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EXECUTIVE SUMMARY

Neubauer, P. (2020). Development and application of a spatial stock assessment model for paua
(Haliotis iris).

New Zealand Fishery Assessment Report 2020/30. 42 p.

A spatial assessment model for paua (Haliotis iris) was developed to better incorporate the effect of
demographic variability and spatial catch patterns on paua population dynamics, and to facilitate spatial
management procedure evaluation and implementation. The model was fitted to spatially-resolved input
data and compared with single-area versions of the assessment models for paua quota management areas
PAU 5B and PAU 5D. These quota management areas (QMAs), chosen as the respective assessment
models, allowed a robust comparison based on different characteristics: the model for PAU 5B provides
subjectively “good” estimates of model parameters and population trajectories and, therefore, provides a
“best case” test, whereas the model for PAU 5D is sensitive to growth assumptions and model weighting,
providing a more challenging test case.

The spatial model developed here provided qualitatively different inferences in each QMA compared
with the single-area models. The spatial model performed well in technical terms for both QMAs in
that it provided well-defined estimates for all model parameters. Nevertheless, it performed markedly
differently to the single-area model in PAU 5D, but provided similar estimates to the single-area model
in PAU 5B. In PAU 5D, the inferred catch history on the regional scale suggested that only a single area
was affected by catch reductions in the mid-2000s, but all areas showed comparable increases in catch-
per-unit-effort (CPUE) at this time. The spatial model did not attribute the increase in CPUE (and by
extension, available biomass in the model) to the decreases in catch, but estimated a considerably higher
biomass, and attributed the increase in CPUE (and available biomass in the model) to recruitment. As a
result, the total biomass and stock status in the spatial model were estimated to be markedly higher than
in the single-area model.

The spatial model provides an opportunity to incorporate spatial patterns in both fishing and demograph-
ics in the assessment and management of paua. It provides complementary information to inferences
made using the single-area model, and can be used to test the impact of spatial homogeneity assumptions
in the single-area model.
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1. INTRODUCTION

Demographic variability is a key feature of abalone population dynamics. For New Zealand blacklip
abalone, paua (Haliotis iris), growth is known to vary across different spatial scales, from tens of metres
to hundreds of kilometres (McShane & Naylor 1995, Prince 2005, Naylor et al. 2006). On a New Zealand-
wide scale, small-sized paua are found in northern New Zealand, whereas large-size paua are fished in
southern waters off Stewart Island.

With the recent development of paua data loggers (Abraham 2012, Neubauer et al. 2014), and electronic
statutory reporting in the near future, near real-time information of fishery effort and catch is now avail-
able at a fine spatial scale. The development of global positioning system-(GPS)-logging technology
followed from the realisation that paua stocks are a mosaic of small stocks with limited connectivity
by dispersal of pelagic eggs and larvae (McShane & Naylor 1995, McShane 1998, Prince 2005, Naylor
et al. 2006). Among these sub-stocks, biological characteristics such as growth and size-at-maturity can
vary substantially. As a result, recent assessments and management, conducted at the scale of Quota
Management Areas (QMAs), do not reflect the variability in biological characteristics.

Providing and applying management advice over relatively large spatial scales can lead to patterns of
local overexploitation of accessible stocks—i.e., the management scale does not match the scale of the
fishery (Cope & Punt 2011). Depletion of local populations can, in turn, result in a number of un-
desirable outcomes: because paua is an important species for customary and recreational fisheries, local
governance conflicts may arise from local depletion or perceived overfishing by commercial fishers (e.g.,
popular recreational areas may receive disproportionate effort and deplete rapidly). The collapse of local
sub-populations may also lead to slow rebuilding of the larger QMA-scale stock when recruitment is
impaired due to the low density of spawners.

Recently, the availability of data from the paua data-logger programme has led to the development of
voluntary spatial management tools that are meant to overcome the potential of local depletion and as-
sociated conflicts. These tools include online dashboards that display in-season catch and standardised
catch rates at a relatively small (i.e., statistical area) scale to fishers. These dashboards can be used to
monitor local stocks and set empirical harvest procedures. Nevertheless, the effectiveness of spatial har-
vest procedures cannot be tested without a spatially explicit operating model. Management procedures
have been developed and simulation-tested in paua QMA 5 (Neubauer 2019), but have to date not in-
cluded spatial aspects of the fishery due to limitations of the assessment model. Interactions with fishers
have highlighted that this limitation is an important shortfall given the spatially complex nature of the
fishery. Recent efforts to apply both local and regional (QMA-scale) management procedures highlight
the need for a spatially explicit assessment and management tool that can be used to support spatially
explicit management procedures.

This project developed a spatially explicit assessment model that can serve as an alternative operating
model for assessment and management procedures, and allow managers and industry to address spatial
management questions. The spatial assessment model takes advantage of spatially resolved catch and
effort, catch-sampling length frequency and growth data, and provides a basis for simulation testing of
spatial management procedures.

2. METHODS
2.1 Spatial model inputs
2.1.1 Catch

Catch is a key input into any stock assessment because it is often the only information that determines the
scale of the fishery and the link between fishing mortality and stock dynamics. For the spatial assessment
developed here, catch information was considered to be a limiting factor because the spatial resolution
of reported catch in paua fisheries has increased over time, but assumptions needed to be made about
the spatial distribution of early catches. These assumptions are generally necessary at almost any spatial
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scale for paua fisheries: for example, for PAU 5A, PAU 5B and PAU 5D, catches prior to 1996 were
recorded on the spatial scale of research strata (Figures 1, 2), some of which straddle the boundaries of
the more recent (1996) subdivision of PAU 5 into PAU 5A, B and D. As a result, early catch from these
overlapping research strata cannot be unambiguously assigned to each QMA. There is no information
available at smaller spatial scales than the research strata prior to 1996, and the currently used fine-scale
statistical areas were only introduced with Paua Catch Effort and Landing Return (PCELR) forms and
record keeping in 2001.

Due to the limitations in the spatial resolution of early catch, the spatial resolution of research strata
was chosen as an appropriate resolution for the current development of the spatial model (Figures 1, 2).
Because the influence of data from early fishing will diminish over time, it may be feasible to fit the
model to relatively fine spatial data in the near future. Nevertheless, as a proof of concept, the current
model was kept relatively simple.

The terms “area” or “region” are used as general terms for sub-stocks that make up the overall stock
in the spatial assessment— these terms both refer to research strata throughout. Although these areas
are generally referred to with a zero preceding the research stratum code (or Landing Area in the data;
Figures 1, 2), the zeros were subsequently omitted from the code for convenience; for example, area (or
region) 25 indicates data from Landing Area 025.

Landing.Area
46.6°S 025

46.8S

Latitude
b1
»

47.2'8

4748

167-E 167.5:E 168-E 168.5°E
Longitude

Figure 1: Map of fine-scale statistical areas (coloured polygons delimited by white lines) for paua man-
agement area PAU 5B, coloured by research strata (Landing_Area), the highest spatial resolution for the
recording of catch-per-unit-effort prior to 1996. Fine-scale areas as mapped have been used since 2001
(intermediate-resolution strata were in use between 1996 and 2001).

At the QMA level, the same assumptions were made as in previous assessments about the attribution
of total catch to research strata (Marsh & Fu 2017, Neubauer & Tremblay-Boyer 2019b), in part to
ensure comparable results between the spatial and non-spatial models. The method consists of using the
reported Catch Effort and Landing Return (CELR) data to attribute total catch. These assumptions have
not been reviewed for some time, and should probably be re-examined to ensure continued support for
the methods.

At the regional scale (research stratum level), the following assumptions were made: in view of the
uncertain early catch history, catch was assumed to be constant at 148 t for PAU 5D and 250 t for PAU
5B from 1984—1995. Prior to 1984, the increase of the fishery was assumed to be linear from zero catch
in 1964. The reported catch split from CELR data from the 1984—-1995 period was used to allocate total
catch to regions for this period (CELR reporting was largely incomplete in these years, so could not be
used to estimate total catch by region). The same regional catch proportions were used to assign catch
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Figure 2: Map of fine-scale statistical areas (coloured polygons delimited by white lines) for paua man-
agement area PAU 5D, coloured by research strata (Landing_Area), the highest spatial resolution for the
recording of catch-per-unit effort prior to 1996. Fine-scale areas as mapped have been used since 2001 (in-
termediate resolution strata were in use between 1996 and 2001).

prior to 1984 to regions. From 1996 onward, regionally reported CELR and PCELR catch data were
used (the estimated catch history is shown in Figure 3).

In PAU 5B, three of the four areas provided large catches. There were reasonable reductions in catches
since the early 2000s, with reductions largely proportional to early catch: areas with higher catch also
showed greater reductions. Catches from the three larger areas (25, 27 and 30) remained on a similar
scale through most of the 2000s. The only area with no reduction in catch was the small area 29.

For PAU 5D, much of the early catch is attributed to research stratum 26 (the Catlins region), which
correlates with anecdotal accounts from the fishery. Nevertheless, as catch was reduced in the early and

mid-2000s, this reduction primarily affected the Catlins region, with markedly smaller, if any, reductions
in catch in other areas.
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Figure 3: Assumed regional catch history for paua management areas PAU 5B (left panel) and PAU 5D (right
panel) by research strata (areas).
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Assumptions for recreational and customary catch were identical to past assessments (Marsh & Fu 2017,
Neubauer & Tremblay-Boyer 2019b), with partitioning to regions according to the commercial catch
split. Although this assumption is likely to be incorrect for PAU 5D (the sparsely-populated Catlins
region with a probable low recreational take), it is unlikely to have a marked effect on the model owing
to the small scale of these catch components.

2.1.2 Catch-per-unit-effort

Catch-per-unit-effort (CPUE) indices for each region were generated in the same way as for the single-
area assessment for PAU 5D (Neubauer & Tremblay-Boyer 2019a). Here, a region-year random effect
was added to ensure that a region-specific trend could be extracted. Fits were similar to single-area fits,
because the region-year effect itself was small for both areas (Figures 4, 5).
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Figure 4: Standardisation of catch-per-unit-effort (CPUE) data using the generalised linear mixed model for
combined Catch Effort Landing Return and Paua Catch Effort Landing Return data for paua management
area PAU 5B. Shown are the un-standardised geometric mean CPUE (orange dots and dashed lined) with
transparency scaled by the number of records, the year effects across all areas (blue with 95% confidence
interval as dashed vertical lines) and the region-specific trend (black circles with 95% confidence interval).

2.1.3 Commercial length-frequency data

The most recent PAU 5D stock assessment used a Dirichlet Multinomial (DM) model to adjust obser-
vation error variance in commercial catch length-frequency (LF) data (Neubauer & Tremblay-Boyer
2019b). This method extended methods proposed by Thorson (2014) by accounting for sources of spa-
tial variability, and adjusting the DM concentration parameter based on attributes of the data (e.g., the
statistical area that samples came from). Although this method adjusted variability, it did not adjust the
length frequencies and, therefore, assumed that the sampled length frequencies were representative of
length frequencies at the population level. Here, the model was extended to a standardisation model
that adjusts the length-frequency samples based on spatial and temporal variability. This adjustment is
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Figure 5: Standardisation of catch-per-unit-effort (CPUE) data using the generalised linear mixed model for
combined Catch Effort Landing Return and Paua Catch Effort Landing Return data for paua management
area PAU 5D. Shown are the un-standardised geometric mean CPUE (orange dots and dashed lined) with
transparency scaled by the number of records, the year effects across all areas (blue with 95% confidence
interval as dashed vertical lines) and the region-specific trend (black circles with 95% confidence interval).

similar to adjustments in CPUE applied during the standardisation of CPUE. This procedure has the ad-
vantage that reasonably smooth length-frequency distributions (i.e., filtering out variability from highly
multi-modal LF distributions that arise due to low sample numbers) for sparsely sampled strata can be
extracted, even if individual samples in those strata are unlikely to provide a reliable estimate of the true
length frequencies of those strata.

The model setup was as follows, starting with the assumption that for every year y, there is a true stock-
level composition 7 of numbers-at-length. Nevertheless, there is spatial variability in the composition so
that in any particular region (research stratum) r and year y, there is a true composition 7, ,., from which
ny.rs paua are sampled from statistical area s, giving a sample {7y , 5, 7y s }. It was further assumed
that the 7, . s are distributed according to a Dirichlet Multinomial distribution (DMN) with parameters
5 and 7, meaning they are random samples of the true stock-level proportions 7 with (3, a concentration
parameter. This parameter 5 can be considered a sample size in a Bayesian context, and is inversely
proportional to the variance.

A crucial assumption is that the true compositions 7, . are, on the centered-log ratio scale, determined
by mean proportions II and random deviations for year (w,), region (w,) and statistical area (w,). The
multivariate effects were estimated on a unit-(multi)normal scale with correlation matrix > and sub-
sequently scaled by the corresponding random effects standard deviations o. The overall scale of these
deviations was estimated from a hyper-parameter o,4. This approach led to a model that effectively at-
tributed variability in length-frequency data to spatial and temporal variability while accounting for the
compositional (i.e., non-independent, constrained) nature of the data. The model for observation 7 in
region r and statistical areas s can then be written as:

6 ® Spatial assessment for paua Fisheries New Zealand



Ty, r,s ™ DMN(niapiyAmS’ B, ()

Piyrs = C(IL+ oywy + 0rwr + OryWry + 0rwy + o5ws), (2)
w; ~ MV N(0,%;), 3)
Y~ LKJ(1), 4)
o; ~ N(0,05a), (5)

os1 ~ N(0, P). ©)

The LK distribution is a prior probability distribution on correlation matrices, MVN is the multivariate
normal distribution, N is the normal distribution and P is a prior on the standard deviation of the random
effects scale for random effects i € [r,y, s, ry|, where ry is the deviation in region r for year y. The DM
model was implemented in Stan (Stan Development Team 2018) and parameters were estimated across
all length-frequency data for the period 2001-2017. Earlier data were considered too sparse to use in
the model. The estimation used Stan’s No U-turn sampler for full Markov chain Monte Carlo (MCMC)
estimation of all model parameters.

The DM model converged well for both PAU 5B and PAU 5D (see Figure A-1 for an example of dia-
gnostics for PAU 5B, results were almost identical for PAU 5D) and produced similar outputs for both
management areas. The outputs suggested that spatial variation at the statistical-area level contributed
significantly to between-sample variation in proportion-at-length data in both QMAs (see Figures A-2,
A-3 for an example of outputs for PAU 5D, results were almost identical for PAU 5B).

For both QMAs and for all regions, the posterior distribution of the length frequencies included the
sampled length frequencies for region-year combinations with a large number of landings and sampled
paua (Figures 6,7). For areas and years with few or no samples, the model could use information from
other years and regions to construct a likely length-frequency distribution, albeit with large error bars for
these strata. Because the error from this procedure is directly included in the assessment as observation
error, this uncertainty is considered to be adequately represented.

Estimated posterior length-proportions for each region and year were extracted from the model as the
posterior mean of the clr-(centered log-ratio)-transformed proportions (7, ) for use in the stock assess-

ment. The clr-transform is defined as clr(7) = log(w) — log(7), with its inverse defined as clr~1(z) =
clo(exp(z)), where clo is the closure (sum-to-one) operation. The posterior co-variance estimated from
clr-transformed yearly proportions from MCMC draws was used as an estimate of observation error for
clr-transformed proportions data in the final stock assessment model.

2.2 Spatial assessment model

Spatial assessment tools have been developed for a range of stocks in New Zealand and worldwide (e.g.,

Cadrin et al. 2019, Punt 2019b). The most common spatial assessment tools are tag-integrated models
that account for movement between sub-stocks in large-scale fisheries (Goethel et al. 2011, Cadrin et al.
2019). For relatively immobile invertebrates such as abalone, however, there is limited adult movement
between sub-stocks, and stock mixing is considered to occur mainly at the larval stage. For these spe-
cies, sub-stocks are often assessed using independent models, or models that share parameters a priori
(e.g., common recruitment patterns, catchability, natural mortality; Punt 2019b). The latter assessment
models make strong assumptions about the similarity of demographic parameters for sub-stocks, but
have the advantage that shared parameters can be estimated from multiple datasets, which may improve
convergence and estimation.

Statistically, these two strategies lie at opposing ends of a spectrum between pooled effects (shared para-
meters) and independent, fixed effects (independent assessments; Gelman & Hill 2006). Here, a model
was set up that shared data of natural mortality, steepness and process error estimates among regions,
but allowed for regionally-varying growth, maturation, selectivity and recruitment. In the first instance,

Fisheries New Zealand Spatial assessment for paua @ 7
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Figure 6: Dirichlet-Multinomial posterior distributions for yearly proportions 7, , (black line) in each of four
regions in paua management area PAU 5B, with 95% confidence intervals (dashed line). Raw catch sampling
length frequency proportions are in grey; number of landings (L) in black; number of measurements (M) in
blue.

fully-shared or region-specific parameters were chosen, but the model implementation would allow the
application of random effects to estimate region-specific parameters at smaller spatial scales. This aspect
would enable the sharing of information among regions while allowing for some dissimilarity. Never-
theless, this latter model structure is difficult to implement with a small number of spatial strata like
the research strata used here, because the random-effects variance cannot be reliably estimated with few
strata.

2.2.1 Main population dynamics

Within each spatial area, the spatial assessment model employed the same dynamics as those described
by Neubauer & Tremblay-Boyer (2019b). These dynamics were based on the model described by Breen
et al. (2003): population dynamics in each spatial region (research stratum) r are written as beginning-
of-year values N, at length [, with [ € [1, L] in year y as:

Nr,y = (SNr,yfl o SFr,yfl)Gr + Rr,y» (7)

where N, is used to denote the vector of numbers-at-lengths 1...L (i.e., omitting the subscript denotes
a vector); S = exp(—M) is (region-independent) survival from natural mortality, SF,.,_; is the length-
specific survival after fishing (o is the element-wise multiplication), G, is a L x L growth-transition
matrix for region r, and R, is recruitment, which is evenly distributed among the first five length classes
in the model. Element G, ; ; of G, is then the proportion of paua transitioning from length class i to
length class j in a given year in region 7.
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Figure 7: Dirichlet-Multinomial posterior distributions for yearly proportions 7, , (black line) in each of four
regions in paua management area PAU 5D, with 95% confidence intervals (dashed line). Raw catch sampling
length frequency proportions are in grey; number of landings (L) in black; number of measurements (M) in
blue.

Survival S is derived from M, an estimated parameter in the model. Survival from fishing, SF;. ,, is
calculated by applying region-specific selectivity V;.,, in year y to the overall exploitation rate U, , so
that SFW =1-UryVry, With U,y the regional ratio of catch T'C,., in year y to available biomass
Bﬂf;”, or Uy =TCry/ Bf}f;‘]. Biomass is obtained by multiplying numbers-at-length N,.,, by a vector
w of weight-at-length.

Selectivity was assumed to be logistic. The logistic selectivity describes a smooth increase in selectivity
that is symmetric about the size at 50% selectivity (D°?). With DY and size at 95% selectivity (D° +
D%), selectivity was estimated for each region r using

1

V: 7l = 50 a)s ? (8)
rel =T exp(—log(lg)(lgé); +DD ))

where D? is a specified offset from the baseline selectivity, reflecting voluntary increases in minimum
harvest size (MHS), and D is an estimated parameter that accounts for only partial implementation of
increased MHS across a QMA (e.g., only some statistical areas will be fished at higher MHS).

Fisheries New Zealand Spatial assessment for paua @ 9



Recruitment R, , was assumed to follow a Beverton-Holt stock-recruit relationship whereby steepness /
was invariant among regions, equilibrium recruitment Ry was estimated across all regions (for compar-
ability with the single-area assessment), and regional unfished recruitment was estimated as R, = A\ Rp
and )., the proportion of the total recruitment that is attributed to region r (e.g., Punt 2019a). Assum-
ing local stock-recruit relationships, regional annual recruitment deviations 2, 4.y determine recruitment
from the regions spawning stock biomass (SSB;.). The latter was determined from the weight-at-length
relationship w and the proportion of mature paua at length y, which was estimated using a prior derived
from the growth-maturity model; it was adjusted in the model via estimated growth and its correlation
with maturity (see Neubauer & Tremblay-Boyer 2019a for details).

Growth, G-, was calculated from the estimated mean growth in region r, growth variability (standard
deviation), and the proportion p,.; of the population in region r that does not grow at any length /. Growth
G, is then (omitting the regional subscript for simplicity):

itk/2
Gii=pi+ (1 —pi) /0 CLN(u4, o), )
itk /2
Gis= (1) / CLN(u1, 07) forj =i +1,L -1, (10)
i—k/2
L—k/2
Gip=(1—p)(1 - / CLN(11,0), (1)
0

where C LN (u;, 0;) is the cumulative distribution function of the log-normal distribution with mean p
and standard deviation o on the log-scale.

2.2.2 Data models

The assessment model was fitted to three main data sources: the CPUE index, length-frequency dis-
tributions derived from commercial catch sampling, and growth and maturity priors developed from
tag-recapture and maturation sampling programmes.

The CPUE index was included on the log-scale and modelled as a normally-distributed variable with:

CPUE,, ~ N (CPUE%, \/ OEZpyg, | + PE(%PUE> : (12)

with PEcpyg, the CPUE process error; CPUEM | the model-predicted CPUE in year y and region r,

Y2
calculated as the log of the proportion g of the available biomass in year y Bf}f;"l = (Viy o Npyw, ie.,
CPUEY, = log(q) 4 log(B") x 3, with log catchability log(q) treated as a “nuisance” parameter (i.e.,
it was not of immediate interest). The parameter 5 modulates the relation between CPUE and available
biomass, and introduces hyper-stability for § < 1.

The spatial assessment model used the yearly-estimated error from the Bayesian CPUE standardisation as
OEcpug, which led to more uncertain CPUE early in the time series (e.g., CELR data, especially year 1),
and increased precision in later years (cf. figure 13 in Neubauer & Tremblay-Boyer 2019a).

Analogous to CPUE inputs, yearly catch sampling length frequency (CSLF) proportions at length were
included as the mean of clr-transformed estimated mean proportions from the Dirichlet-multinomial
standardisation model for raw CSLF data. The model derived estimated length frequencies for each year
with associated error, which was considered to be the observation error for CSLF data (analogous to the
OE for uncertainty in the CPUE index). The clr-transformation changed the data from an L-dimensional
simplex (i.e., Zle Dy,i = 1) to anunconstrained L-dimensional space. The observed mean CSLF values
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for year y are thus specified as multivariate-normal (MVN) distributed with uncertainty, and correlations
specified by a L x L dimensional covariance matrix of observation error OEcsir, ,. Due to the strong
correlations (positive and negative), a multiplicative process error formulation was used, giving:

cIr(CSLF, ) ~ MVN (CSLF%, 1+ PECSLFT,y)OECSLFw), with (13)
CSLF}Y, = clr((Vyy 0 Npy)Usry), (14)

where clr((V}., 0 N, )U, ) are the clr-transformed predicted selected proportions at length in the model,
and PEj;(csir, ) > O the process error that is additional to OE.

The spatial assessment model was exclusively fitted to model outputs from pre-processing models on the
input data. This approach was mainly taken for computational convenience; for example, the growth-
maturation model takes considerable time to fit growth and length-at-maturity data for paua, given long-
range correlations in the model, the explicit solving of the differential equation for growth and the ex-
pansion of the dataset to include measurements across all QMAs.

Instead of fitting the model to growth data, relatively uninformative joint prior distributions were spe-
cified for the following: mean (log-scale) growth increments . = pq, ..., 1., the log of the (log-scale)
growth standard deviations ¢ = o7, ..., 01, the logit of the proportions z of the total population that
exhibits zero growth at each length class, and the logit of the proportions of the total population that are
mature in each length class (y). The prior was identical for growth in each region. The functional form
of the relationship between elements of y,0,2, and y is determined by an overall covariance matrix that
encodes correlations both within and between these variables:

(w,0,2,y) ~ MVN((11,0,2,y), cov((11, 7, Z,9))), (15)

where the tilde designates samples from the posterior distribution of the growth-maturation model.

2.2.3 Prior distributions

The CPUE process error was estimated in the model using a half-normal prior distribution (N?), with
prior standard deviation Tpg,,, "

PEcpug ~ NO (TPECPUE ) .

Similarly, the CSLF process error was estimated in the model using a half-normal prior distribution, with
prior standard deviation 7Tpg.; -

Recruitment deviations (Rgey), equilibrium recruitment (Rp), natural mortality (M) and (log(q)), Dso
and Dgs were assigned log-normal priors, parameterised in terms of mean and standard deviation (sd;
on the log-scale), with the sample mean for Rg., forced to one.

Steepness h was estimated in this iteration of the assessment model; it was assigned a beta distribution
prior with parameters a and b, with ¢ = 10 and b = 4 the default prior, leading to a wide prior that put
most of the weight at h > 0.5 (see Table 1 for other default priors).

Prior predictive simulations were used to assess the impact of different formulations of priors for Ry and
A for final stock status and maximum depletion. The procedure is similar to stochastic stock-reduction
analysis (Walters et al. 2006) and proceeds as follows:

1. Draw N values from prior for all parameters (especially Ry and p).
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2. Simulate trajectories using same length-based dynamics used in stock assessment, removing ob-
served catches for each region and year.

3. Compare parameter space where available biomass >0 for all years with prior, discard any prior
values where available biomass is below zero, retain » trajectories simulated from the reduced
prior.

4. Inspect implied stock status and maximum depletion for all 7 retained draws.
Table 1: Default priors used both the single-area and spatial paua stock assessment models (LN=Lognormal,

N=Normal, N’=half-normal), with prior standard deviation (SD) shown on the log-scale and on the positive
scale (CPUE, catch-per-unit-effort; CSLF, catch sampling length frequency).

Parameter Symbol Prior Mean SD  SD (pos)
Equilibrium recruitment Ry LN 135 0.5 4.4x10°
Recruitment deviations Rgev LN 0 2 54.1
Natural mortality M LN log(0.12) 0.2 0.02
Length at 50% selectivity Dsg LN log(123) 0.03 3.69
95% selectivity offset Doys LN log(5) 0.5 3.02
Selectivity increase D, LN 0 1 2.16
Steepness h Beta 0.71 0.12

CPUE process error PEcpue  N9(0.05) 0.04 0.03

CSLF process error PEcsir N°(2) 080 0.6

An overly vague prior for either Ry and/or A implies a strong prior on current stock status and max-
imum depletion: at high values for Ry and/or A, the resulting scale of the biomass is that fishing has
no impact—the prior strongly favours a stock status that reflects no fishing impact (Appendix B, Figure
B-4). In contrast, small values for Ry and/or A will lead to the rapid depletion of regional stocks in prior
simulations, and these values are thus discarded (see Appendix B, Figure B-4).

Although the prior for Ry can be adjusted empirically from the above procedure, a suitable prior for A
can be determined by assuming that the scale of the fishery in each region is approximated by the relative
catch in each area. This assumption is reflected in a prior by taking the mean catch proportion and the
covariance of regional catch proportions on clr-transformed proportions as the prior for A (Figure B-5).
The full prior for regional recruitment then becomes:

clr(A) ~ MV N (clr(pcaten), cov(clr(pcaten))), (16)
Ry = LN(13.5,0.5), (17)
R, =\ - Ro. (18)

2.2.4 Data weighting

In this assessment, the Kullback-Leibler divergence (KLD) was used as a method for data weighting
via a measure of information loss. The method relies on the premise that there should be no a priori
preference for any one dataset, and that relative weight should emerge as part of the analysis and model
refinement process. In addition, it makes use of the total distribution for the compositional data rather
than just the first moment (e.g., mean length) (for further detail see Neubauer & Tremblay-Boyer 2019b).
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2.2.5 Technical model details

The model was initialised for a period of 60 years with constant recruitment at Ry and no fishing. All
MCMC algorithms were run using the no-u-turn-sampler (NUTS) implemented in Stan. The Stan lan-
guage is more efficient than conventional Metropolis Hastings or Gibbs sampling for MCMC, and also
provides diagnostics that can signal biased MCMC transitions (divergences) and potential bias in es-
timated quantities from these transitions. All MCMC chains were, therefore, monitored for divergent
transitions to ensure that MCMCs were not biased. Eight independent chains were run over 1000 itera-
tions, with the first 500 samples discarded for each chain, and a further 2000 samples saved for inference
and post-processing.

2.3 Model comparisons

The spatial model was compared with the single-area model for QMAs PAU 5B and 5D, with a focus on
both similarity of outcomes and also differences and potential bias in the non-spatial assessments due to
spatial dynamics. Comparisons were mainly at a qualitative level, with comparisons of overall fits and
combined biomass trends in the spatial models relative to the single-area models: the aim here was not
to compare numerical outcomes but to compare qualitative model behaviour and consequences for stock
status estimates.

3. RESULTS

The spatial model converged and performed similarly to the single-area model in technical terms: all
parameters could be estimated (see Appendix C, Figures C-8, C-9, C-12, C-13), although for some para-
meters (e.g., steepness, M), there was little information in the data to constrain those parameters beyond
the prior constraints. Nevertheless, these parameters were estimated to propagate uncertainty about them
to the final biomass estimates.

3.1 Comparisons for PAU 5B

As for previous assessments (e.g., Fu 2014), the single-area assessment for PAU 5B fitted the large
decline and subsequent recovery in CPUE (Figure 8) with a corresponding trend in biomass (Figures 9,
10). These patterns were replicated in the spatial model (Figures 9 to 11); however, it was also evident
from this model that not all of the pre-1996 research strata reached similar depletion levels in the early
2000s; the stock in research stratum 25 remained near 40% of SSBy at the time, whereas other stocks
in areas 27 and 29 were likely close to the soft limit of 20% of SSBy. These differences were partly
due to differences in estimated growth among regions: the stock in region 25 (i.e., the Foveaux Strait
coast of Stewart Island) was estimated to grow more slowly than other regional stocks at Stewart Island
(Figure 12). This slow growth commonly leads to higher estimated biomass because less of the biomass
is available to the fishery (Neubauer & Tremblay-Boyer 2019b). Overall, however, both the single- and
multi-area models showed increased growth relative to the prior.

The spatial model also provided insight into regional recruitment dynamics at Stewart Island, evident in
synchronous recruitment patterns estimated for areas 25 and 30 (Foveaux Strait coast of Stewart Island)
and areas 27 and 29, on the southern (east and west, respectively) side of Stewart Island (Figure 13). For
the latter two areas, the synchrony was mainly evident in more recent years (i.e., since the late 1990s),
with large year classes estimated between 2008 and 2010 to fit the increase in CPUE since 2011.

3.2 Comparisons for PAU 5D

Although the spatial assessments provided complementary information to the single-area assessment
for the fishery in PAU 5B, the spatial assessment in PAU 5D diverged markedly from the single-area
assessment outputs (Figures 14, 15): the estimates of overall relative biomass from the spatial model
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Figure 8: Comparison of catch-per-unit-effort (CPUE) indices (black points and vertical observation error
bars) and model fits (posterior median and 95% confidence interval as coloured ribbons) for regions in
the spatial model (top four panels) and the single-area model (bottom panel; CELR, Catch Effort Landing
Return) for paua management area PAU 5B.

were considerably higher than estimates from the single-area assessment (Figures 14 to 16). The reason
for this discrepancy is most likely the difference in the catch history between the spatial and non-spatial
models and its influence on the overall model dynamics. For the single-area model, reductions in catch
in the early 2000s can be linked to a biomass rebuild at the same time across the region. In the spatial
model, these synchronous increases in biomass cannot be linked to catch reductions since these reductions
largely affected area 26 (the Catlins region), whereas catch in other areas remained stable. As a result,
the model indicated higher overall biomass by forcing slower growth (and less available biomass to the
fishery; Figure 17) and a larger overall stock size (Figure C-13).

In view of the relatively flat CPUE trend over the longer time series, fits to CPUE were not comprom-
ised by this adjustment between the single and multi-area models (Figure 18). Nevertheless, fits to CSLF
trends were notably worse for the spatial model (Figures C-14, C-15) in contrast to the model for PAU 5B
(Figures C-10, C-11). In addition, the recruitment patterns between the spatial and single-area models
were markedly different for PAU 5D: the single-area model showed a regular “pulsed” recruitment pat-
tern, whereas the spatial model created a large single year-class in the early 2000s to explain the increase
in CPUE during that time (Figure 19).
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Figure 9: Relative biomass trend for paua management area PAU 5B summed across all regions in the spatial

model (i.e., by summing the biomass across regions and then calculating the relative spawning stock biomass,
SSB).
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Figure 10: Relative spawning stock biomass (SSB) trend for paua management area PAU 5B for the single-
area assessment.
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for four regions in the spatial model.
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Figure 12: Paua population growth for four regions (25, 27, 29, 30) in the spatial model for PAU 5B (a) and
the single area model (b). Shown in (a) are for each each model/region the posterior population mean growth
(light blue line) and standard deviation (light blue vertical lines), the prior for population mean growth, and
the prior 95% confidence interval (left); the population mean growth (blue line) and population standard
deviation (light blue vertical lines) (middle); and the proportion of paua stock not growing at each length
(right). Arrangement in (b) of these graphs is top to bottom.
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Figure 14: Relative biomass trend for paua management area PAU 5D summed across all regions in the

spatial model (i.e., by summing the biomass across regions and then calculating the relative spawning stock
biomass, SSB).
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area assessment.
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Figure 17: Paua population growth for four regions (24, 25, 26, 30) in the spatial model for PAU 5D (a) and
the single-area model (b). Shown in (a) are for each each model/region the posterior population mean growth
(light blue line) and standard deviation (light blue vertical lines), the prior for population mean growth, and
the prior 95% confidence interval (left); the population mean growth (blue line) and population standard
deviation (light blue vertical lines) (middle); and the proportion of paua stock not growing at each length
(right). Arrangement in (b) of these graphs is top to bottom.
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paua management area PAU 5D.

22 e Spatial assessment for paua

Fisheries New Zealand



2 m
IS
2 Parameter
E — Rdev
9 — true_Rdev
o

1 4 - L —

1970 1980 1990 2000 2010
Year

Region

— 24
— 25

26
— 30

Recruitment

1970 1980 1990 2000 2010
Year

Figure 19: Estimated recruitment deviations from the single-area model, and for four areas from the spatial
assessment model for paua management area PAU 5D.
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4. DISCUSSION

This project represents a first attempt at developing and fitting multi-area stock assessment models for
paua stocks, which are known to show considerable spatial variability in growth and other demographic
parameters (McShane & Naylor 1995, Prince 2005, Naylor et al. 2006).

Differences between the spatial model and the single-area model for paua management area PAU 5D
highlight the importance of spatial dynamics in both catch (CPUE) and demographic parameters on
inferred population dynamics, and the effects of fishing (Punt 2003, Cope & Punt 2011, Punt 2019b).
In PAU 5D, it is difficult to reconcile the spatial variability in catch trends with a large effect of fishing.
The structure of the single-area model cannot account for spatial differences in catch and, therefore,
attributes changes in CPUE and available biomass to fishing. In contrast, the spatial model attempts to
determine an alternative explanation for the CPUE trends, because catch by itself cannot explain increases
in biomass in the early 2000s; the model, therefore, adjusts the overall biomass and growth. Whether the
adjustment of biomass, and of the effect of fishing, between models represents a more realistic scenario is
uncertain: the spatial model also estimated smaller than average growth for paua in PAU 5D (compared
with considerably greater than average growth for PAU 5B), which may not be regarded as a reasonable
estimate. Punt (2003) found that a simplified spatial length-based assessment was strongly biased for
initial biomass when early CPUE was not available to adjust early biomass trends. Similarly, Cope &
Punt (2011) found that a spatial model did not necessarily improve estimates across a range of scenarios,
but found that accounting for spatial catch histories generally improved assessment performance when
the spatial variation matched that of effective management. It is, therefore, difficult to determine whether
the spatial model for PAU 5D removes or accentuates bias relative to the single area model for this QMA.

Regardless of whether the spatial model provides a realistic representation of biomass, it shows that
past assumptions of fast growth across the area, coupled with a biomass that is vulnerable to the levels
of past extraction, are not compatible with the observed catch patterns and the associated relative bio-
mass trends as inferred from CPUE. This finding stresses the importance of CPUE and catch history
in determining assessment outcomes (Punt 2003, Cope & Punt 2011), and suggests renewed focus on
early catch time series, and revisiting of the suitability of Fisheries Statistics Unit CPUE data. The latter
had been discarded in recent assessments given the poor coverage of fishery catch in the corresponding
years (1983—1988). Nevertheless, if the absence of early CPUE biases assessment outcomes, then having
under-representative data may be preferable to the lack of data for that period.

Spatial assessment and management tools are reliant on spatially resolved data, and current efforts to
collect growth data across a more representative area of all QMAs will contribute to resolving spatially
varying growth patterns. Growth firmly dictates inferences about stock status from the model (Neubauer
& Tremblay-Boyer 2019b), and obtaining a better understanding of spatial variations in growth appears
the most promising way to improve the robustness of paua assessments (see also Plaganyi & Butterworth
2010). Nevertheless, the current method of obtaining samples from distinct points in space only meas-
ures growth at a single site; it may be difficult to construct a representative assessment of growth across
smaller areas from this limited sampling, even with a large number of sites sampled. Alternative pro-
gramme structures that tag paua over larger areas (at the expense of recapture rates) could be considered
to broaden the spatial extent of the data and its representation for growth across the different QMAs and
smaller areas. Another valuable approach would be to gain improved mechanistic understanding of paua
growth so that growth can be predicted in space, based on observed growth data and the identification of
factors determining it (i.e., temperature, coastline exposure, primary production, paua density).

A greater understanding of spatial variability in demography, combined with the real-time electronic
reporting of CPUE that will be available from 2019, will enable the development of models that incor-
porate greater spatial complexity; the latter can then be used to assess and test management at smaller
spatial scales (Berger et al. 2017). Examples of these smaller management units include the spatial scale
of statistical area and CPUE limits, and also strategies to spread effort to avoid local depletion. Across
larger spatial scales, the spatial model can provide a tool to assess areas like PAU 5A as a single area,
instead of the current practice of splitting the area into two assessments. Similarly, for other areas that
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span fishing grounds with contrasting fishing histories, such as PAU 7 (east coast of Marlborough south
of Cape Campbell; Cook Strait and D’Urville Island), these areas could be assessed in a spatial assess-
ment to test the impact of Total Allowable Commercial Catch adjustments in view of uneven spatial
effort distributions (e.g., no fishing in the closed area on the eastern Marlborough coast since the 2016
Kaikoura earthquake).

In summary, the spatial model could fulfill three roles:

1. Testing the impact of assumptions of spatial homogeneity in catch and demographic parameters
on assessment outcomes.

2. Assessing quota management areas with considerably different fisheries to allow evaluation of
QMA-wide management measures and potential impact on smaller regions.

3. Uncovering key uncertainties and guiding research priorities for paua stocks.
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APPENDIX A: SUPPLEMENTARY FIGURES
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Figure A-1: Markov chain Monte Carlo (MCMC) traces for selected parameters in the Dirichlet-
Multinomial length composition standardisation model for paua management area PAU 5B. (Results were
almost identical for PAU 5D.)

Fisheries New Zealand Spatial assessment for paua e 27



Stat Area{ | (]
|
|
|
|
I

Region-Yeary ! — e ——
|
|
|
|
I

Region| ems—

|
|
|
|
:
|

Fishing year{ | — @
O.IO 0.2 0.4 0.6

Figure A-2: Dirichlet-Multinomial posterior distributions for random effects variance parameters o for
paua management area PAU 5D. (Results were almost identical for PAU 5B.).
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Figure A-3: Statistical area effects plot for paua management area PAU 5D. Top panel displays the direction
of deviation of the raw catch sampling length frequency data in each year and length bin (class) in relation to
the fishing pattern (shown in the lower panel). Statistical areas in the lower panel are sorted by the observed
mean length to allow comparisons of their influence on estimated deviations in the upper panel. (Results
were nearly identical for PAU 5B.)
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APPENDIX B: PRIOR PREDICTIVE SIMULATIONS

The following section illustrates prior predictive simulations used to justify priors on Ry and A for
PAU 5B. (Results were nearly identical for PAU 5D.)

B.1 Uniform priors

With near uniform priors on both Ry (Uniform(6, 30)) and A (Dirichlet(1/nyegions)), much of the prob-
ability mass of these priors falls outside of plausible outcome space for the assumed model: low Ry or
any A, near 0 (for any of the regions) leads to a quick and complete depletion of available biomass in
one or all regions (Figure B-4).

B.2 Informed priors

With informed priors on Ry only (using the same prior as for the single-area assessments), much of the
parameter space remains non-feasible, and few samples are retained when exploitation rates are restricted
to a plausible space of <1 and >0.01. From the retained sample for )\, it appears that the prior based on
catch proportions provides a reasonable approximation to the retained prior A values (Figure B-5).

With informed priors for both Ry and A, the implied priors for stock status (Figure B-6) and maximum
depletion (Figure B-7) for the stock are constrained to lie within plausible regions of the outcome space
for the assumed model: while maximum depletion over the time series has a high probability of having
been near the soft limit (20% of unfished spawning stock biomass), the mode of the prior on current
depletion is situated at higher relative biomass levels given large reductions in catch in the early 2000s.
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Figure B-4: Population trajectories (top graph) for a single region (area 25) in PAU 5B for prior predictive
simulations of stock dynamics with observed removals, using approximately uniform priors for both unfished
recruitment R, and the proportion of recruitment attributed to each region (\). Trajectories in red are
discarded a priori because either i) exploitation rate in the focal region was >1 in any one year, and/or ii)
exploitation rate in any other region in the model was >1 in any one year. The prior for stock status (relative
spawning stock biomass, rSBB; bottom panel) after removing a priori discarded runs is centered around 1,
with a low probability of being below any reference point.
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Figure B-5: Population trajectories (top graph) for a single region (area 25) in PAU 5B for prior predictive
simulations of stock dynamics with observed removals, using informed priors for both unfished recruitment
Ry and the proportion of recruitment attributed to each region ()\). Trajectories in red are discarded a priori
because either i) exploitation rate in the focal region was >1 in any one year, and/or ii) exploitation rate in any
other region in the model was >1 in any one year. Lower graphs show the values of )\ that are retained with
a uniform prior on )\ and an informed prior on R, (left graph), and the prior values of A\ with an informed
prior based on catch distributions among regions (indicated by different colours; green: area 29, red: area
27, blue: area 25, lavender: area 30 - right graph).
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Figure B-6: Stock status of paua (relative spawning stock biomass, rSSB) in 2017 for four regions in PAU 5B
from prior predictive simulations of stock dynamics with observed removals, using informed priors for both
unfished recruitment R, and the proportion of recruitment ()\) attributed to each region (indicated by dif-
ferent colours; green: area 29, red: area 27, blue: area 25, lavender: area 30).
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Figure B-7: Maximum depletion over simulated population trajectories of paua for four regions in PAU 5B
from prior predictive simulations of stock dynamics (relative spawning stock biomass, rSSB) with observed
removals, using informed priors for both unfished recruitment R, and the proportion of recruitment ( \) at-
tributed to each region (indicated by different colours; green: area 29, red: area 27, blue: area 25, lavender:

area 30).
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APPENDIX C: MODEL COMPARISON
C.1 PAUS5B
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Figure C-8: Markov chain Monte Carlo (MCMC) trace plots for key model parameters of the spatial stock

assessment model for paua in quota management area PAU 5B (blue); priors are shown as red line where
applicable.
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Figure C-9: Marginal posterior densities for key model parameters of the spatial stock assessment model
for paua in quota management area PAU 5B (blue); priors are shown as red line where applicable.
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Figure C-10: Comparison of posterior mean predicted catch sampling length frequency (CSLF) with estim-
ated CSLF proportions and observation error for the single area stock assessment model for paua in quota
management area PAU 5B. Length classes with positive residuals in blue, with negative residuals in red.
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Figure C-11: Comparison of posterior mean predicted catch sampling length frequency (CSLF) with es-
timated CSLF proportions and observation error for the spatial stock assessment model for paua in quota
management area PAU 5B. Length classes with positive residuals in blue, with negative residuals in red.

38 @ Spatial assessment for paua Fisheries New Zealand



C.2 PAUSD

rel_spawn_bio[1,55] rel_spawn_bio[2,55] rel_spawn_bio[3,55] rel_spawn_bio[4,55] KL_CPUE[1]
11
o5 125 i
Loo 1.00 1.00 1o
: 08 09
ors 075 s 075 08
050
050 04 0.50 07
025
025 02 06
500 600 700 800 900 1000 500 60D 700 800 900 1000 500 600 700 800 900 1000 500 600 700 800 900 1000 500 600 700 800 900 1000
KL_CPUE[2] KL_CPUE[3] KL_CPUE[4] KL_CSLF[1] KL_CSLF[2]
14
10 1o 12
12 11 12
08
08 1o 10
06 06 08 09 o
08
04 06 s
500 600 700 800 900 1000 500 600 700 800 900 1000 500 600 700 800 900 1000 500 600 700 800 900 1000 500 600 700 800 900 1000
KL_CSLF[3] KL_CSLF[4] Pl pl2] p(3]
030 .
13 12 04 06 chain
12 025 —1
03 05
10 — 2
Lt 020
10 02 04 -3
0.8 015 —_—
09 03
500 600 700 800 900 1000 500 600 700 800 900 1000 500 600 700 800 900 1000 500 600 700 800 900 1000 500 600 700 800 900 1000
pl4] Select50CSLF Reoff Select9sCSLF M
025 16 0175
132
020 15.0 “ 0.150
015 129 0125
145 12
o0.10 126 0.100
140 10
0.05 12 0075
500 600 700 800 900 1000 500 600 700 800 900 1000 500 600 700 800 900 1000 500 600 700 800 900 1000 500 600 700 800 900 1000
steepness CPUE_pe_sd CSLF_pe_scale log-posterior
30
09
08 0.10 27 1250
or 0.08 24
06 1200
21
05 006
500 600 700 800 900 1000 500 600 700 800 900 1000 500 600 700 800 900 1000 ~ 500 600 700 800 900 1000

Figure C-12: Markov chain Monte Carlo (MCMC) trace plots for key model parameters of the spatial stock
assessment model for paua in quota management area PAU 5D (blue); priors are shown as red line where

applicable.
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Figure C-14: Comparison of posterior mean predicted catch sampling length frequency (CSLF) with estim-
ated CSLF proportions and observation error for the single area stock assessment model for paua in quota
management area PAU 5D. Length classes with positive residuals in blue, with negative residuals in red.
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Figure C-15: Comparison of posterior mean predicted catch sampling length frequency (CSLF) with es-
timated CSLF proportions and observation error for the spatial stock assessment model for paua in quota
management area PAU 5D. Length classes with positive residuals in blue, with negative residuals in red.
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