrett and Levin (1997), in which killer, sensitive, and resistant

strains compete cyclically.

The hyperimmunity mode found by Pagie and Hogeweg (1999) is reproduced

in the model, but the multitoxicity mode has ‘frozen’ spatial dynamics with

little change over time, unlike Pagie and Hogeweg’s multitoxicity, which has

a very high turnover of toxin frequencies.

Czárán et al. also claim that different interpretations and parameter values in

the model apply to different kinds of ecosystems. For bacteria, it makes sense

to think of each strain as a variant within a single species, and in this case the

rate of acquisition of novel toxins is high, because of the high frequency of

horizontal transfer of colicin-encoding plasmids between strains of bacteria.

For yeasts, however, each ‘strain’ in the model represents a species, and the

rate of acquisition of novel toxins by a species is low.
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9.1.2 Advantages of the intraspecific model

There are three aspects of toxin-based competition which previous work has

not brought together which are able to be combined in a version of the in-

traspecific competition model.

Degrees of toxin production

With the exception of Gordon and Riley (1999), none of these theoretical stud-

ies examine what happens when small changes are allowed to the amount or

the strength of toxin produced. This is despite the fact that this sort of vari-

ation is known to exist (see Riley and Gordon (1996)). The majority assume

all-or-nothing toxin production because it means the models are more easily

analysed. For example, Iwasa et al. (1998) use pair approximations, a tech-

nique which is only possible when there are a small number of phenotypes to

consider. Durrett and Levin (1997) consider RPS competition between strains

with two discrete levels of colicin-production (the colicin-producer and the

cheater) but do not consider evolution in these colicin levels.

Local spatial interactions

Only some of the previous models consider the effects of spatial interactions,

even though they are known to be extremely important in bacterial ecosys-

tems. For example, Kerr et al. (2002) show that they can be the difference

between a stable RPS community and a monoculture. In the only study I am

aware of which considers the evolution of degrees of toxin production Gor-

don and Riley (1999), a well-mixed environment is assumed.

Generality

Some of the models include aspects of the toxic competition process that are

specific to colicin producing bacteria, rather than general forms of toxin-based

competition. For example, Gordon and Riley (1999) explicitly model the con-

centration of colicin in the environment, and the fact that colicin-producing

cells must undergo lysis before the colicin is released. On the other hand,

Pagie and Hogeweg (1999) and Czárán et al. (2002) provide models which

do not rely on specific features of bacterial colicin production or features of a

particular experimental setup.

The intraspecific model can combine smooth variation in toxin levels with

local spatial effects, and is also generalisable to different types of toxin pro-
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duction. It is potentially valuable because it may explain why all-or-nothing

toxin production should be expected in spatial toxin systems, even when it is

not initially present.

9.1.3 Application of the intraspecific model

The intraspecific competition model can only represent species that produce

interspecific toxins. The two species, A and B, are both capable of producing

a toxin that kills the other at a metabolic cost. All As are presumed to be sen-

sitive to the toxin produced by Bs, and all Bs are presumed to be sensitive to

the toxin produced by As. The amount of toxin produced by i is represented

by 1 − xi in the model, because the amount of toxin produced is i’s interspe-

cific competitiveness. The production of low levels of the toxin by i (high xi)

makes i more competitive against its own type because only a small cost is

paid, so it is able to reproduce more quickly. But when an individual fails to

produce the toxin, it becomes vulnerable to the toxin produced by the other

type.

Prediction of the intraspecific competition model

In the instance that two strains of bacteria with the qualities assumed in this

section could be isolated and allowed to interact in the lab, the model of the

last section would predict the following:

(1) Eventually all the bacteria would be producing either some maximum

amount of the toxin or no toxin at all.

(2) If the two original strains grow at moderately different rates, then the

model predicts that eventually all of the slower-growing strain will be

producing the maximum amount of toxin, while individual cells of the

faster-growing strain will produce either the maximum amount or none

at all.

Interspecific toxins

It has often been assumed that colicin production is a form of intraspecific

competition, and that colicins only have an effect on individuals that are

closely related to the producer. However recent investigations show that col-

icins also play a role in interspecific competition, and that some of the colicins

produced by E. coli may affect other less closely related species of bacteria

(Riley, 1998).
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Horizontal transfer between strains

The likelihood of horizontal transfer of genes that encode for toxin produc-

tion or toxin resistance is an important factor. The model will only apply

when horizontal transfer is unlikely in the timescale under consideration, oth-

erwise, morphs which produce, or are resistant to both toxins may arise. In

these cases the resulting system dynamics will be more like those of Pagie and

Hogeweg (1999) and Czárán et al. (2002) in which selection favours morphs

with multiple resistance or multiple toxicity.

There is evidence that although horizontal transfer of toxin-encoding genes is

common in bacteria, it is rare among yeasts (Wickner, 1992; Abranches et al.,

1997), in which case yeast toxins will be interspecific. In any case there are

many other types of bacteriocins apart from colicins, antimicrobial substances

are also produced by fungi (Starmer et al., 1987; Berdy, 1974), and as previ-

ously mentioned, interspecific toxins are known among reef-dwellers.

Tradeoff between growth rate and toxin production

Adams et al. (1979) have shown that a trade-off exists between the production

of colicin and an organism’s growth rate: colicin-producing strains have a

slower growth rate than sensitive strains. It is highly likely that most toxins

are expensive to produce, so it is important that the model reproduce this

feature.

While the model has a tradeoff between intraspecific competition (no toxin

production, x = 1) and interspecific competition (toxin production, x = 0),

this is not the same as a tradeoff between toxin production and growth rate.

The model as it stands assumes that i’s level toxin production is represented

by 1 − xi, in which case xi should represent i’s growth rate. But growth rate

should apply equally against all others regardless of their species, and the

model’s assumptions entail that xi only applies against members of the same

species. Therefore, a similar model in which growth and toxicity explicitly

trade off against one another is explored in the rest of this chapter.

9.2 A two-species toxin-growth tradeoff model

In this model, individuals of two species interact on a grid, in a similar way to

that of the intraspecific competition model from section 6.2 (page 92). How-
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ever, instead of facing a tradeoff between interspecific and intraspecific com-

petition, here individuals trade interspecific toxin production against their

growth rates, where growth rate is form of competition that affects both species

equally and which is less effective than toxin-production.

Individually-determined toxin-production trait

Every individual i varies in the amount of toxin it produces, and i’s toxin

production level will be described by vi, where 0 ≤ vi ≤ 1. Because growth

rate trades off against toxin production, i’s growth rate is described by 1 − vi.

Species-determined competitiveness

The basic competitiveness of two species numbered 0 and 1 is divided into

species-determined growth rates g0 and g1, and species-determined toxicities

h0 and h1.

A species s individual i’s total competitiveness is found by multiplying its in-

dividual growth rate 1 − vi by its species-determined growth rate gs, and this

total growth rate (1− vi)gs is used in competition against all other individuals

regardless of their species.

A species s individual j’s total poisoning rate is its individual rate of toxin

production vj multiplied by its species-determined toxin strength hs. In con-

trast to individual growth rate, the total individual poisoning rate vihs is effec-

tive only against individuals of the other species, because the model assumes

that all individuals are immune to the toxin which is produced by their own

species.

Invasion probabilities

The probability pi→j, that individual i invades individual j depends on the

individuals’ species, and is shown in table 9.1(a).

Ratios of species strength and toxin strength

In the intraspecific competition model, the quantity β = cb/ca described the

competitiveness of the weaker species B relative to the stronger species A, but

here species A and B compete in two ways; they have inherent growth rates

gA and gB, and inherent toxin strengths hA and hB.

Initially I will assume that the ‘weakness ratio’ of the weaker species, β, stems
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si sj pi→j si sj pi→j

0 0 g0(1 − vi) A A γ(1 − vi)

0 1 g0(1 − vi) + h0vi A B γ(1 − vi) + vi

1 0 g1(1 − vi) + h1vi B A β(γ(1 − vi) + vi)

1 1 g1(1 − vi) B B βγ(1 − vi)

(a) (b)

Table 9.1: The outcome of a single interaction is determined by the probability pij that
an individual i invades a site occupied by another individual j.

from some underlying ability of the species to use resources more or less effi-

ciently, and therefore that β applies to both growth and toxin production, so

that

β =
gB

gA
=

hB

hA
. (9.1)

I will also assume that releasing toxin is a more effective method of compe-

tition than mere growth, and define a second ‘weakness ratio’ γ of growth

relative to poisoning, such that

γ =
gA

hA
=

gB

hB
, (9.2)

where 0 < γ ≤ 1.

Total individual invasion probabilities are summarised in terms of β and γ in

table 9.1(b), where it is assumed that the poisoning rate of the stronger species,

hA, is equal to one.

In fact it is probably unrealistic to assume that both species will produce

equally effective toxins, and probably unrealistic to assume that both species’

toxins are better than their growth rates by exactly the same amount. Conse-

quently, the effects of relaxing these assumptions about β and γ are examined

in section 9.6, although it turns out that many of the model’s essential features

are captured in the special case where equations (9.1) and (9.2) hold.

9.3 Species densities

Throughout the range of β and γ there are many regions in which both species

are viable in the long-term, and many regions with cyclic competition among

morphs that diverge in a branching process.
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9.3.1 Coexistence and stability

Figure 9.1(a) shows the final species densities and extinctions for simulations

on a small grid for β and γ from 0.005 to 1. The stronger species always wins

whenever β < γ, and these extinctions are shown as the large grey area in the

bottom right of the graph.

Outside this area, extinction of the weaker species is common when γ is close

to zero or one, that is, when the toxin is either very weak or very strong.

Extinction of the stronger species is very rare, and occurs only for a small

number of simulations shown by the black dots in the picture, in the area

where β is only slightly larger than γ.

In the region where coexistence is the usual outcome, there is a critical value

of γ, just greater than 1
2 , in which the two species finish with relatively similar

densities. This appears as a vertical white strip just to the right of the dotted

line marking γ = 1
2 . As γ decreases or increases away from this critical value,

the equilibrium density of the stronger species gradually increases until the

saturation points are reached.

The final species densities in this model stabilise away from 1
2 in most cases

where the two species coexist. This is in marked contrast to the intraspecific

competition model, in which coexistence almost always ends with species

densities stabilising around 1
2 (see figure 6.1, page 96). What both models

share is the fact that if the species coexist, then the value of β has only a very

minor effect on their equilibrium densities.

9.3.2 Stability in spatially unstructured populations

The species densities after 10,000 generations are much less predictable when

the population has no local spatial structure, as shown in figure 9.1(b). If both

species coexist, lack of spatial structure has little effect on the equilibrium, but

there is much more randomness because of large high-frequency fluctuations.

Extinctions are more likely, as are simulations in which the weaker species has

a greater density after 10,000 generations. This effect is only apparent when σ

is fairly low — for example, the simulations in figure 9.1(b) were all performed

at σ = 0.003. When σ is higher, the greater adaptability of individuals tends

to stabilise the system.

The fact that the species densities are roughly the same in spatial and non-

spatial computer simulations suggests that some aspects of the system could

be determined without the need for simulations at all, and this is in fact the
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Figure 9.1: Extinction, coexistence, and species density in the toxin vs. growth model
described in section 9.2. Each point shows the result of a simulation. Grey areas indi-
cate saturation by the stronger species, black points saturation by the weaker species,
and shades from orange through to white and then to blue indicate coexistence after
10,000 generations, where the final densities of the two species are indicated by the
colour on the scale at the right. The simulations were carried out on a small 220 ×
220 grid with initial species densities at 1

2 , uniform initial distribution of toxin pro-
duction, and mutation rate σ = 0.003.
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Figure 9.2: Net invasion rates among the extreme individuals in the toxin-growth
model where v = 0 or v = 1. A0 and B0 are fast-growing (v = 0) competitors of
species A and B respectively, and A1 and B1 are maximum toxin-producing (v = 1)
competitors of species A and B respectively. The labels on the arrows are the net
invasion rates between these individuals from table 9.1.

case. The rest of this section attempts to explain those aspects of the model’s

behaviour that do not depend on spatial interactions or finite populations,

first of all by considering the net invasion rates among extreme individuals,

and secondly by considering a mean-field, infinite-population version of the

model.

9.3.3 Net invasion rates for pure strategies

An examination of the net invasion rates among pure strategies (individuals

with toxin production at zero or one) reveals that there is a cyclic dominance

among the four types as long as β > γ (see figure 9.2). If β < γ then the

non-toxin producing species A type has absolute dominance over all others,

so a species A monoculture should be expected in this case, and that is in fact

the result of the simulations as shown by the grey area in the lower right of

both pictures in figure 9.1.

This invasion diagram is more complex than the corresponding one for the

the intraspecific competition model (figure 6.6(a) on page 102). There are three

cycles in the toxin-growth graph and only two in the intraspecific competition

graph. Two of the pure strategies (B0 and A1) in figure 9.2 can potentially

be ‘cut out’ of the main loop on the outside, whereas only one strategy is

vulnerable in figure 6.6(a).
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β=2/3, γ=1/3 β=3/4, γ=1/4 β=5/6, γ=2/3 β=1/3, γ=1/6

Figure 9.3: Relative net invasion rates among the pure strategies in the toxin-growth
model for four combinations of β and γ, showing four instances of the graph in fig-
ure 9.2. In each of the four cases, the thinnest arrow represents the slowest net inva-
sion rate, and the widths of the other arrows are scaled relative to the slowest. Low
γ and β destabilises the system.

The complexity of the pure strategy graph makes prediction of the vulnerable

species very difficult. We can vary the values of β and γ, and see which of

the net invasion rates become large (figure 9.3), but because of the multiple

intransitivities, it is not clear which strategies will have the lowest densities.

9.3.4 Mean-field model

The fact that densities are equal around γ = 1
2 can be explained in part by

looking at a mean-field-type model of the toxin-growth system using a simi-

lar method to the one described in section 7.1 (page 118). This is a non-spatial,

infinite-population model with an explicit parameter µ that defines the rela-

tionship between the evolutionary and ecological timescales.

Applying the method in that section gives the following equations, which

describe the change in density of species A, and the average toxin-production

levels of both species:

dρ

dt
= ρ(1 − ρ)

[

γ(1 − β) − (βv̄B − v̄A)(1 − γ)
]

dv̄A

dt
= µ(1 − γ − ρ)

dv̄B

dt
= µβ(ρ − γ). (9.3)

Densities at the fixed point

The last equation implies that ρ = γ when the system is at a fixed point, be-

cause neither β nor µ is zero. The second implies that in the case where ρ = γ,

then they both must be equal to 1
2 at the fixed point. This gives some indica-
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Figure 9.4: The combination of mean species toxin-production v̄A, v̄B required when
the mean-field system is at its fixed point. v̄A and v̄B must be between zero and one,
so the fixed point is only reachable when β >

1
2 .

tion as to why the densities are close to 1
2 when γ is around 1

2 in figure 9.1.

The first equation does not imply unique values for v̄A and v̄B at the fixed

point but it restricts them to a plane in which

1 + v̄A

1 + v̄B
= β.

Possible stable combinations of v̄A, v̄B at point where the densities are fixed

are shown in figure 9.4 for several values of β. This figure shows that because

both v̄A and v̄B range from zero to one, β must be bigger than 1
2 when the

densities are stable. This is in agreement with the simulation results, which

show densities at ρ = 1
2 close to the line where γ = 1

2 , but only where β is also

greater than 1
2 .

Symmetric species

When both species are equally competitive, β = 1 and equations (9.3) reduce

to

dρ/dt = ρ(1 − ρ)(v̄A − v̄B)(1 − γ)

dv̄A/dt = µ(1 − γ − ρ)

dv̄B/dt = µ(ρ − γ).

When this system is initialised with ρ, v̄A, and v̄B all equal to 1
2 , dρ/dt will be

zero and v̄A, v̄B will both move in the same direction at the same rate µ(1
2 −γ).
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When γ 6= 1
2 , toxin-production will either rise to its maximum or fall to its

minimum. When γ <
1
2 both species tend towards maximum toxin produc-

tion because the toxin is strong, and when γ >
1
2 both species tend towards

no toxin production because the toxin is weak. The densities should remain

around 1
2 .

Asymmetric species

When β < 1, there are no interesting fixed points when γ 6= 1
2 which involve

coexistence, but when v̄A and v̄B are artificially fixed whenever they reach

zero from above or one from below, the system can reach a stable state when

γ 6= 1
2 .

In all cases when β < 1, the weaker species will tend to produce more toxin

than the stronger species in order to balance out the asymmetry in the species

strengths. This implies certain facts about the species densities at the points

where v̄A and v̄B reach zero and one.

Strong toxins

When the toxins are strong, v̄B rises to one and stays there, and v̄A settles at a

lower level. With v̄B fixed at one, ρ and v̄A follow the system defined by

dρ/dt = ρ(1 − ρ)[γ − β − v̄A(1 − γ)]

dv̄A/dt = µ(1 − γ − ρ).

This system reaches a fixed point at

v̄A =
β − γ

1 − γ
, ρ = 1 − γ.

Therefore ρ rises as γ falls from 1
2 to zero because it takes the value 1 − γ

whenever v̄B is trying to rise above one. This explains the simulation results

shown in figure 9.1 where the stronger species becomes more numerous as γ

falls from 1
2 towards zero.

Weak toxins

When the toxins are weak, v̄A falls to zero and remains there while v̄B settles

at some higher level. With v̄A fixed at zero, ρ and v̄B follow the system defined

by

dρ/dt = ρ(1 − ρ)[γ(1 − β) − βv̄B(1 − γ)]

dv̄B/dt = µβ(ρ − γ).
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This system reaches a fixed point at

v̄B =
(1 − β)γ

β(1 − γ)
, ρ = γ.

Therefore ρ rises as γ rises, and ρ settles at the value γ when v̄A is trying to fall

below zero. This is also in broad agreement with the simulation result shown

in figure 9.1.

9.3.5 Local clustering of species

Figure 9.1(a) shows equal species densities at equilibrium when γ is slightly

higher than 1
2 , the theoretical level at which the the densities should be equal

according to the mean-field analysis. The most obvious explanation for the

discrepancy is that the higher value in the spatially explicit simulations must

have something to do with the local clustering that is always a feature of these

systems.

In theory, local clustering of conspecific individuals should mean that indi-

viduals will be biased in favour of intraspecific competition when compared

to the well-mixed system: less toxin-production (lower average levels of v)

should be expected in a clustered system.

But a small bias against toxin-production does not account for the observation

in the simulations that there is a stable equilibrium where ρ = 1
2 at γ >

1
2 . In

fact, I will argue in the following paragraphs that a small amount of clustering

of conspecifics should move the point at which species densities are equal and

stable to a location in which γ is slightly less than 1
2 .

The mean-field model and local clustering

In chapter 4, the pair approximation was used as a way to introduce some

level of local structure information into a numerical model. Although the

fully-fledged pair approximation cannot be applied to the toxin-growth model

(because individuals have continuously-variable traits), I use some aspects of

the pair approximation here in order to describe the clustering of species.

In equations (9.3), the mean levels of toxin-production v̄A, v̄B respond to the

global species densities as defined by ρ. If there is local clustering, then the

As and Bs will ‘experience’ slightly different ρs. On average, As will meet

more As, and so v̄A should respond to the densities as if ρ was slightly higher

than the global density of As. And on average Bs will meet more Bs and so

v̄B should change as if ρ was slightly lower than the global average.
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Pair densities

Using similar notation from the pair approximations in chapter 4, the densi-

ties of pairs will be described using the four variables ρ[AA], ρ[AB], ρ[BA], and

ρ[BB]. In a perfectly mixed population, these pair densities can be described in

terms of singleton densities as

ρ[AA] = ρAρA, ρ[AB] = 1
2 ρAρB,

ρ[BA] = 1
2 ρBρA, ρ[BB] = ρBρB.

(9.4)

If the world is slightly more clustered, then ρ[AA] and ρ[BB] will be have slightly

greater values than those described in equations 9.4, and ρ[AB] and ρ[BA] will

have slightly smaller values.

Clustering of conspecifics

Suppose that in the slightly clustered world some proportion ε of the pairs

that would have been heterogeneous in the well-mixed environment become

homogeneous pairs, and that these extra homogeneous pairs are distributed

equally between [AA]s and [BB]s. ε of the pairs that would have been [AB]s

under perfect mixing are [AA] pairs due to the clustering, and ε of the pairs

that would have been [BA]s are now [BB]s, so that

ρ[AA] = ρAρA + ε · 1
2 ρAρB, ρ[AB] = (1 − ε) · 1

2 ρAρB,

ρ[BA] = (1 − ε) · 1
2 ρBρA, ρ[BB] = ρBρB + ε · 1

2 ρBρA.
(9.5)

Under these assumptions the global singleton density ρA is the same in both

the well-mixed and clustered systems, as is ρB.

Change in species densities

To update equations (9.3) to take account of this clustering, first note that only

the [AB] and [BA] pairs are important in determining how the two species

interact, so the factor ρ(1 − ρ) in the equation for the change in species densi-

ties dρ/dt must change to reflect the clustering. Equations (9.5) imply that the

sum of all these pairs is

ρ[AB] + ρ[BA] = (1 − ε)ρAρB = (1 − ε)ρ(1 − ρ).

Change in mean levels of toxin-production

Second, the equations for the response of the mean toxin-production traits,

dv̄A/dt and dv̄A/dt can be updated to take account of the fact that the two
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species experience slightly different densities to the global ones. The ‘appar-

ent’ densities are the conditional probabilities in the pair approximation, so

for example to the As, the density of As looks like pA|A, the probability that

the neighbour of an A is an A, and to the Bs, the density of As looks like pA|B,

the probability that the neighbour of a B is an A. As established in section

4.3.4 (page 56), with the pair approximation these conditional probabilities

are given by

pA|A =
ρ[AA]

ρA
, pA|B =

ρ[AB]

ρB
.

The rates of change of toxin-production traits can be described under the clus-

tered system by substituting pA|A for ρ in the equation for dv̄A/dt and by

substituting pA|B for ρ in the equation for dv̄B/dt.

Modified mean-field equations

The resulting system is described by the three equations

dρ

dt
= (1 − ε)ρ(1 − ρ)

[

γ(1 − β) − (βv̄B − v̄A)(1 − γ)
]

dv̄A

dt
= µ(1 − γ − ρ − ε(1 − ρ))

dv̄B

dt
= µβ(ρ(1 − ε) − γ). (9.6)

What do these equations imply for the equilibrium species densities? One

difference between equations (9.6) and the well-mixed model described by

equations (9.3) is that equations (9.6) have no fixed point when ε > 0 (and

when ε = 0 the two systems are identical).

When ε > 0, the second and third equations of (9.6) imply that v̄A and v̄B can

only both be unchanging when ρ = 1
2 , and at this point γ must be slightly

less than 1
2 (γ = 1−ε

2 ). This is the opposite result to the observations in the

simulation results of figure 9.1(a), where ρ = 1
2 when γ is slightly greater

than 1
2 .

Figure 9.5 shows the behaviour of the clustered and unclustered systems in

more detail. The graphs in the very top row of the figure show the trajecto-

ries of ρ, v̄A and v̄B over time without clustering, for seven values of γ. As

mentioned in section 9.3.4, when γ <
1
2 , v̄B rises to one, and when γ >

1
2 ,

v̄A falls to zero. After this the system settles into stable cycles in which the

long-run average values of ρ, v̄A, v̄B are shown by the small diamonds on the

right hand edges of the figures. ρ cycles around 1
2 when γ = 1

2 , and averages

higher than 1
2 as γ moves away from 1

2 in either direction.
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Figure 9.5: Behaviour of the system of equations (9.6) for different amounts of spatial
clustering ε, β = 0.75, and µ = 0.1, started from the point at which ρ, v̄A, v̄B are all
equal to 1

2 . The three rows of graphs at the top show the species densities ρ (black
line) and mean levels of toxin production (v̄A, orange line, and v̄B, blue line) over time
for seven values of γ. The black, orange and blue diamonds on the right hand sides
of these graphs show the long-run average of the fluctuations in the three variables
if time were continued past the right hand edge. The cube diagrams show a different
view of the two top rows. The trajectories start at the centre of the cube, and in most
cases they immediately head towards one of the two back walls of the cube (either v̄A

falls to zero or v̄B rises to one) before starting regular cyclic fluctuations of the other
two variables. However, if the amount of clustering balances the toxin strength, then
the fluctuations can be stable without either species’ toxin-production reaching an
extreme value. This is shown by the green line on the left hand diagram, when ε = 0
and γ = 0.5, and by the light blue line on the right when ε = 0.1 and γ = 0.45.
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The second and third rows show the behaviour of the system as the amount of

clustering (ε) increases. The most stable trajectories where ρ cycles around 1
2

occur when γ = 1−ε
2 . When γ is smaller than this value, v̄B rises to one and

when γ is greater than this value v̄A falls to zero. In most cases ρ appears to

cycle around a value greater than 1
2 when γ 6= 1

2 , and the long run average of

ρ gets higher as γ moves away from 1−ε
2 in either direction.

Failure of the species clustering model

In summary, the mean field model appears to account for the general phe-

nomenon in which the density of A rises as γ increases or decreases away

from γ’s critical value, but it predicts a critical γ at exactly 1
2 rather than the

observed value, which is slightly higher.

Extending the analysis to take account of a small amount of local clustering

of species doesn’t help; instead it suggests that the critical value of γ should

be less than 1
2 rather than greater than 1

2 .

The extension of the mean field model given here is deficient, however, be-

cause while it can model the effects of clustering of conspecifics, it does not

model the clustering of individuals with similar trait values.

9.4 Distribution of toxin-producers

In the coexistence region of the β−γ space the two species organise into many

different distributions of toxin-producers and non-toxin-producers. The toxin

production trait does not always tend towards extreme values, and only rela-

tively small areas of the space fall into the RPS-like pattern.

Figure 9.6 shows the results of simulations similar to the ones depicted in

figure 9.1, but it shows the equilibrium toxin-production distributions rather

than the species densities.

9.4.1 Classification of toxin-production distributions

Like the intraspecific competition model, the equilibrium trait distributions in

the toxin model fall into several classes, each with different qualitative charac-

teristics. The distributions are classified into several types shown by different

colours in figure 9.6, depending on where on the toxin-production axis the
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Figure 9.6: Overview of the regions of β-γ-space which have qualitatively different
outcomes for the toxin-growth model. Each point represents a single simulation run
for 100,000 generations on a 300 × 300 grid. The final distributions of toxin producers
for each species has been classified manually into a number of categories represented
by different colours, according to the scheme described in section 9.4.1. Distributions
of toxin production are given for the points marked with white circles in figure 9.7.

individuals of each species tend to cluster. Examples of distributions from

each of the major groups are shown in figure 9.7. Each histogram in figure 9.7

shows the distribution of toxin-producers at one of the points marked with a

white circle in figure 9.6.

The classification of the distribution into types is based only on whether in-

dividuals cluster at v = 0, v = 1, or at some intermediate level, so with two

species and three possible clustering points the theoretical number of differ-

ent types of distribution is 22×3 = 64. Sixteen of those involve an extinction of

one species, and of the remaining 48, only seventeen are observed in simula-
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Figure 9.7: The coloured histograms show the trait (vi) distributions for species A

and B for the simulations corresponding to the eleven points shown by circles in

figure 9.6. In each case the colour of the histogram matches the colour of the ‘class’

of distribution, as classified according to the scheme in section 9.4.1. The arrows →
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underneath the histograms show the most common transitions which occur in each

of the eleven main outcomes, and were generated in the same manner as the similar

diagrams in figure 6.8 (page 105).
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tions. Eleven of the seventeen appeared in large areas of the parameter space

and it is these eleven that are shown in figure 9.7.

9.4.2 Saturation of toxin production for one species

The theoretical model of equations (9.3) predicts that away from the critical

value of γ, one of the two species will drawn towards all-or-nothing toxin-

production, and this is the case in the distributions shown in the figure.

When γ is less than the critical value, the distribution of toxin-producers

settles into a state like those shown in figures 9.7(a),(f)-(k). In these cases

all of the species B individuals turn to nearly maximum toxin-production,

in accordance with equations (9.3) which predict that v̄B should rise to one

when γ <
1
2 .

When γ is larger than the critical value, the distribution of toxin-producers

settles into a state like those shown in figures 9.7(c)-(e). In these three cases

the stronger species settles into a state of zero toxin-production, in accordance

with the prediction from equations (9.3) in which v̄A falls to zero when γ <
1
2 .

9.4.3 Evolutionary branching

When evolutionary branching and polymorphism occurs in the model, it usu-

ally happens in the species which does not have its mean toxin-production

level saturated at zero or one. I will call the species whose trait is stuck at zero

or one the restricted species. From figure 9.7 it can be verified that in every

case the individuals belonging to the restricted species bunch up very closely

at the extreme.

In some areas of the parameter space, the unrestricted species faces disrup-

tive selection and splits into two (or sometimes even three) morphs, while in

other regions, the unrestricted species stays monomorphic, with one cluster

centred around a single value of v. Sometimes this mean value is intermediate

between zero and one.

Monomorphic behaviour is shown in figures 9.7(a),(c),(e),(f),(k), and polymor-

phic behaviour is shown in figures 9.7(d),(g)-(j).
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Monomorphic and polymorphic behaviour at high β

When γ = 0.33 and β = 0.8 (the light purple region in figure 9.1, figure 9.7(k)),

B is the restricted species and all the B individuals are bunched up at v = 1,

but the As remain monomorphic with a concentration centred at v ≈ 2/3.

As do not become dimorphic here because (1) fully toxin-producing As in-

vade the Bs too slowly relative to the rate at which they are being invaded

by the As with v ≈ 2/3, and (2) non-toxin producing As invade the As with

v ≈ 2/3 too slowly relative to the rate at which they are invaded by the Bs.

If γ is increased, or β is decreased from these levels, then the As become di-

morphic. For example, when γ = 0.43 and β = 0.8, or when γ = 0.33 and

β = 0.6 the A population diverges into two morphs; both of these cases fall

into the grey region in figure 9.1, with distributions similar to the one in figure

9.7(h).

The reason for this is that an increase in γ means the toxin becomes weaker,

so the Bs, which are restricted at v = 1, invade the As more slowly. Bs also

invade more slowly when β is reduced: in this case both their toxin and their

growth rate are weakened.

When these Bs invade more slowly, fully toxin-producing As are able to in-

vade the Bs at a rate that is fast enough so that they can ‘escape’ from non

toxin producing As, and non-toxin-producing As are able to invade toxin-

producing As at a rate that is fast enough to escape from the Bs.

This boundary between the region where species A is polymorphic and the

region where it is monomorphic appears to be robust, at least when γ >

0.25. It remains in the same location for values of σ from 0.0003 to 0.02, and

for population sizes from 200 × 200 up to 1000 × 1000. This suggests that

the monomorphic behaviour is caused by a lack of ‘room’ in the trait space

around the optimal v̄A rather than by a lack of available diversity.

Monomorphic behaviour at very low β

The unrestricted species also becomes monomorphic when β is close to γ.

This is seen in the dark red and yellow regions of figure 9.1, and figure 9.7(e)-

(f).

In these cases the weak species, when producing its maximum amount of

toxin, is a reasonably even match for the non-toxin-producing strong species.

A toxin-producing morph of species A is not viable in this situation; its in-

troduction would produce a RPS game in which it would be too vulnerable
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ρ → 1

v̄B → 1

v̄A → 0

γ

β

Figure 9.8: A very simplified picture of the behaviour of the simple toxin-growth
model as β and γ vary. The β-γ space is divided into three main regions, one in which
the strong species always wins (ρ → 1), one in which all weak species individuals
produce a maximum amount of toxin (v̄B → 1), and one in which all strong species
individuals produce a minimum amount of toxin (v̄A → 0). Within the latter two
regions are subregions in which the species that has not fixated to zero or one is
monomorphic (grey area) or polymorphic (white area).

because in RPS, its density can only be proportional to the rate at which the

Bs invade the non-toxin-producing As, and this rate is very close to zero (in

fact it is β − γ, as shown in figure 9.2).

Areas of cyclic competition

The arrows in figure 9.7 show that whenever at least one species becomes

polymorphic, there is a very clear competitive cycle of some sort. Cyclic com-

petition is the outcome in all cases in which the unrestricted species goes poly-

morphic, and also in the small region where γ is at its critical value and β is

close to one (shown in figure 9.1 (the purple area) and figure 9.7(b)).

9.4.4 Summary of equilibrium behaviour

For the simplest toxin-growth model in which assumptions (9.1) and (9.2)

hold, the main types of behaviour are summarised in figure 9.8. The main

findings are:

(1) The two species can only coexist when the toxin is strong enough for a

toxin-producer of the weaker species to outcompete a non-toxin-producer

of the stronger species (white and grey areas in figure 9.8).
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Figure 9.9: Species densities in simulations in which a single toxin-producing species
B individual is introduced into a non-toxin-producing species A monoculture. Each
point represents a simulation for up to 10,000 generations on a 300 × 300 grid. Ex-
tinctions are shown by dark brown and dark blue areas which indicate the winning
species (A or B respectively). Coexistence after 10,000 generations is shown by all
other colours, where the shade indicates the final species densities.

(2) When the strength of the toxin is above some critical level, all weaker

species individuals will produce toxin (v̄B → 1 region), and strong species

individuals will sometimes cluster into one group (grey subregion) and

sometimes organise into more than one group (white subregion).

(3) When the strength of the toxin is below the critical level, no strong

species individuals produce toxin (v̄A → 0 region), and weak species in-

dividuals will sometimes organise into one group (grey subregion) and

sometimes organise into more than one group (white subregion).

Cyclic competition can evolve from the two-species system but only when the

parameters are such that the system falls into one of the white areas in figure

9.8.

9.5 Invasion of an established population

Here I consider the situation in which a lone toxin-producing individual of

the weaker species meets an established non-toxin-producing population of
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the stronger species. Figure 9.9 gives some idea of the likelihood of stable

coexistence emerging out of such a scenario when γ = 1/3 and γ = 2/3.

Like the intraspecific competition model, there are really three types of extinc-

tion:

(1) Immediate extinctions in which species B is unlucky and is wiped out at

an early stage of the simulation before it manages to spread. These are

indicated by the scattered brown dots which appear all over the graphs.

The introduced toxin-producer is more likely to go extinct when β is low,

because it will spread more slowly. It is also more likely to go extinct

when γ is high, because its toxin is weaker.

(2) Secondary extinctions occur after the species B individual multiplies

early on, but species A fails to adapt by producing more toxin. These

are indicated by the blue regions at the left of the diagrams. They are

more likely when β is high (the invader is stronger), when σ is low (the

resident adapts more slowly), and when γ is low (the invader’s toxin is

stronger).

(3) A final round of extinctions occurs when species B is so weak that the

system cannot reach an equilibrium involving coexistence, indicated by

the solid dark brown areas at the lower right of the diagrams. These

appear to be more likely when adaptation is quick, presumably because

any move by species B away from full toxin production is detrimental.

An increase in the size of mutations reduces the likelihood of secondary ex-

tinctions by increasing the adaptability of the resident species, but it also

increases the chance of the equilibrium extinctions by reducing the average

toxin production of the weaker species.

9.6 Generalised toxin-growth model

The two toxins are unlikely to be exactly equal in strength, so in this section I

will examine the more general model which relaxes the assumption in equa-

tion (9.2):

g0/h0 = g1/h1.

Without this assumption, there is no longer a γ ratio, but there will still be

some restrictions on the four parameter values g0, g1, h0, h1. Firstly, the very

notion of toxins implies that they are more dangerous than normal compe-
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tition (or overgrowth), so I will assume that g0, g1 ≤ h0, h1. Secondly, I will

call the species with the higher absolute toxin strength species A, and this al-

lows the analysis to be restricted to the cases in which hB ≤ hA. So the only

constraints of the parameters are

gA ≤ hB ≤ hA, gB ≤ hB ≤ hA. (9.7)

It is now possible for the slower-growing species to have the strongest toxin

(gA < gB), which was impossible in the simpler model. If gA and gB are inter-

preted as the species’ inherent competitiveness, or inherent efficiency in using

the available resources (rather than as their ‘growth rates’) then the situation

in which gA < gB can be seen as a case in which an inherently weaker species

can synthesise a chemical cheaply, or in relatively small amounts, but which

happens to be particularly toxic against the stronger species.

9.6.1 Mean field equations

The mean field version of the general model is complicated by the fact that

there are four parameters g0, g1, h0, h1. It can described by the following equa-

tions:

dρ

dt
= ρ(1 − ρ)

[

gA(1 − v̄A) + hAv̄A − gB(1 − v̄B) − hBv̄B

]

dv̄A

dt
= µ((1 − ρ)hA − gA)

dv̄B

dt
= µ(ρhB − gB)

Essentially a species produces more toxin if its growth rate is less than its toxin

strength multiplied by the other species’ density: v̄A rises if gA < (1 − ρ)hA

and v̄B rises if gB < ρhB.

The extra parameter in this system makes it difficult to see immediately which

of the two species will become restricted when its mean toxin-production

level saturates at zero or one. This information can be obtained from the sim-

ulation results presented in the remainder of this section.

9.6.2 Species densities in the general model

Figure 9.10 shows the equilibrium species densities over a range of gA, gB, hB

parameter values when hA is fixed at 1. The species with the stronger toxin

dominates when one toxin is more than twice the strength of the other (hB <
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Figure 9.10: Equilibrium species densities for the general model. The toxicity of the
stronger species, hA is assumed to be equal to 1, and each of the nine pictures shows
results for nine values of hB. Each point represents the species densities for one sim-
ulation after 10,000 generations on a 300 × 300 grid, starting with equal species den-
sities and uniform levels of toxin production across individuals. The grey areas are
combinations of the parameters that fall outside the conditions in the assumption
(9.7), and the colours represent the densities of the species A according to the colour
scale shown. The black lines show the plane in which the constraints of the simpler
model of section 9.2 hold.
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Figure 9.11: The small region of β-γ space in the simple model of section 9.2 in which
the species with the weaker toxin can predominate.

1
2 ). When hB >

1
2 , the toxins are more equally matched and either species can

wind up with a higher density.

When both toxins strengths are equal (hB = 1), the densities depend on the

growth rates. For most growth rates, the faster-growing species is at a disad-

vantage, because the production of toxin leaves it more vulnerable to its fast-

growing conspecifics. But when both toxins are weak (gA, gB >
1
2), then there

is less incentive to produce it, and the faster-growing species has a higher

density.

When one toxin is stronger than the other (hB < 1), the situation changes and

the species with the stronger toxin always has the highest density as long as

the toxin is sufficiently strong (gA <
hA
2 ).

Comparison with the simpler model

In the earlier model of section 9.2, the ratios of growth to toxin strength were

fixed at the same value for both species. This constraint is shown by the black

lines in figure 9.10, which show why the stronger species nearly always fin-

ished with the highest density in that model.

The blue areas in figure 9.10 occur under two conditions:

(1) In the upper right of the pictures, when 1
2 hA < gA < gB < hB < hA.

This could not occur in the simple model because when hB is less than

hA, that model’s assumption that gA/hA = gB/hB necessarily implies

that gB is less than gA.
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Figure 9.12: Regions of gA-gB-space with qualitatively distinct outcomes for the gen-
eralised toxin-growth model when hB = 0.89, σ = 0.003. Each square represents a
single simulation run for 100,000 generations on a 300 × 300 grid. The final distribu-
tions of toxin producers for each species has been classified manually into a number
of categories represented by different colours, and described in section 9.6.3. The
distributions at the points marked with white circles are shown in detail in figure
9.13.

(2) In the upper left, when gB <
1
2 hA < gA < hB < hA. This is possible

in the simple model but only in the relatively small region of β-γ space

shown in figure 9.11.

Although part of this second region is included in the simple model, in prac-

tice the behaviour in which the weaker species predominates is not noticeable

in figure 9.1(a), probably because the densities are so close to 1
2 in that region.

9.6.3 Distribution of toxin-producers in the general model

The species densities shown in figure 9.10 give the impression that the system

behaviour varies relatively smoothly above and below the line where gA =

gB. In fact the distributions of toxin-production can change dramatically with

small variations in gA, gB even when the equilibrium densities (and mean trait
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levels) are similar.

Regions with similar distributions are shown in figure 9.12 for the case shown

in the bottom middle of figure 9.10 (where hA = 1 and hB = 0.89). Distri-

butions of toxin-producers are classified into categories based on whether or

not there is a dimorphism in either species due to disruptive selection. The

dark brown stripes across the top and bottom, and the dark blue region in the

upper left, are the regions with extinctions in which species A and B (respec-

tively) win out completely.

Regions marked with other colours have qualitatively different distributions

of toxin-producers. Examples of the most common types are shown in 9.13.

There are three main types of behaviour, each of which can be divided into

a monomorphic and a dimorphic region. The diagonal going from upper

left to lower right (separating the orange and red regions from the green and

blue) is the generalisation of what I called the critical γ threshold in the sim-

pler model. Below and to the left of this line, in the red and orange regions,

species B’s toxin-production saturates at v̄ = 1, and species A’s mean toxin-

production level settles at some lower value. (Because species A’s toxin is

always stronger, there is never an incentive for A’s toxin production to rise to

one).

The diagonal ‘critical γ line’ appears from the simulations to occur at

gA

hA
+

gB

hB
= 1,

and only determines whether or not v̄B saturates at 1.

Above the line, the toxin-production of one species falls to a minimum at v̄ =

0. Which species becomes restricted depends only on the relative values of

gA and gB. If A grows faster than B (the two green regions), then A saturates

at zero toxin-production and B’s mean toxin-production level settles at an

intermediate value; if B grows faster than A (the two blue regions), then B

saturates at zero toxin-production while A settles at an intermediate value.

Looking at figure 9.10, we can see that within these regions, the density of the

restricted species settles at a level that is equal to the growth rate of the unre-

stricted species. Figure 9.14 provides a summary the approximate behaviour

of the system when extinctions are ignored.
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Figure 9.13: The coloured histograms show the trait (vi) distributions for species A
and B for the simulations corresponding to the six points shown by circles in figure
9.12. In each case the colour of the histogram matches the colour of the ‘class’ of final
outcome, as classified according to the scheme described in section 9.6.3. Arrows
beneath the histograms show the common transitions using the procedure described
in figure 6.8 (page 105).
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Figure 9.14: A simplified picture of the three main regions of coexistence in the gener-
alised toxin-growth model. One species’ average toxin-production reaches its maxi-
mum or minimum, and the densities are then determined by the growth rate of the
other species.

Cyclic competition

The three different saturation regions can each be divided into two parts,

those in which the unrestricted species splits, and those in which the unre-

stricted species remains monomorphic. For the reasons discussed earlier in

section 9.4.3, these monomorphic regions are the ones in which the mean trait

values are close to zero or one, and there is not enough ‘room’ in the trait

space for viable individuals to spread out into groups.

All the red, dark green and medium blue regions of figure 9.12 involve RPS

ecosystems in which one species splits into a fully toxin-producing and a non-

toxin-producing morph, as shown by the most common site transitions for

these regions in figure 9.13(b), (d), and (e).

9.6.4 Invasion of an established population

In the more realistic scenario of an established, intraspecifically competing

(non-toxin-producing) species A population being invaded by a lone toxin-

producing species B individual, outcomes involving coexistence are also pos-

sible, but less likely than in the case when the simulations begin with equal

species densities.

Figure 9.15 shows the results of simulations for 125 different sets of hA, hB,
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Figure 9.15: The final species densities for 300 × 300 grid simulations in which a
lone toxin-producing species B individual is introduced into a resident population
of non-toxin-producing species As. The grey scale on the left shows the values of
the four parameters hA, hB, gA, gB, and each horizontal band on the right shows the
final species densities after 10,000 generations for simulations which combine these
parameter values with values of σ ranging from 0.0001 to 0.08. In the hB scale, the
five shades of grey represent fractions ( 3

8 , 1
2 , 5

8 , 3
4 , 7

8 ) of hA, going from dark to light

grey. The gA and gB scales represent fractions ( 1
6 , 1

3 , 1
2 , 2

3 , 5
6 ) of hB, going from dark to

light. The species densities use the same scale as those in figure 9.9 (page 171).

gA, gB parameter values and for a range of 100 values of σ. Changing the mu-

tation rate has little effect on the prevalence of extinction, but a large effect on

which species is more likely to go extinct. Because B has the initial advantage,

increasing adaptability primarily benefits the resident A.

9.7 Summary

The toxin-growth model assumes that
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(1) Individuals of two species are able to produce interspecific toxins in

varying degrees;

(2) All individuals are susceptible to the toxin produced by the other species;

and

(3) Individuals face a linear trade-off between their rate of toxin production

and their growth rate.

The model shows that for a simple two-species system, when degrees of inter-

specific toxin-production are evolvable, variations in toxin strength and nat-

ural growth rates produce an incredibly diverse range of polymorphic and

monomorphic equilibria.

Most small changes in the parameters lead to similar equilibria, because large

areas in which the equilibria have the same properties are delimited by a few

critical thresholds. The most important of these thresholds determine whether

one or other species maximises or minimises its toxin-production. Within the

regions defined by these thresholds, secondary parameter thresholds decide

whether the other species becomes polymorphic or monomorphic. When a

polymorphism occurs, this always produces intransitive competition with dy-

namic spatial effects.

Earlier models of toxin-based competition have emphasised the importance of

spatial structure (Frank, 1994; Durrett and Levin, 1997; Iwasa et al., 1998), pro-

vided evidence for the maintenance of stable polymorphisms (Frank, 1994),

intransitive three-species cycles (Durrett and Levin, 1997), and complex in-

transitive webs (Pagie and Hogeweg, 1999; Czárán et al., 2002). The model

described in this chapter suggests a mechanism for the origin of polymor-

phisms, which may help to explain the incredible diversity of ecosystems of

toxin-producers.
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Part IV

Competitive restraint
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Chapter 10

Community level selection as an

explanation of competitive restraint

in RPS ecosystems

One interesting aspect of RPS ecosystems is the evolution of competitive re-

straint discovered by Johnson and Seinen (2002). In an experiment which

takes place on a SCA model of a RPS ecosystem, the invasion rate of one of

the three species (rock) is allowed to evolve, and the invasion rates of other

two species, scissors and paper, are fixed at their initial levels. As the grid

is updated, the mean invasion rate of rocks increases up to a point but even-

tually stops rising. Although there is selection pressure for rocks to increase

their speed of invasion in order to compete against other rocks, when they

become too competitive, they deplete all the scissors individuals in their local

area of the grid and are slowly overrun by paper. So the competitiveness of

rocks eventually becomes constrained.

The competitive restraint that evolves in this model is an example of individ-

ual altruism, at least in the short term. Rocks restrain their competitiveness,

thereby producing fewer offspring than they otherwise would have, and the

primary beneficiaries of the restraint are completely unrelated individuals of

a different species (scissors).

Johnson and Seinen claim that the evolution of restraint in these ecosystems

is a case of community level selection. Natural selection between individuals

towards greater invasiveness is competing with a second process of natural

selection at the level of the ecological multispecies subcommunity, which se-

lects among subcommunities for the ones that are the most stable.

185
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In section 10.1 I explain the theory of community level selection and how it

has arisen from group selection and multilevel selection theory. Section 10.2

outlines some of the difficulties involved in defining higher level units of se-

lection. Sections 10.3 and 10.4 describe aspects of the process of community

level selection on spatially continuous communities and cellular automata.

Finally in section 10.5 I argue that the invocation of community level selec-

tion to explain the phenomenon of restraint is an unnecessary overcomplica-

tion of the process, and that a better understanding of the phenomenon can

be achieved by appealing to the details of RPS interactions and the spatial

structure of the system, without the need to propose competition between

subcommunities.

10.1 Levels of selection

There has been plenty of debate in biology regarding the levels at which nat-

ural selection acts, or the ‘units’ of selection. Much of the argument has cen-

tred around whether selection on genes or selection on organisms should be

invoked in order to explain various adaptations, and these issues are not im-

portant here.

10.1.1 Group selection

The extent to which selection acts upon units bigger than individual organ-

isms is more controversial. Traditionally this debate has been around group

selection rather than the community level selection process claimed by John-

son and Seinen, but the processes are very similar.

Group selection is the idea that groups of individual organisms of the same

species, such as wolf packs or ant colonies, have different levels of fitness,

and that natural selection operates on these groups ‘directly’, in addition to

operating on the individuals which make them up. Group selection has been

regarded until recently as a discredited theory in evolutionary biology, pri-

marily due to a controversial formulation of the theory by Wynne-Edwards

(1962), which proposed that individual animals could evolve birth-control

mechanisms that decrease the size of the individual’s group and therefore

prevent over-exploitation of local resources. These mechanisms were said to

spread because of the resulting benefit to the group. Subsequent critiques of

Wynne-Edwards’ formulation by Maynard Smith (1964), Williams (1966) and
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Dawkins (1976) then led to an overreaction against the theory of group selec-

tion in general (Wilson and Sober, 1994).

10.1.2 Group selection and altruism

Group selection has mainly been invoked to explain the existence of altru-

istic traits. For example, consider a gene that codes for altruistic behaviour.

In other words, the presence of the gene decreases the owner’s fitness and si-

multaneously raises the fitness of the owner’s group, relative to groups which

contain only selfish individuals. Such a gene can theoretically spread and be-

come stable when the population has a structure in which altruists tend to

associate together except during mating (Sober and Wilson, 1998). This is

possible because even though selfish individuals will do better within each of

the groups, the groups which contain altruists will have many more members

than the selfish groups by the time the entire population comes together for

mating.

10.1.3 Multilevel selection theory

The levels of selection debate has largely been resolved, and it is now com-

monly accepted that natural selection can and does operate on a nested hier-

archy of units such as groups, organisms, and genes (Wilson and Sober, 1994).

Differential fitness between groups can have a strong effect on evolution, and

in simple models the contributions of group selection and individual selection

to evolution can be separated and quantified (Price, 1970; Hamilton, 1975).

However, there is still debate over the most appropriate explanations for par-

ticular adaptations. There is a conflict between rival explanations because

adaptations due to selection acting on a higher-level unit can also be explained

solely in terms of selection acting on lower-level units.

Even proponents of multilevel selection theory generally agree that while all

instances of selection can be said to act at the gene level, only a subset act at

the level of the organism, and only a subset of those will act at the level of the

group. But they also claim that there are instances of adaptations for which

selection at the higher level should be the preferred explanation because such

an explanation provides a deeper understanding of the processes involved

(Sober and Wilson, 1998).
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10.1.4 Group selection or individual selection?

A group selection interpretation of the altruistic adaptation in the hypothet-

ical population described in 10.1.1 is that the altruistic gene spreads because

it benefits the group, and groups of altruists do better than selfish groups in

the struggle between groups. The same process can be explained without

recourse to group selection by packing the population structure up and de-

scribing it as a part of the individual’s environment.

The different contributions that altruistic and selfish groups make to the pop-

ulation may mean that average altruist has a higher fitness than the average

non-altruist, when averaged across all groups. With such an explanation there

is no need to describe individual behaviour as ‘altruistic’ because individu-

als are now maximising their self-interest within the context of a population

structure that happens to involve groups. Sober and Wilson would say that

this interpretation is rather contrived, and that it is only favoured by those

who for some reason cannot bear to admit to the existence of altruism. They

would claim that a group selection interpretation of the process leads to a

deeper understanding of it.

10.1.5 From group selection to community selection

Community level selection works in exactly the same way as group selection

except that members of the ‘groups’ can be of different species. This means

community selection is theoretically well understood. But although selection

at the community level has been demonstrated in the lab using artificial se-

lection (Goodnight, 1990a,b), according to Wilson and Swenson (2003), it has

not yet been seen operating in nature.

Community level selection is usually described as a process whereby multi-

species communities form, compete with one another, and sometimes are said

to give birth to new communities which inherit some of the same community

traits as their parents. An individual’s altruistic trait, which benefits that in-

dividual’s community at a direct cost to its own fitness, can spread through

the population because its community gives rise to more ‘child communities’

in comparison to communities full of non-altruists.
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10.2 Population structure

For selection to occur at higher levels, the overall population needs to be struc-

tured: it must include groups or subcommunities. A perfectly well-mixed

population of individuals interacting at random will not support the evolu-

tion of altruism under most definitions.

10.2.1 What is a group?

There are different opinions on exactly how well-structured into groups a

population must be before group selection can operate. In early group selec-

tion models, it was thought that groups needed to be relatively discrete, and

stay together for a significant period of time (Williams and Williams, 1957), or

even for several generations (Maynard Smith, 1964).

On the other hand, Sober and Wilson (1998) suggest that group selection could

operate on groups whose members are not in spatial proximity to one an-

other (if group members can recognise one another), or on groups with fuzzy

boundaries caused by limited dispersal.

Groups, according to Sober and Wilson, should be defined on the basis of

interactions, and only with respect to a particular trait. So for each individual

trait, the set of individuals which will benefit from that trait, given the nature

of individual-individual interactions, can be seen as the group for that trait.

Even ephemeral associations of size two could be valid groups under this

definition.

10.2.2 What is a (sub)community?

A similar set of opinions is evident among proponents and detractors of com-

munity level selection.

Maynard Smith and Szathmáry (1995) suggest that ecosystems cannot be units

of selection because they lack the individuality and separateness found in or-

ganisms and social groups. But as they themselves point out, it is very widely

believed that existing complex life forms such as multicellular organisms have

in fact evolved out of multispecies communities into well-integrated assem-

blages. In other words, individuality and separateness can evolve. What is

under dispute is how separate a community must be for it to count as a unit

of selection.
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In a recent set of articles about ‘community genetics’, Collins (2003) describes

the views of community selectionists as lying on a continuum, similar to

the range of views of group selectionists. At one end, there are those like

Whitham et al. (2003), who think the likely candidates for community level

selection are long-term, tightly-knit associations of species with well-defined

community level traits. Most provisional examples of community level selec-

tion given in the literature involve these types of communities.

At the other extreme are those like Neuhauser et al. (2003), who believe that

communities in only brief association can be acted on by selection. Johnson

and Seinen fall closer to the latter view, because the competing subcommu-

nities in their model, which they describe as undergoing community level

selection, are neither discrete nor particularly long-lasting.

There is a trade-off here, because while tightly-knit communities are more

likely to have the properties that will make community level selection a sig-

nificant force, there are fewer of these tightly-knit communities among the

ecosystems in nature. And for those who see nearly any loose association is a

potential community, in most of these potential communities, we can expect

that it will be difficult to find between-community selection which is suffi-

ciently strong to counter the individual level selection forces.

10.3 Spatially continuous landscapes

Subcommunities within spatially continuous communities, in which limited

dispersal provides the only population structure, are perhaps the most con-

tentious candidates for community-level selection. If subcommunities have

some degree of discreteness and coherence, then predatory restraint can evolve.

This has been shown in previous simulations using metapopulations (Gilpin,

1975a; Mitteldorf et al., 2002). But in a spatially continuous landscape with

limited dispersal, there is less coherence, because no two individuals have the

same subcommunity.

Johnson and Boerlijst (2002), and Wilson (1997) believe that the limited disper-

sal provides enough separateness for the subcommunities to be considered

units of selection, but Maynard Smith and Szathmáry (1995) clearly do not.

This is despite the fact that altruism has been shown to evolve under these

conditions.
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Figure 10.1: Evolution of the invasion rate of rock (rr) in two spatial rock-paper-
scissors simulations in which the invasion rates of scissors and paper (rs, rp) are held
fixed at 0.2. In the first simulation (black line), rr starts with a mean of 0.2 (ranging
from 0.1-0.3), and in the second simulation (blue line), rr starts with a mean of 0.7
(ranging from 0.5-0.9). In both cases rr evolves to around 0.6.

10.3.1 The evolution of altruism in viscous populations

Altruistic traits are known to evolve on spatially continuous landscapes, with

limited dispersal but without discrete group or community structure. Hamil-

ton (1964) claimed that limited dispersal can promote altruism through kin

selection: the intuitively appealing explanation is that limited dispersal in-

creases the proximity of relatives, and because individual-individual interac-

tions are more likely to be between relatives, genes for altruistic behaviour are

likely to benefit copies of those genes in neighbours.

However, in models of fixed size populations with limited dispersal (called

‘viscous’ populations in most of the literature), it has been shown that lim-

ited dispersal encourages within-neighbourhood interactions, but also limits

between-neighbourhood interactions to such an extent that the overall effect

on the spread of altruism is neutral (Queller, 1992; Taylor, 1992; Wilson et al.,

1992).

10.3.2 Fluctuations in population size

If the overall population size is allowed to fluctuate, however, the situation

can be different — altruistic traits can spread, even when limited dispersal

provides the only spatial structure (Mitteldorf and Wilson, 2000).

But the predatory restraint in RPS systems is quite different. It is not the sort

of altruism that requires a fluctuating population in order to evolve. The John-

son and Seinen experiments which show competitive restraint used a fluctu-

ating population, because their SCA grid allowed empty cells, but a variable
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population is not required. Competitive restraint can also be shown to evolve

on similar experiments in a fixed population without empty cells. The re-

sults of two such experiments are given in figure 10.1: the invasion rate of the

evolving species shows the same essential behaviour as that in figure 2a of

Johnson and Seinen (2002).

10.3.3 Altruism and competitive restraint

If community level selection is responsible for the spread of competitive re-

straint in fixed size RPS communities, then there must be some reason why

restraint is not subject to the same cancellation effect of within- and between-

community interactions that occurs for the altruism traits in other models

such as Queller (1992) or Mitteldorf and Wilson (2000).

I believe that the nature of competition in the three-species intransitive net-

work is the reason. The ‘survival of the weakest’ phenomenon in the RPS

ecosystem usually guarantees that faster invaders are disadvantaged in all

but the very shortest of timespans. Therefore restraint is not really altruistic

in the usual sense, given the other competitors in the system.

This important difference between competitive restraint in RPS and group

selected altruism becomes especially clear when we consider the alternative

strategies to altruism and restraint respectively. In the altruism model, self-

ish individuals thrive in the absence of any population structure. The same

cannot be said for ‘unrestrained’ competitors in RPS: with global interactions,

if the invasion rate of rock, say, is allowed to evolve, then it will rise with-

out limit until all the scissors are gone, after which rock soon goes extinct.

Selfishness does well where unrestrained competition does poorly.

10.3.4 Provisional examples of selection in continuous

communities

The most convincing descriptions of community level selection involve quite

discrete-bordered communities in which the members of the community have

a shared interest. There are numerous examples of this in the literature, in-

cluding the view of single organisms as multispecies communities, symbioses,

and species that use another species for transport between areas of favourable

habitat (Wilson, 1997).

But there are fewer convincing provisional examples of spatially continuous
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community selection. Wilson (1997) provides two, one involving combined

plant-and-soil communities, and another suggested by Leigh (1994) in which

root grafts between neighbouring trees of different species protect both trees

against storms.

These examples are speculations and not intended to provide proof of the

existence of community-level selection in nature, but in any case neither ex-

ample shows quite the lack of community separateness in time and space that

occurs in a purely spatially continuous landscape or in a cellular automata

model. In the plant-and-soil example, the plant affects bacterial communities

relatively evenly throughout a certain region of the soil under it, so there is

some degree of long-range dispersal in the system. In the case of the root

grafts, there may be long-range effects because we expect that neighbouring

trees experience a storm equally. But the grafts themselves also have the effect

of adding a degree of structure to the space which is not possible in a SCA,

for example. Even if community selection turned out to be a good explana-

tion for these provisional examples, that would not automatically show that

the same effect could happen in a world with no variation in habitat.

10.4 Communities in cellular automata

In many ways the cellular automata grid used in the models of Johnson and

Seinen (2002) is the ultimate spatially continuous landscape. Not only do

subcommunities in these models lack separateness, but also the nature of in-

teractions on the grid means there is no opportunity for a more complex pop-

ulation structure with separate subcommunities to evolve.

Subcommunities on a SCA grid must therefore be constructed in some way by

the observer so as to have the right composition for community selection to

act. Johnson and Boerlijst (2002) provide a list of properties that an ecosystem

must have for community level selection to be a significant force:

(1) Subcommunities must maintain a degree of individuality in time and

space, and

(2) There must be heritable variation among subcommunities.

They believe that the Johnson and Seinen (2002) model meets these criteria

and that subcommunities on the SCA grid have a degree of separateness and

individuality.
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In this section I will describe how the community level selection process pro-

motes competitive restraint, and explain why the lack of separateness of SCA

subcommunities causes problems for a satisfactory explanation of competi-

tive restraint.

10.4.1 The community selection process

The process that Johnson and Seinen describe involves a conflict between in-

dividual selection and subcommunity selection. In a RPS population, the in-

vasion rate of rock is allowed to evolve while the invasion rates of scissors

and paper are fixed. Selection at the individual, within-subcommunity, level

favours an increase in rock’s invasion rate without limit. If individual se-

lection were the only force, rocks would invade faster and faster, eventually

wiping out the scissors population after which the rocks themselves would

quickly be eliminated by the remaining paper population.

However, at the same time, between-subcommunity selection drives the in-

vasion rate of rocks down. The claim is that subcommunities compete on the

basis of ‘persistence stability’, which is the property that all species in the sub-

community persist after one turnover of all individuals (Dayton et al., 1984;

Johnson and Mann, 1988; Johnson and Boerlijst, 2002). Subcommunities with

relatively even invasion rates between species have more persistence stability,

and tend to outcompete, subcommunities with uneven invasion rates and less

persistence stability.

Johnson and Seinen regard community level selection as a good explanation

of the restraint phenomenon. However, it is a very limited explanation, be-

cause the relative strength of the two selection processes is unmeasurable

without a reasonably well-defined concept of the subcommunity. Because

there is no separateness, there is no obvious method for finding out the extent

to which the fittest, most stable subcommunities produce more offspring than

the less fit ones.

I now look at two potential ways of bringing clarity to the process by defining

subcommunities on the SCA.

10.4.2 Community definition using interactions and traits

I have mentioned the fact that Sober and Wilson think groups should be de-

fined on the basis of interactions, and with respect to a particular trait. This

presents a special problem when translated to the case of defining SCA sub-
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communities because all interaction groups will overlap on a SCA grid.

In multilevel selection theory, a group is “a set of individuals that influence

each other’s fitness with respect to a certain trait, but not the fitness of those

outside the group” (Sober and Wilson, 1998). In terms of community rather

than group selection, if we take this definition to mean direct rather than in-

direct influence, there are two obvious ways to define subcommunities on a

SCA, neither of which is entirely satisfactory:

(1) Ephemeral subcommunities of size two

In a SCA model with limited dispersal and asynchronous updates, only one

pair of neighbours interact directly at any one time. The result of this the

subcommunity equivalent of the “ephemeral groups of size N = 2” which

are valid groups according to Sober and Wilson.

With each pair being a competing subcommunity, under the proposed model

of community level selection the fittest pairs are those pairs with the most

persistence stability, according to the Johnson and Boerlijst (2002) definition.

But persistence stability is not meaningful for pairs. This is because with pairs

in isolation, a complete turnover of all individuals is impossible in the RPS

game – at least one of the individuals in the pair will be uninvadable.

(2) Grid neighbours as subcommunities

Johnson and Seinen’s SCA uses synchronous updates throughout the entire

grid, so it is more appropriate to consider a site and all its directly influenced

neighbours as a subcommunity. With immediate neighbours it is possible to

have all three species represented in the subcommunity, so the persistence

stability of these subcommunities can be compared.

This can be done by running simulations on these tiny subcommunities until

either an extinction occurs or all individuals have turned over at least once,

and then counting the number of species left (provided periodic boundary

conditions are added, or spatial effects are removed, from the subcommunity,

because otherwise some individuals on the edge will be uninvadable). With

enough samples the persistence stability of several sets of invasion rates and

initial conditions can be quantified.

A disadvantage of such small subcommunities is the granularity in initial

species densities. With four neighbours per site, the subcommunities will

have a maximum of five individuals, and so some combinations of initial den-
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sities, such as all species in equal proportions, are not possible.

Problems with small subcommunities

These conceptions of subcommunities conform to the Sober and Wilson defi-

nition, because all members of the subcommunity interact and affect one an-

other’s fitness. However they are limited in their ability to explain the re-

straint phenomenon for two reasons.

Firstly, there are at least as many possible overlapping subcommunities as

there are sites on the grid. Between-subcommunity interaction in such a situ-

ation is extremely complex. Any attempt to reduce this complexity by restrict-

ing the analysis to non-overlapping subcommunities would require arbitrary

decisions about which subcommunities were ‘separate’ which would fail to

reflect the structure of the underlying model.

Secondly, with tiny subcommunities, it is extremely unlikely that any of them

will show persistence of all three species for more than a handful of genera-

tions. The detail of figure 2.5 on page 21 shows that it is rare to find all three

species present in very small areas. There is just too much same-species clus-

tering, because at these scales individual selection dominates.

10.4.3 Community definition using spatial self-structuring

Johnson and Boerlijst (2002) believe that the individuality of subcommuni-

ties is emergent in the model through a process of spatial self-structuring, by

which they mean the tendency of spatial RPS systems to organise into clusters,

with a maximum size, which continually move across the grid. This structure

could potentially be used to define the extent of the subcommunities.

The simulations of chapter 3 showed that stability continues to increase as

the grid size is increased. For any particular time horizon, there will be some

scale at which coexistence of all three species effectively becomes stable over

that time period.

There will also be a grid size for which the probability of stability, for what-

ever timescale it takes for a single turnover of individuals, crosses some thresh-

old, and this grid size could be used to define the size of the subcommunity.

Such a threshold will necessarily be arbitrary, because stability continues to

increase with every increase in subcommunity size.

These subcommunities will also have to be a different size for every different
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set of fixed invasion rates. This fact makes community level selection next to

useless for predicting how restrained a species in a particular ecosystem will

become: simulations will be necessary to find out the size of the subcommu-

nity, and if simulations are required, then the degree of restraint can be found

directly from the simulations.

10.4.4 Subcommunity interaction and heritability

Because interactions between any two adjacent sections of a SCA grid are

complicated, it is difficult if not impossible to describe the way in which sub-

communities compete and reproduce in the simple manner by which it can be

done for discrete-group models.

On a SCA, it is not obvious that individuals from more stable subcommunities

will leave more offspring than those from the less stable subcommunities. For

example, consider two subcommunities from the description of the restraint

process given in section 10.4.1. In the first, rocks are restrained and invade

only a little bit faster than the other two species, and in the second, rocks are

unconstrained. When these two subcommunities interact, rocks from the sec-

ond subcommunity will probably be wiped out or be vastly reduced in num-

ber, but paper individuals from the second subcommunity could end up be-

ing quite well represented in the ‘children’ of these subcommunities. The only

way to find out for sure is to keep track of individual lineages (as opposed to

subcommunity lineages) in the SCA, because the process of subcommunity

inheritance is just too complicated.

10.5 Conclusion

Not even the most enthusiastic of group selectionists believe that higher level

units should always be invoked when explaining a particular adaptation. Ac-

cording to Williams (1966), we should not refer to adaptations of the group

unless a process of natural selection can be shown to act on those groups.

Sober and Wilson agree, and in fact it was the assumption by Wynne-Edwards

(1962) of group-level adaptations without a corresponding process of group-

level selection that was partially responsible for giving group selection a bad

name.

Similarly, community-level adaptations will only arise when there is a process

of natural selection acting on communities, for which communities must act
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as functional units to some degree (Wilson, 1997). The degree to which sub-

communities in a spatially continuous community can be regarded as func-

tional units is debatable, but in any case, an attempt to show that there is a

process of between-subcommunity selection going on should at the very least

try to identify what the subcommunities are. Neither Johnson and Seinen

(2002) nor Johnson and Boerlijst (2002) offers a clear identification.

But the true test of whether or not multilevel selection theory should be in-

voked is whether or not the theory “provides an added understanding of

the underlying mechanism” that selection at the lower level does not (John-

son and Boerlijst, 2002). The kind of underlying mechanism that is better

understood by the application of multilevel selection theory is the existence

of two “separate causal processes that contribute to the evolutionary out-

come” (Sober and Wilson, 1998). Multilevel selection theory is especially use-

ful when the processes are opposing.

In the RPS model of competitive restraint, there are opposing processes at

work, but I believe that regarding those processes as individual level and

community level selection does not add to our understanding of the system,

because the subcommunities themselves are too vague and too poorly under-

stood. One can achieve a better understanding of the phenomenon by de-

scribing the opposing processes as the short term and long term self-interest

of the competitor showing restraint, given the structure of RPS interactions.

In the simplest terms, those that invade too quickly will deplete the enemy of

their enemy and be overrun, and those that invade too slowly will be beaten

by their neighbours.

An account of the details of the ‘survival of the weakest’ property of RPS

ecosystems is required here in order to explain why long-term and short-term

interest are in opposition. But with a community selection description, the

details of RPS need to be a part of the explanation anyway, because they are

the only way to make sense of how invasion rates affect persistence stability.



Chapter 11

Competitive restraint and the

measurement of stability

Johnson and Seinen (2002) claim that the phenomenon of competitive restraint

in spatial RPS systems is caused by tension between two opposing selection

processes: selection for increased competitiveness at the individual level ver-

sus selection for stability at the level of the ecological community. Their re-

straint experiment takes place on a SCA grid of competing individuals of

three species in a RPS-like relationship, in which the invasion rate of one

species is able to evolve but the invasion rates of the other two are fixed.

Eventually, if all three species survive, the average invasion rate of the evolv-

ing species reaches an equilibrium that is less than its theoretical maximum,

and less than what it could be if individual selection were the only force.

While the evolving species is said to ‘restrain’ its competitiveness at this equi-

librium level, the selective forces are of course not acting directly on species:

the process envisaged by J&S is one whereby individuals that are too compet-

itive tend to die out, because they make the subcommunities to which they

belong so unstable that those subcommunities collapse into a monoculture

which fares poorly in comparison to other subcommunities.

If this picture is correct, when the evolving species is at its equilibrium com-

petitiveness level there should be many subcommunities collapsing, and it

should be possible to observe the resulting instability in the system. In partic-

ular we might expect the system’s instability to reach some limit above which

it cannot rise as it becomes moderated by the restraint of the evolving species.

In an attempt to find evidence for this phenomenon, I examine the stability of

RPS ecosystems in three stages:

199
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(1) Measurement of community stability

The competitiveness trait acted on by individual-level selection is already

well-defined within the system. But the community-level trait that has been

proposed as the object of the higher-level selective force, stability, can also be

measured in the SCA model in various ways. I propose four different mea-

sures of community stability, which are examined in turn in the next four sec-

tions. These four measures have slightly different characteristics, but agree for

the most part with the expectation by J&S that systems with relatively similar

invasion rates are more stable than those with uneven invasion rates.

(2) Strength of individual-level selection

By calculating the stability of the system using a number of sets of fixed in-

vasion rates and then comparing this to the stability of the system using the

equilibrium sets of invasion rates from the restraint experiments, it is possible

to build up a picture of just how far away the system settles from maximum

community stability. The distance provides an indication of the strength of the

individual-level selective force, if the simple two-process model is accurate.

In accordance with the J&S model, in most cases the rate of the evolving

species is not far from halfway between its theoretical maximum (the end-

point of individual selection) and the level that would produce the most sta-

bility (the endpoint of community selection). The four measures of commu-

nity stability usually settle between the endpoints of the two kinds of selec-

tion (maximum stability and maximum competitiveness), but the equilibrium

stability levels are more complex and less predictable.

(3) Variation in equilibrium stability

Finally I compare the stability of the system at several sets of invasion rates

corresponding to a range of different equilibrium restraint levels in the J&S

experiments. If there were a simple mechanism by which subcommunities

go extinct once their invasion rates become too uneven, as the J&S picture

suggests, then a consistent level of instability might be expected at the equi-

librium invasion rates. None of the four types of stability turns out to be

constant across the equilibrium, so this basic analysis provides no confirma-

tion of any simple model of two opposing processes of selection working at

different levels.
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Figure 11.1: A comparison of the longest average time to extinction with the equi-
librium points of the restraint system described in Johnson and Seinen (2002). Each
dotted line shows one ratio of rs to rp, and the shaded circles on the dotted lines show
the TTE (averaged over 2500 simulations on a 30 × 30 grid) for the combination of
invasion rates represented by the location of the circle. White circles indicate the
longest TTEs, and black circles the shortest. The solid black line joins the points with
the maximum average TTE for each ratio of rs to rp. The equilibrium invasion rates
in the restraint system where rr is allowed to evolve are shown in red. These were
measured on a 500 × 500 grid with initial rr = 0.5 and rs, rp fixed in the appropriate
ratios such that rs + rp = 0.5. Each simulation was run for an initial 12,000 genera-
tions and the equilibrium rr was found by taking the average for all rock individuals
over a further 60,000 generations. All points on the diagram are normalised so that
rr + rs + rp = 1.

11.1 Time to extinction on small grids

In chapter 3 the stability of SCA ecosystems was measured using time to ex-

tinction (TTE), by counting the generations until one species takes over the

entire grid. This measurement closely corresponds to the notion of persis-

tence used by ecologists because it is concerned only with the presence of

species and not their densities.
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While it is easy to measure time to extinction, the high variability between

simulations means that it is necessary to average TTE over multiple simu-

lations with small random differences in the starting conditions so that the

measurement is useful for comparing stability at different sets of invasion

rates.

A fairly small grid must be used when measuring TTE in order to ensure

that an extinction happens in a reasonable time. But the use of small grids is

not a problem for the assessment of the J&S model, because small grids are

just like subcommunities of a large SCA community, so TTE on small grids

corresponds to the notion of subcommunity persistence, the trait which is sup-

posedly being selected for.

11.1.1 Invasion rates and time to extinction

Figure 11.1 shows how TTE varies with combinations of invasion rates. Each

point on the triangle represents a set of invasion rates, and the system stability

is represented by the shading in the circle, with stability increasing from black

to grey to white. The average TTE on the small 30 × 30 grids was around 1500

generations, ranging from a minimum of around 100 generations for the rates

(0.5, 0.425, 0.075) to a maximum of around 370,000 generations for the rates

(0.35, 0.325, 0.325). The white in the centre and black at the edges show that

the system is more stable when invasion rates are evenly matched.

Dependence of TTE on ordering of invasion rates

There is a smaller triangle, made up of grey points, visible inside the larger tri-

angle of black points, and this smaller triangle is not exactly centrally spaced

within the larger triangle; it appears rotated slightly to the left. The offset

in this area of increased stability means that two systems with the same un-

ordered set of uneven rates may be more or less stable depending on which

species those rates happen to be assigned to. Those systems in which the

slowest invader invades the fastest (for example when rr > rs > rp) will sur-

vive longer than systems where the fastest invader invades the slowest (for

example when rr > rp > rs).

In the latter example, rocks are the most vulnerable species because their equi-

librium density corresponds to the slowest rate rs (see the predictions of the

mean field equations on page 3). Because rocks are being predated upon faster

here than they are in the former example, they tend to go extinct more easily.

Additionally, in the former case, even rocks that have become surrounded by
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paper can be ‘rescued’ by groups of scissors that invade paper faster than pa-

per invades rock. This rescue effect is unlikely when scissors invade paper

more slowly than paper invades rock.

11.1.2 Individual and subcommunity selection

Each red point in figure 11.1 shows the equilibrium invasion rates if rr is al-

lowed to evolve while rs and rp are fixed at the ratio marked by the dotted line

that passes through the point. For each of these rs:rp ratios, the system could

settle at any point along the dotted line, but is only stable (without extinction)

at the red point.

The solid black line joins the points at which average TTEs are at their maxi-

mum for each of the rs:rp ratios. Under the J&S model in which subcommu-

nities are selected for stability, multilevel selection theory says that if commu-

nity level selection were the only force, then the system would always settle

somewhere close to this solid black line. The distance between the red line

and the black line therefore represents the strength of individual-level selec-

tion, which is the only opposing force.

If individual-level, rather than community-level selection were the only force,

then rr would climb without limit and eventually overwhelm the other two

invasion rates, so the distance between the red line and the point at the top

of the triangle represents the strength of community level selection under the

model.

Non-opposition of selective forces in extreme cases

At first glance the location of the red line in figure 11.1 shows no evidence of

selection for stability. The dotted lines at the right hand side of the diagram

represent ratios of rs:rp that are somewhat unstable regardless of the inva-

sion rate of rock, because all the circles on these dotted lines are quite dark.

Despite this instability however, rock responds by becoming especially com-

petitive, as evidenced by the upward kink in the red line on the right hand

side. It appears that the pull towards stability is weak in a naturally unstable

environment when selection between subcommunities ought to be particu-

larly intense because large numbers of subcommunities will be collapsing to

monoculture and being ‘invaded’ by more diverse subcommunities.

For these extreme rs:rp ratios, however, the time to extinction behaves in an

unexpected way. Figure 11.2 shows the stability surface in detail as a contour



204 CHAPTER 11. RESTRAINT AND STABILITY

0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85

p s p)r+r(/r

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

r
r

s
p
)
r

+
r

+
r(/

r

Figure 11.2: Contour plot of time to extinction versus invasion rates using the same
data as figure 11.1, where the red line shows the restraint equilibrium and the black
line maximum stability. The x-axis shows ratios of rs and rp, the y-axis values of rr.
Black areas indicate early extinctions, and white areas high stability. When rs and rp

are very uneven, extinction times increase as rr increases from the equilibrium line.

plot. From this plot it can be seen that stability does not always decrease

monotonically as rr moves away from the point of maximum stability. The

top left and top right of the diagram show stability increasing with increasing

rr.

The implication of this is that the two selective forces, towards increasing rate

of invasion and increasing stability, do not in fact oppose one another for some

invasion rates even when rr is very high. Therefore, if the restraint of rr at this

equilibrium is caused by stability at all, it is caused by some kind of stability

that is not contained within the TTE measurement.

TTE is the only one of the four stability measures considered in this chapter for

which invasion speed and stability are not in opposition at the equilibrium.
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Figure 11.3: TTE averaged over 2500 simulations on a 30 × 30 grid, for a range of rs:rp

ratios. The dotted line shows the maximum average TTEs, at the points joined by the
solid black line in figure 11.1. The solid line shows the average TTE for simulations
run with invasion rates at the equilibrium level (the red points in figure 11.1) when rr

is allowed to evolve.

11.1.3 Variation in extinction times at the restraint

equilibrium

The actual values of TTE measurement along the red and black lines are shown

in figure 11.3. TTEs at the invasion rates where rr has reached equilibrium

vary by around two orders of magnitude across the range of rs:rp ratios. TTE

experiments therefore provide no evidence that community level selection is

pulling stability above some threshold of subcommunity survival.

11.2 Minimum species density

The second measure of community stability is the minimum density of the

most vulnerable species over time, the same as the definition of extinction

risk from section 5.2 on page 80. This measurement is expected to correlate

with the persistence of the three-species ecosystem because in general smaller

populations are at greater risk of going extinct than larger ones.

Figure 11.4 shows the extinction risk measured throughout the space of pos-

sible invasion rates. The extinction risk is low for evenly matched invasion

rates and high for uneven rates. This is unsurprising because we know that

in spatial RPS the three species end up occupying space in proportion to the

three invasion rates.
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Figure 11.4: Minimum extinction risk (black line) compared against extinction risk
at restraint equilibrium (red line). The shading in a circle indicates the minimum
density of the least common species during the final 12,000 generations of a 24,000
generation RPS simulation on a 500 × 500 grid for a fixed set of invasion rates. A
white circle means the extinction risk is small because the least common species has
a density close to 1/3; a black circle means the extinction risk is large, and the density
of least common species is close to zero. The solid black line joins the points where
the minimum species density is at a maximum for a particular ratio of rs to rp. The
equilibrium invasion rates in the restraint system where rr is allowed to evolve are
shown in red.

The measurement is taken by running a simulation for a very long time and

returning the lowest species density recorded during that time. This will be

a number between zero and 1/3, the maximum possible density for the least

common species.

The amount of time that the simulation spends near the minimum density is

ignored. So for example, any two simulations in which rocks fall to a mini-

mum of 1% of the population for a single generation will always have iden-

tical scores, even if one simulation spends only a few generations with rocks

under 2%, and the other spends thousands of generations with rocks below
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Figure 11.5: Extinction risk measured by the minimum density of the rarest species
over time described in figure 11.4, for 15 ratios of rs:rp. The minimum densities for the
equilibrium restraint invasion rates are shown by the solid line, and the maximum
minimum density (lowest extinction risk) is shown by the dotted line.

2%. Despite the apparent crudeness of this notion of stability, it captures the

‘distance’ from extinction over time better than a measurement based on the

mean species densities because extinctions only happen once and they’re per-

manent.

The minimum density statistic does not have the property of the TTE (noted

in section 11.1.1) in which stability is dependent on the ordering of the three

invasion rates. Minimum density appears to depend on the unordered set of

invasion rates but is relatively insensitive to whether the fastest invader preys

on, or predates on, the slowest. So while ‘fast eats slow’ ecosystems tend

to go extinct more quickly than ‘slow eats fast’ ecosystems, their minimum

densities in figure 11.4 are similar, because they are measured with a much

larger grid on which variations in the numbers of local extinctions are less

noticeable.

Figure 11.5 gives the actual values of the measure at the maximum and equi-

librium. It shows that there’s no characteristic extinction risk at the equilib-

rium set of rates; the equilibrium stability follows the general shape of the

maximum.
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Figure 11.6: Comparison of the invasion rates which produce minimum density vari-
ation over time (black line) with the equilibrium invasion rates when rr evolves freely
(red line). The shading in the circles represents the average, over all three species, of
the amount by which their densities fluctuate over time. This is measured by taking
samples of species densities from the final 60,000 generations of a 72,000 generation
simulation on a 500 × 500 grid, and averaging the coefficient of variance (the ratio
of standard deviation to the mean density over time) across the three species. Black
indicates low density variation and white high density variation. No point is shown
for simulations in which an extinction occurred.

11.3 Variation in species densities

Another measure of ecological stability involves the change in species densi-

ties over time. The measurement is taken here by observing the species densi-

ties over a very long simulation, but rather than just recording the minimum

density, the variation of each population from its mean density is recorded,

and then these three variations are averaged out to give the values presented

in figure 11.6. This is a measure of ecological constancy rather than persis-

tence, because it quantifies the stability of the relative proportions of each

species over time. It is equivalent to the ‘average population variability’ used
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by Lawler (1993).

One motivation for using this measurement is that there are reasons for believ-

ing that density fluctuations can be expected to correlate positively with the

maximum cluster sizes on the landscape; and these cluster sizes were found to

correlate with time to extinction (see section 3.4.2, page 43). This positive cor-

relation is expected because species tend to be more isolated in a community

with bigger clusters, and when previously isolated groups come into contact

with one another, it can lead to rapid changes in the state of quite large areas

of the grid. Another way to think of this is to note that the sum of a small

number of large changes, as found on a highly clustered grid, tends to vary

more than the sum of a large number of small changes, which is what is found

on a relatively unclustered grid. The combined effect on the densities over the

entire grid of all these local changes is just the sum of what it going on locally,

so the sum of the local variation should be visible at the larger scale in the

form of bigger density fluctuations.

Figure 11.6 shows that when all three invasion rates are similar, the densities

only change by a small amount, but when rates are uneven, densities fluctuate

more wildly. For example, in the smallest variation observed in the simula-

tions, the species densities varied by an average of less than 2%. This occurred

with invasion rates at (0.35, 0.29, 0.36). But in the largest, most unstable vari-

ation, the three densities moved by an average of over 90%, with rates in the

corner of the triangle at (0.1, 0.14, 0.76).

The importance of the ordering of invasion rates can be seen by the fact that

darker points are not in phase with the outer triangle, but rotated slightly

left as they are for TTE. The density variance over time, unlike the minimum

density, differentiates simulations with few local extinctions from those with

many local extinctions.

The average variation measure is not constant across the equilibrium invasion

rates of the restraint system, and in fact figure 11.7 shows that it is possible

to find two rs:rp ratios, such as rp/(rs + rp) = 0.35 and rp/(rs + rp) = 0.75,

that have very similar minimum variation and also very different equilibrium

variation, so the average density variation not only lacks consistency at the

equilibrium rates of the restraint system, it doesn’t even appear to be pro-

portional to the minimum variation. With the invasion rates marked by the

rightmost red point in figure 11.6, the 500 × 500 grid is so unstable that data

cannot be obtained for these rates due to extinctions.
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Figure 11.7: Average variation in the three species densities over time at equilibrium
invasion rates (solid line) and at the invasion rates that minimise average variation
(dotted line) for 15 rs:rp ratios.

11.4 Cluster size

Because of the connection between clustering and stability, it is worth exam-

ining a measure of cluster size directly. Clustering is not strictly a kind of

temporal stability (it’s a static characteristic of the system), but nevertheless

it turns out to be very well correlated with the measure of density variation

over time.

The subcommunities envisaged in the community level selection interpreta-

tion of the restraint system are supposed to be ‘emergent’ subcommunities,

created through spatial self-structuring (Johnson and Boerlijst, 2002). For this

reason the small grids examined in section 11.1 will in most cases be unrepre-

sentative of the J&S subcommunities because fixed 30 × 30 grids do not vary

with respect to the quality of the self-structuring. Unfortunately, neither John-

son and Seinen (2002) nor Johnson and Boerlijst (2002) provides a suggestion

for defining the extent of the emergent subcommunities, but it is reasonable

to assume that the size of the subcommunities correlates with the spatial clus-

tering on the grid.

It is easy to measure the level of clustering in a SCA by examining grids that

have reached equilibrium and counting neighbouring sites that are in the

same state. The details of the measurement used here are described in the

caption to figure 11.8. It is the same measurement as the one used in section

3.4.2, but with a larger grid.

In the simulations summarised in figure 11.8, the average clustering measure
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Figure 11.8: Comparison of the invasion rates that produce minimum clustering
(black line) with the equilibrium invasion rates when rr evolves freely (red line). The
shading in each circle represents the average degree of clustering for one combination
of invasion rates. For each rate combination, clustering was measured by running ten
simulations for 12,000 generations each, on 500 × 500 grids. On each of these 10 grids,
1000 distinct sites were chosen at random from all over the grid, and for each random
site, the number of contiguous sites to its right occupied by the same species as the
original site was counted. Although the shading should therefore represent an aver-
age across 10,000 sites, in practice some of the simulations reached extinction during
the 12,000 timesteps, and sites from these simulations were ignored in the average.
Points are only shown when at least 2000 sample sites were available.

ranges from 3, for rates of (0.35, 0.29, 0.36), up to 170, for the rates (0.7, 0.21,

0.09), and the mean value over all rates is 11. The theoretical maximum is 500,

which can only occur if a single species occupies a horizontal strip the width

of the entire grid.

The shapes of the minimum and equilibrium clustering, shown in figure 11.9,

are similar to the density variations, including the particularly high value at

the equilibrium when rp is much greater than rs. Clustering varies more across

the equilibrium than it does at its minimum, so rr does not evolve to limit
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Figure 11.9: Minimum clustering (dotted line) and equilibrium clustering (solid line),
measured using the technique described in figure 11.8 for 15 rs:rp ratios.

clustering to any threshold level.

But the lack of evidence for moderation of clustering by rr in the experiments

presented here is not enough to disprove the J&S hypothesis. A thorough

approach would take a wide range of methods for defining subcommunity

size as a function of system clustering, and then examine the stability of those

potential subcommunities in order to see if there is some measure of subcom-

munity stability that appears to be moderated by the evolution of rr. Unfortu-

nately, due to the enormous number of ways to define subcommunities, this

is too large a task to attempt here.

11.5 Summary

Johnson and Seinen (2002) showed that when rr is allowed to evolve while rs

and rp remain fixed, rock restrains its competitiveness to a value significantly

less than its theoretical maximum. They suggest that this restraint is due to

two opposing processes of individual level and community level selection,

and that the community level selection pulls the entire community towards

greater persistence stability.

The examination of the invasion rates at equilibrium provided in this chap-

ter does not show that the multilevel selection picture is wrong, but it fails

to confirm the ‘selection for subcommunity stability’ explanation using four

simple quantifications of ecological stability.
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This is firstly because the invasion rate of rock does not appear to act in such

a way as to moderate naturally unstable communities to any degree. In par-

ticularly unstable communities, highly competitive individuals do not appear

to die out as a result of their subcommunities collapsing, instead they seem to

thrive, because invasion rates are especially high in these unstable communi-

ties.

Secondly, none of the stability measurements remain constant at the equilib-

rium invasion rates reached by the J&S system. Although I have not been

able to exactly reproduce the notion of persistence stability with any of the

measures given here, the high variability of all measures across the equilib-

rium suggests that a model in which the supercompetitors die off when they

bring their local subcommunity over some threshold of instability may be too

simple.

Two-process explanations of restraint oversimplify

In chapter 10, I argued that to describe the restraint as the product of a pro-

cess of selection among subcommunities could be misleading, and that an

understanding of the details of the spatial RPS system was necessary for an

understanding of the restraint phenomenon. It was suggested that the re-

straint phenomenon might be better understood as a product of the tradeoff

between long-term and short-term fitness of individuals from the evolving

species rather than by applying multilevel selection theory.

The experiments in this chapter also suggest that the long-term versus short-

term explanation of restraint is dubious. The time to extinction and minimum

species density statistics, for example, measure the long-term fitness of the

evolving species just as well as they measure system stability, because the

evolving species is always one of the ones that goes extinct for all rates near

the equilibrium. The fact that neither of these measurements settles at a con-

sistent level is not only evidence for the lack of an instability threshold, it’s

also evidence for the lack of a ‘long-term individual benefit’ threshold. I sus-

pect that attempts to reduce the essence of the restraint phenomenon to any

simple model of two opposing selection processes will fail to capture some of

the important details, regardless of whether one of the processes is described

as higher-level selection or long-run individual benefit.
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Chapter 12

Conclusions

The behaviour of the rock-paper-scissors system is highly dependent on the

way in which the population is spatially structured. A SCA model in which

individuals interact within a local neighbourhood always exhibits a high turn-

over of individuals in any particular region, but the overall densities of the

three species become very stable. In a spatially-unstructured, infinite popu-

lation model, densities oscillate forever with the same amplitudes, but in a

similar finite-population model, the amplitudes increase over time until one

species goes extinct.

In the first part of this thesis I have shown that in a model using continuous

space, the resulting dynamics is very close to that of the lattice-based model,

as long as interactions are localised. In both models, the species densities os-

cillate initially in similar patterns, stabilise to similar levels, and show similar

spatial patterns on the landscape. The grid model accurately captures the es-

sential features of the spatial system, and is computationally more efficient,

so little is gained by using a continuous space model when interactions are

known to be local.

A grid model with random, non-local interactions is just a pool of individuals

without spatial structure, and in the case of RPS always ends in extinctions.

But a continuous-space model does not have this property. As long as individ-

uals have a location and a size, long-range dispersal is not the same thing as

random interactions. It turns out that even a small amount of non-uniformity

in the process by which individuals select others to interact with can signifi-

cantly stabilise the species densities so that extinctions become very unlikely.

The extent to which interactions deviate from complete uniformity is deter-

mined by the relative timescales of movement and interaction. Exactly how

these two effects combine to bring about changes in density stability is not

215
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well understood, but could be discovered using a model with parameters for

both speed of movement and frequency of interaction.

I have also shown the effect on system stability of gradual changes in the dis-

persal distance using a grid model. What is important is the distance over

which interactions can take place relative to the total size of the world. The

time until an extinction occurs increases as the size of the grid is increased,

and also increases as the dispersal distance, or size of the interaction neigh-

bourhood, is increased. The time to extinction in the RPS system, with its

inherent stability, increases much faster than a system with only neutral evo-

lution and no intransitivity. At a characteristic grid size, or neighbourhood

size, the increase in stability becomes super-exponential. This means that for

any particular maximum simulation length, there is effectively a threshold

value for the grid size at which the stability jumps from a very low value to

the maximum.

The neighbourhood size effect is slightly different to the grid size effect; when

the grid is large there is an apparent threshold, as the neighbourhood size is

decreased, at which stability suddenly jumps. But there are some grid sizes

for which stability goes through an increase and then a subsequent decrease

as neighbourhood size is reduced. The importance of this result is that con-

trary to the often expressed view that more spatial structure implies greater

ecosystem diversity, there are occasions when more structure does the oppo-

site, and increases the probability of ecosystem collapse. I have not discov-

ered the exact mechanism causing the decrease in RPS stability for these very

small neighbourhoods, but I believe it is the result of significant-sized pockets

of single species becoming surrounded by their predators, a situation which

is much less likely with a small increase in the number of neighbours.

In the second part of the thesis I have applied three spatial approximations to

the RPS system and evaluated their accuracy with comparisons to grid sim-

ulations. Firstly, the pair approximation is used to derive equations for the

densities of neighbouring pairs of grid sites. I show that these equations fail

to express the essential stability of the grid-based RPS model for most starting

points.

The local structure approximation based on 2 × 2 blocks of grid sites does

not suffer from the same problem; it predicts that the RPS system is stable

with all three species represented. It is not clear exactly why the pair ap-

proximation should fail while the 2 × 2 approximation succeeds. The 2 × 2

approximation includes more spatial information, but in some cases, it under-

estimates the density of homogeneous pairs of sites to a greater degree than



217

the pair approximation. It may be that a successful local structure approx-

imation requires the ability to represent neighbourhoods containing all the

possible species in the system. The study of another approximation based on

3 × 1 blocks may provide further evidence for or against this hypothesis.

The need to estimate the risk of extinction in a spatial RPS system motivates

a third simple approximation, which forces stability on the equations derived

using the mean field assumption. It is trivial to modify the mean field equa-

tions so that the density trajectories are dragged in towards the fixed point by

varying degrees depending on a new parameter. However, this approach is

actually worse than the mean field when it comes to estimating the extinction

risk in a grid simulation with sites initialised at random. This is because ran-

domised initial conditions lead to an initial divergence in the densities while

the intitial spatial clusters are formed. It may be possible to devise an ODE

model which tracks the degree of clustering in the system in addition to the

densities. Rather than a local structure approaches to clustering, it might be

better for such a model to parameterise the distribution of clusters of various

sizes needed, because local structure models, like the mean field, are unable

to account for the initial divergence of densities observed in the agent-based

models.

The two models described in the third part of the thesis are interesting be-

cause they are able to produce RPS (or a similar four-species intransitive com-

petition system) with the simple addition of an evolvable individual trait to

a spatially-structured two-species system. In the first, individuals receive a

certain quantity of resources based on their species, and are able to appor-

tion those resources into interspecific or intraspecific competitiveness. When

starting conditions are relatively even, the two species’ densities stabilise at

half and half even when their initial ‘resource levels’ are uneven. An analysis

of the system using non-spatially-structured simulations, and of a similar sys-

tem of differential equations, shows that stability of the densities at half and

half is due to regulation by negative feedbacks rather than being a product

of the spatial population structure. The feedback occurs because intraspecific

competition is selected for in the species with the highest density, and inter-

specific competition is selected for in the species with the lower density. Both

these selective forces act to equalise the densities, and the regulating effect

becomes more efficient as more variation in inter- and intraspecific competi-

tiveness is represented in the system.

It is spatial structure, however, that is responsible for the evolutionary branch-

ing event that splits at least one species into two distinct morphs, one max-

imising interspecific competitiveness and the other maximising intraspecific
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competitiveness. Spatial population structure can be shown to be the deter-

mining factor using a simple model of only three grid cells: the invasion fit-

ness of maximally inter- or intraspecific competitors is greater than the inva-

sion fitness of intermediate types, as long as there there is clustering of similar

individuals in the three cells.

Even though species densities at equilibrium tend to even out regardless of

the species’ inherent strengths, the viability of morphs does in fact depend on

those strengths. When the species are equal, both species split into extremely

interspecific and extremely intraspecific morphs, competing in a cycle of four.

When one species is more than about 20% stronger than the other, only the

stronger species splits, the weaker one becomes extremely interspecific, and

the weaker species competes with the two morphs of the stronger one in a

RPS cycle. The ratio of species strengths at which the change occurs is quite

robust, depending only to a minor extent on the size of mutations.

In the second model, interspecific toxin-production is the trait, rather than

inter- and intraspecific competition. Rather than stabilising at half-and-half

densities, the toxin-production model can be stable with uneven densities,

and the stability of these densities can be predicted using a mean-field version

of the model in which changes in densities and average toxin-production lev-

els are given by differential equations. However, the real spatial simulations

predict equal densities in a slightly different place to the mean field version,

and the location of the equal-density point cannot be accounted for simply by

adding a little bit of clustering of same-species individuals to the mean-field

equations. This is possibly because clustering of individuals with similar trait

values is not considered in this analysis.

Although the model is very simple, there are many different types of toxin-

production distribution into which the system settles. In the majority of the

space of toxin and species strengths, one species maximises or minimises its

toxin production exclusively, and the other species settles into a state where its

average toxin-production is at an intermediate level, but sometimes this av-

erage combines two groups producing maximum and minimum amounts of

toxin, and sometimes all individuals are clustered around the average level. I

have not been able to predict exactly what causes the split into two groups, ex-

cept to note that it is to do with the amount of room in the trait space between

two clusters of phenotypes. If the trait’s maximum or minimum value is forc-

ing two groups to be closer than some minimum separation in the trait-space,

then the groups join together when the weaker of the two cannot invade the

other species fast enough to get away from the stronger group.
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Both of these models are potential explanations for the evolution of cyclic

competitive behaviour. However, the first is problematic because species in

existing intransitive ecosystems, as far as we know, do not possess any traits

corresponding to the intraspecific competitiveness trait of the model. The

toxin-production model is a better fit because toxin-based competition is preva-

lent in many of the natural ecosystems with intransitive competition. The

‘splitting’ behaviour of the traits in these models are one mechanism by which

such ecosystems may increase in diversity.

In the fourth part of the thesis I argue that the occurrence of competitive re-

straint in the RPS system should not be explained by an appeal to commu-

nity level selection theory. In Johnson and Seinen’s model, multispecies sub-

communities compete with one another within a larger community, and the

subcommunities with the most persistence stability defeat those that are less

stable. A supercompetitor will create instability in its subcommunity, so al-

though the supercompetitor may do well within its subcommunity, its sub-

community will be less persistent (less fit) in the battle between subcommu-

nities.

The first objection to this explanation is just that all subcommunities on a CA

grid are arbitrary in their extent. Even when there is an element of spatial

self-structuring of individuals, the way in which individuals interact in the

CA model necessarily implies that there are as many subcommunities as there

are individuals. Secondly, while a supercompetitor from an unstable RPS sub-

community is unfit in the long term, due to the survival of the weakest rule,

members of other species within the same subcommunity may in fact be fit-

ter. For these reasons I argue that the notion of community level selection

adds little if any understanding to competitive restraint in RPS communities.

It would better to explain the phenomenon with a model that describes the

long-term fitness of supercompetitors.

If restraint were the product of a process of selection for stable subcommuni-

ties, then we might expect to see evidence for this by measuring the overall

community stability at and away from the equilibrium at which competition

becomes restrained. However, measurements of four kinds of stability at the

equilibrium points, and across the entire space of possible invasion rates, re-

veals no pattern. In particular, stability at the equilibrium points shows a large

amount of variation depending on the invasion rates of the two fixed species,

meaning that there is no consistent threshold of instability over which sub-

communities do not survive.

But although these measurements provide no evidence for the community
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level selection view, they do not disprove it. This is because spatial patterns

are different for different combinations of the fixed invasion rates, and sub-

communities that have been defined using spatial self-structuring will have

different sizes at these rate combinations. It could then be argued that when

there are lots of subcommunities on the grid, the effect of instability in a few

of them is diluted when measuring the stability of the entire community, but

when there are a smaller number of subcommunities, instability in a few of

them will count for more in the measurement of community stability. Such

an argument would be unconvincing unless subcommunities can be defined

using a notion of spatial self-structuring that is independent of stability.



Appendix

The adaptive dynamics method

I describe in general terms the method used in Kisdi (1999) and Doebeli and

Dieckmann (2000), which provide typical examples of AD models. The first

step is to describe the ecological dynamics of the mean phenotype of each

species. If each species s has a mean trait value xs, this is done by formulating

an expression for the change in the population density of the mean phenotype

of s over time, dρ(xs)/dt for each species s where ρ(xs) stands for the density

of the phenotype xs. The resulting equations are of the form

dρ(xs)

dt
= rs · ρ(xs) · ws(xs, P, X) (A.1)

where ws(xs, P, X) is some species-specific fitness function which depends on

the population densities P of every species and their mean phenotypes X,

and where rs is the intrinsic growth rate of species s not dependent on the

mean phenotypes. The articles by Kisdi and Doebeli and Dieckmann specify

particular fitness functions where I have written ws(xs, P, X).

The ecologically stable population densities P∗(X) are the points at which

the dρ(xs)/dt = 0 for the set of phenotypes X. At these stable densities, the

invasion fitness of a rare mutant is examined. The invasion fitness fs(ys, X) of

a rare mutant ys (of species s) is just its initial per capita growth rate, which is

similar to equation (A.1):

fs(ys, X) = rs · ws(ys, P∗(X), X). (A.2)

But because this is ys’s per capita growth rate, it is not dependent on ys’s den-

sity, and therefore there is no ρ(ys) corresponding to the ρ(xs) in equation

(A.1). And because ys is rare, its effect on its own fitness can be ignored, so

the species-dependent fitness function ws still only depends on the densities

221
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P and mean phenotypes X of the residents, even though a new phenotype has

been introduced.

The derivative of a rare mutant’s invasion fitness with respect to its trait value,

evaluated at the mean phenotype,

∂ fs(ys, X)

∂ys
|ys=xs (A.3)

describes the way in which evolution drives the mean phenotype xs of species

s. The points at which this expression is equal to zero are called singular points,

and some of these singular points are also evolutionary attractors. If the mu-

tant’s fitness is at a maximum at at singular point, then this point is an ordi-

nary stable attractor, but if the mutant’s fitness is at a minimum at the singular

point, then it is an evolutionary branching point. At a branching point, mu-

tants of with trait values higher or lower than the mean phenotype will do

better than the mean phenotype.

Invasion fitness at unstable points

In section 6.1.4, it is noted that AD is not a useful model in a two-species pre-

RPS ecosystem, because such a system is always unstable up to the point at

which one species goes extinct.

However, it is in fact possible to evaluate the invasion fitness of rare mutants

(and the evolutionary direction of mean phenotypes) at ecologically unstable

points, i.e. when P 6= P∗(X), but of course there are infinitely many of these

points, and the extra variables will make the expression (A.3) too difficult to

analyse for most ws functions.
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