

Integrated population model of Antipodean albatross for simulating management scenarios

Technical report prepared for Department of Conservation – June 2021

Data Science

Authors:

PO Box 27535, Wellington 6141 New Zealand dragonfly.co.nz

Cover Notes

To be cited as:

Richard, Yvan (2021). Integrated population model of Antipodean albatross for simulating management scenarios, 31 pages. Technical report prepared for Department of Conservation – June 2021.

Cover image:

https://www.flickr.com/photos/angrysunbird/2549595283

EXECUTIVE SUMMARY

Antipodean albatross *Diomedea antipodensis antipodensis* are endemic to New Zealand, with the quasi-totality of the population nesting on Antipodes Island. The species is classified as Nationally Critical due to a potential demographic decline. Threats to the population include incidental mortality in fisheries (in New Zealand and in international waters) and climate change.

The objective of this project was to provide a tool that allows stakeholders to explore the potential impact of threats and the demographic outcomes of management strategies. Using the tool, simulations of the demographic impact of different scenarios may be carried out so that management strategies can be assessed and prioritised.

A small subset of the population of Antipodean albatross has been studied since 1994, and these field data were used to perform the simulations. A Bayesian integrated population model was developed to estimate the main demographic parameters of the population. The model considered detectability of individuals, inter-annual variability, and movements in and out of the study area; it was fitted using the software Stan.

From the model, the annual survival rate for females was estimated to decline from 0.947 (95% c.i.: 0.914 – 0.974) in the period from 1994 to 2004, to 0.882 (95% c.i.: 0.814 – 0.94) after 2005. Estimated survival for males was higher, at 0.946 (95% c.i.: 0.913 – 0.972) and 0.927 (95% c.i.: 0.887 – 0.961) for the two periods. Breeding success also declined between the two periods, from 72.4% (95% c.i.: 65.8% – 78.6%) from 1994 to 2004 to 63.7% (95% c.i.: 53.4% – 73%) subsequently.

Under the current scenario, simulations suggest a significant decline of the population, with an annual growth rate of -4.84% (95% c.i.: -6.07% – -3.65%). Limitations in the data and in the model assumptions may cause the decline to be slightly overestimated; however, the trend remains of concerns.

The simulation tool is aimed to assist conservation managers with the prioritisation of management strategies to mitigate threats to the Antipodean albatross population and to guarantee the persistence of this species. The tool can be accessed at https://dragonfly-science.shinyapps.io/antipodean-albatross-simulations.

1. INTRODUCTION

The seabird species Antipodean albatross (*Diomedea antipodensis antipodensis*) is endemic to New Zealand and consists of two subspecies, Antipodean albatross (*D. a. antipodensis*) and Gibson's albatross (*D. a. gibsoni*). The subspecies Antipodean albatross breeds almost exclusively on Antipodes Island, with a few pairs breeding on Chatham and Campbell islands, whereas Gibson's albatross breeds on Auckland Island. The species is classified as Endangered by the International Union for Conservation of Nature (BirdLife International 2018), and each subspecies is classified individually as Nationally Critical in New Zealand (Robertson et al. 2017).

The population of Antipodean albatross is exposed to a number of at-sea threats. They are caught incidentally in surface-longline fisheries in New Zealand waters and globally (Richard & Abraham 2020). Climate change may also impact the population indirectly, increasing heat stress to chicks and affecting the distribution or abundance of prey species.

On Antipodes Island, the species' population has been monitored within a 29-ha (0.29-square kilometre) area every year since 1994, except in 2006. Field data from this area (Elliott & Walker 2020) and quantitative modelling (Edwards et al. 2017) suggest a population decline since 2007, via a decrease in female survival and in breeding success, and an increase in recruitment age. Tracking data of individual at-sea movements also suggest a potential change in the foraging grounds over time (Elliott & Walker 2020), which may have increased their overlap with fisheries (Bose & Debski 2020). A number of mitigation techniques exist to reduce the level of incidental captures in fisheries and are already in place in a number of fisheries, in New Zealand and worldwide (Løkkeborg 2011).

The main objective of this project was to develop an online tool to facilitate the prioritisation of management strategies around population threats. The online tool allows the running of simulations of the fate of the population under different scenarios, leading to the identification of strategies with the highest positive impact on the population. The simulations rely on estimates of the main demographic parameters of this subspecies. A Bayesian integrated population model was developed for this purpose, based on individual capture-recapture, breeding, and nest success data that have been collected in the study area on Antipodes Island since 1994.

2. METHODS

The Antipodean albatross subspecies breeds almost exclusively on Antipodes Island (Agreement on the Conservation of Albatrosses and Petrels 2009). When breeding, a single egg is laid on a nest consisting of a low pedestal build of soil and vegetation, often re-used between breeding attempts. It takes a year for an egg to produce a fledgling. For this reason, adults can only breed every second year when successful. Fledglings spend at least three years at sea before returning to the colony, and subsequently spend another year or more before breeding for the first time (Agreement on the Conservation of Albatrosses and Petrels 2009).

Since 1994, the 29-ha (0.29-square kilometre) area on Antipodes Island has been surveyed every year, except in 2006; the most recent survey was in 2021. Survey visits to the island

were generally conducted in January, so that the outcome of the previous year's breeding attempts could be observed, while simultaneously recording new breeding attempts. Each visit was on average for a month to allow sufficient time to survey the birds present and to band any new birds in the study area. Due to the remoteness of the island and its limited accessibility, logistic constraints led to variation in the exact timing and length of visits between years.

The data collected in the field consist of the date and location of detected banded individuals at the site, their breeding status and stage, and their sex when identifiable.

Additionally, a buffer around the study area was frequently visited, next to two other blocks on the island. In these areas, the sightings and breeding status of banded individuals were also recorded, and identified as being outside the study area. A description of the field data is presented in Edwards et al. 2017

The data were aggregated to create individually- and annually-based capture histories, representing the state of individuals each year between 1994 and 2021. Individuals were categorised into three age classes: juvenile (between fledging and first return to the colony), pre-breeder (from first return to first breeding at the colony), and adult (after first breeding). Eight observed states were represented:

- 1. adult breeding inside the study area;
- 2. adult non-breeding inside the study area;
- 3. adult outside the study area (breeding or not);
- 4. pre-breeder inside the study area;
- 5. pre-breeder outside the study area;
- 6. juvenile;
- 7. dead;
- 8. not seen.

Adults sighted both inside and outside the study area one year were considered inside the study area. Adults only sighted outside the study area were not split between breeders and non-breeders as their breeding status cannot be identified precisely (especially for birds seen early in the season). Because surveys of the study area overlapped between the end of the previous breeding season and the beginning of the next one, the aggregated data were prepared to represent the status of the population just before breeding occurs; i.e., chicks of the current breeding year first appear in the prepared data the following year after fledging (if successful). Only birds banded within the study area were included in the final dataset, representing a total of 3,176 individuals, 1,730 of which were banded as chicks.

Nest success was recorded at the nest level, as the nesting individuals might not necessarily be seen, and nests were considered successful if they produced a fledgling. A successful nests could either have a chick being very close to fledging at the last observation, or empty but showing indications of recent breeding activity without showing any sign of failure (e.g.; broken shells, dead body parts).

2.1 Integrated population model

To estimate the main demographic parameters of the population of Antipodean albatross, a multi-state Bayesian capture-recapture model was developed. This type of model aims to alleviate the main biases in the data, which are common to most population survey data.

The state of an individual can be unknown, and an individual may be undetected but still alive. Individuals may be undetected in a given year for several reasons. They could be at sea, such as juveniles, adults previously breeding successfully or on a "sabbatical" year, or breeding adults on a foraging trip may not be detected during short visits to the island. Undetected individuals could also be present at the colony, but outside the study area.

For these reasons, the "actual" state of individuals was considered as a latent variable in the model, with year-to-year transitions between the states determined by explicit biological rules. For example, an adult cannot become a juvenile, or an adult breeding successfully cannot breed again the following year. In addition, an observation process was considered, linking the latent state to the observed state, and determined by both the survey effort and the birds' behaviour.

2.1.1 Latent states

A total of eight latent states were considered in the model, different from the observed states:

- 1. adult breeding inside the study area;
- 2. adult breeding outside the study area;
- 3. adult non-breeding inside the study area;
- 4. adult non-breeding outside the study area;
- 5. pre-breeder inside the study area;
- 6. pre-breeder outside the study area;
- 7. juvenile;
- 8. dead.

The transition matrix between the eight latent states required specifying the probability of being in each latent state given the previous one, representing 64 transition probabilities.

For juveniles (J), pre-breeders (PB), breeding adults (B), and non-breeding adults (NB), the probabilities of changing to a different live state given the previous state were:

$$P(\mathsf{PB}_t|\mathsf{J}_{t-1}) = R_a\phi_\mathsf{I},\tag{1}$$

$$P(\mathbf{B}_t | \mathbf{P}\mathbf{B}_{t-1}) = B_a \phi_{\mathbf{P}\mathbf{B}},\tag{2}$$

$$P(\mathbf{B}_t|\mathbf{N}\mathbf{B}_{t-1}) = P(\mathsf{breed}|\mathsf{non-breeder})\phi_{\mathsf{s}},\tag{3}$$

$$P(NB_t|B_{t-1}) = \begin{cases} 1 & \text{after a successful breeding attempt,} \\ (1 - P(\text{breed}|\text{fail}))\phi_s & \text{after a failed breeding attempt,} \end{cases}$$
(4)

where *t* is the year, $\phi_{\{J,PB,s\}}$ the annual survival rate of juveniles, pre-breeders, and adults of sex *s*, respectively, R_a the probability of a juvenile of age *a* returning to the colony, B_a the probability of a pre-breeder of age *a* breeding for the first time, P(breed|fail)the probability of an adult breeding in a particular year, given it was an unsuccessful breeder the previous year, P(breed|non-breeder) the probability of an adult breeding in a particular year, given it was a non-breeding adult the previous year.

When the sex was unknown, conditional probabilities were used; e.g., the annual survival rate of an individual of unknown sex was $P(\varphi)\phi_{\varphi} + (1 - P(\varphi))\phi_{\mathcal{O}}$, where $P(\varphi)$ is the probability that an individual in the study area is a female.

The probabilities of remaining in the same live state from one year to the next were:

$$P(\mathbf{J}_t | \mathbf{J}_{t-1}) = (1 - R_a)\phi_{\mathbf{J}},\tag{5}$$

$$P(PB_t|PB_{t-1}) = (1 - B_a)\phi_{PB},$$
(6)

$$P(NB_t|NB_{t-1}) = (1 - P(breed|non-breeder))\phi_s,$$
(7)

$$P(\mathbf{B}_t|\mathbf{B}_{t-1}) = \begin{cases} 0 & \text{after a successful breeding attempt} \\ P(\text{breed}|\text{fail})\phi_{\text{s}} & \text{after a failed breeding attempt,} \\ (1 - P(\text{success}))P(\text{breed}|\text{fail})\phi_{\text{s}} & \text{after an unknown outcome.} \end{cases}$$
(8)

In addition, the transition probabilities were multiplied by the probability of moving inside or outside the study area, depending on the state:

$$P(\operatorname{Out}_t | \operatorname{In}_{t-1}) = E_s, \tag{9}$$

$$P(\operatorname{In}_t | \operatorname{Out}_{t-1}) = I_s, \tag{10}$$

$$P(\operatorname{Out}_t | \operatorname{Out}_{t-1}) = 1 - I_s, \tag{11}$$

$$P(In_t|In_{t-1}) = 1 - E_s, (12)$$

where E_s is the probability of an individual of sex *s* moving out of the study area (emigrate), and I_s the probability of an individual of sex *s* moving into the study area (immigrate).

The probabilities of being dead (D) in a particular year were:

$$P(\mathbf{D}_t | \mathbf{J}_{t-1}) = 1 - \phi_{\mathbf{J}},\tag{13}$$

$$P(\mathsf{D}_t|\mathsf{PB}_{t-1}) = 1 - \phi_{\mathsf{PB}},\tag{14}$$

$$P(\mathbf{D}_t | \mathbf{B}_{t-1}) = 1 - \phi_s, \tag{15}$$

$$P(\mathsf{D}_t|\mathsf{NB}_{t-1}) = 1 - \phi_{\mathsf{s}},\tag{16}$$

$$P(\mathsf{D}_t | \mathsf{D}_{t-1}) = 1. \tag{17}$$

The probability of impossible transitions—e.g., from adult to juvenile or to pre-breeder, from pre-breeder to juvenile, and from dead to alive—were fixed to zero.

The adult annual survival rate was estimated independently for females and males, and was allowed to vary randomly between years, with the survival rate $\phi_{s,t}$ for sex *s* at year *t* being defined on the logit scale as:

$$\operatorname{logit}(\phi_{s,t}) = \operatorname{logit}(\bar{\phi_s}) + \epsilon_{s,t} s_s, \tag{18}$$

where $\bar{\phi}_s$ is the mean survival rate across years for sex *s*, $\epsilon_{s,t}$ is the normally-distributed random effect for each sex and year, and s_s is the sex-specific variability of the random effect among years.

The annual survival rate of juveniles and pre-breeders was assumed to be constant over time, and the same between males and females in the model.

Breeding success, i.e., the probability that a nest produces a fledgling, was also modelled as a random effect over time.

The probability R_a of a juvenile of age *a* returning to the colony and becoming a prebreeder was set to 0 at ages below the minimum observed age at first return (3 years), and set to 1 for birds of age 9 and above, as all birds are expected to have returned to the colony by age 9 (G. Elliott, pers. comm.). The age-specific probability of return for birds aged 3 to 8 was modelled as a random effect.

Similarly, the probability B_a of a pre-breeder of age a to become a breeder for the first time was set to 0 for birds under 7 years old, the minimum recorded breeding age. The age-specific probability of first breeding for birds aged 7 to 20 was modelled as a random effect. The probability for birds aged 21 and above was set to be constant to represent the long tail in the distribution of age at first breeding (i.e., some birds take a long time to breed or do not breed)

Both R_a and B_a were dependent on age, but assumed not to vary with year.

2.1.2 Observation process

In the model, latent states are related to observed states via an observation matrix, representing the probability of recording any of the eight observed states given a latent state (one of 8 latent states, different from the observed states).

The probability of detection was estimated separately in the model for:

- breeding adults inside the study area,
- non-breeding adults inside the study area that previously bred successfully,
- other non-breeding adults inside the study area,
- pre-breeders inside the study area,
- adults and pre-breeders outside the study area,
- juveniles (outside the study area by definition),

• dead individuals.

There were only a few recorded observations of juveniles and dead individuals, with all juveniles and most deaths being recorded at sea. For this reason, their detection probability was assumed to be constant among years.

Because year-to-year variations are most likely to reflect the timing and amount of observations on the island, the other detection probabilities were allowed to vary among years, but with the same annual variability among them; they were defined as:

$$logit(\gamma_{x,t}) = logit(\gamma_x) + \epsilon_t s, \tag{19}$$

where $\gamma_{x,t}$ is the detection probability of birds of category x at year t, logit(γ_x) the average detection probability for category x among years, ϵ_t the random annual effect of year t for all categories, and s the variability among years for all categories.

For 2006, when the population was not surveyed, all detection probabilities were fixed to zero.

2.1.3 Model fitting

The model was written in the Stan language and fitted in the R statistical package (R Core Team 2019) using the *rstan* library (Stan Development Team 2020).

Stan was chosen over alternatives such as Bugs or JAGS as it implements the no-Uturn sampler (NUTS; Hoffman & Gelman 2014) which improves model convergence and allows fitting times to be reduced by an order of magnitude (from days to hours).

One disadvantage of Stan is that it does not support the direct sampling of discrete parameters. Nevertheless, multi-state models can still be fitted by marginalising discrete latent states, i.e., summing at each time step the likelihood of the observed state over all possible latent states, iteratively over each individual capture history (Yackulic et al. 2020).

The model was fitted using Markov chain Monte Carlo (MCMC) methods, using four chains, for 6,000 iterations, after a burn-in period of 5,000 iterations.

The code of the Stan model is provided in Appendix A.

2.2 Population simulations

The main aim of this project was to provide stakeholders with a tool to simulate the fate of the Antipodean albatross population under different scenarios. For this purpose, an interactive online application written in R and using the Shiny framework was developed.

Because the demographic model does not provide the latent state of individuals at each time step directly due to the marginalisation of discrete latent variables, the initial population structure for the simulations was derived separately. For this purpose, the latent state at each time step for each individual was drawn randomly from the previous state and the observed state. Using Bayes' theorem, the probability of an individual to be in the latent state Π_i given the observed state *O* is:

$$P(\Pi_i|O) = \frac{P(O|\Pi_i)P(\Pi_i)}{P(O)},$$
(20)

where $P(O|\Pi_i)$ is the probability of the observed state O given the latent state, which is the detection probability of that state, as estimated by the model. $P(\Pi_i)$ is the probability of state Π_i and is the transition probability from the previous latent state, as estimated by the model. P(O) is the probability of the observed state, and is the sum of observing Ogiven all possible latent states, i.e., $\sum_k P(O|\Pi_k)P(\Pi_k)$. In addition, the probability of a dead individual at a given time step was set to zero when the individual was subsequently detected alive. The process was repeated for each of the 6 000 MCMC samples from the model, and the resulting population structure in 2021—and its uncertainty— was taken as the initial population for the simulations. Pre-breeders and adults outside the study area were not included, to simulate only the population inside the study area and the juveniles that fledged from there.

The population size from the simulations was scaled up by the ratio of the total number of breeding pairs on the island to the number of breeding pairs inside the study area. The total number of breeding pairs was estimated from extensive surveys of the whole island in 1994, 1995, and 1996. The scaling of the studied population size to the whole island, therefore, assumes that the ratio did not change over time. The proportion of the number of breeding pairs that were inside the study area was estimated to be 2.7332% averaged across the three censuses (Elliott & Walker 2020), and the inverse of this value (36.58715) was used to scale up the simulation population size to the whole island.

The population simulations consisted of predicting the fate of each individual in the initial 2021 population, and of new fledglings produced each year, every year for 30 years, based on the demographic parameters estimated in the model. For each simulated year, an actual year between 2008 and 2020 was first drawn randomly to represent the interannual variability estimated in the model, while considering only the most recent years. The drawn year defined the value of survival rates and breeding success. Surviving individuals were drawn following a Bernoulli process with a probability equal to the survival rate of the drawn year and of the individual class (juvenile, pre-breeder, adult female, or adult male). Juveniles and pre-breeders either remained in their age class or moved to the next one depending on the age-specific transition probabilities. Adults breeding that year were then drawn according to the probability of breeding, depending on whether they bred successfully (or not) the previous year. The success of breeding adults was then drawn randomly from the probability of success of that year. Among successful breeders, the number of fledglings produced was taken as the minimum number of female or male adults, and new individuals of age 0 were created, with a sex assigned randomly with a probability of 0.5. This process was then repeated iteratively for the 30 simulated years, and for each iteration of the MCMC methods.

In the online tool, scenarios are specified in terms of direct impacts, affecting specific demographic parameters. Threats can impact the annual survival rate of juveniles, pre-breeders, adult males, and adult females separately, or can also impact breeding probability or breeding success. The threats can be defined as being either already present, in which case the impact is removed from the population in the simulations, or potential, with the impact added to the population. For example, to assess the potential effect of introducing new mitigation measures in fisheries, the impact would need to be

specified as already present, and the incidental mortalities would be removed from the population in the simulations.

Impacts may be specified as an absolute change in the demographic parameter, or as a number of individuals for survival rates. When using individuals, the impact is converted to the absolute change in survival rate, Δ , based on the total number of individuals in the affected category:

$$\Delta = S' - S = 1 - \frac{(1 - \Phi)N - I}{N} - \Phi,$$
(21)

where S' is the new survival rate, Φ the survival rate of the population category (juvenile, pre-breeder, adult female, or adult male), N the scaled-up number of individuals in the category, and I the number of mortalities caused by the threat. The conversion of impacts from individuals to a change in demographic rates assumes that the impact of threats is consistently proportional to the population size.

Multiple threats and impacts may be specified for a given scenario. In this case, the overall change in demographic parameters is calculated by summing the absolute changes across threats and impacts within each demographic parameter.

Upon completion of the simulations, the mean and 95% credible interval of the population size, of the number of annual breeding pairs, and population mean annual growth rate, and the mean population structure are calculated and reported, in tables and figures.

To illustrate how the removal of threats (i.e., their mitigation) may affect population growth, two hypothetical scenarios were simulated, representing two existing threats. Each threat resulted in the death of 500 individuals. Under one scenario, all deaths were of juveniles, whereas under the second scenario, all deaths were of adults (male and female).

3. **RESULTS**

3.1 Model parameters

The MCMC traces indicated that the model converged reasonably well, as the four chains were well mixed and did not show significant autocorrelation (see Appendix B for the MCMC traces and values of each demographic parameter estimated by the model). One exception was the parameter related to the detection probability, which converged but showed marked autocorrelation, but this would not impact the results.

The estimated adult annual survival rate between 1994 and 2020 showed changes over time (Figure 1). Before 2005, the estimated survival rate was similar between sexes, with an annual mean of 0.947 (95% c.i.: 0.914 - 0.973). From 2005, however, estimated female survival declined to a mean of 0.882 (95% c.i.: 0.814 - 0.94); female survival was lowest in 2013, estimated at 0.821 (95% c.i.: 0.752 - 0.883). In contrast, male survival only slightly declined to a mean of 0.927 (95% c.i.: 0.887 - 0.961), with a minimum around 0.90 in 2007.

The estimated survival in the three most recent years (2018 to 2020) suggested a possible increase to levels similar to estimates before 2004, with female adult survival reaching 0.929 (95% c.i.: 0.861 - 0.976) in 2020, and adult male survival at 0.971 (95% c.i.:

Figure 1: Adult annual survival for female and male Antipodean albatross between 1994 and 2020, estimated from the demographic model. Lines indicate the mean, shading the 95% credible interval.

0.943 - 0.991).

The annual survival rate of juveniles and pre-breeders, assumed to be constant among years, was estimated at 0.879 (95% c.i.: 0.869 - 0.888) and 0.922 (95% c.i.: 0.913 - 0.931), respectively.

The change of adult survival rates over time was considerable even though the interannual variability in the probability of detection was controlled in the model. The detection probability also showed a decrease over time, i.e., after 2006 (Figure 2).

Figure 2: Detection probability of individuals inside the study area (SA) for breeding adults, nonbreeders that were were previously successful breeders, other non-breeders, and pre-breeders, and for adults and pre-breeders combined outside the study area. Lines indicate the mean, shading the 95% credible interval.

The interannual change in detectability, applied to all individuals present on the island, was related to both the timing and length of the field seasons on the island (Figure 3). Estimates of detectability were highest when the field season started early

(early December) and when the survey effort was high, both in the number of days with recorded field observations, and in the total number of recorded observations in the season.

Figure 3: Relation between the interannual variability of the probability of detection and the timing and effort of population surveys. The timing of surveys was measured here as the number of days between the 1 December preceding the breeding season and the first day of recorded observations. Observation effort is in the number of days with observations, and the total number of observations recorded during the breeding season. The annual effect on detectability is shown as the 95% credible interval of the annual random effect as estimated in the model, and the label showing the year of the field season is centred on the mean estimate.

Amongst the years with the lowest detectability, 1995 and 2020 were characterised by a low number of field days and observations, and started late in the season (mid-February and mid-March, respectively). In contrast, the highest estimated detectability was in 2003, when the field season was both the second earliest (mid-December) and the second longest (60 days of observations).

The estimated probability of detection varied significantly between individuals considered in the model (Table 1 and Figure 2). This probability was around 5.2% for nonbreeding adults that were successful breeders the previous years, 18.0% for adults and pre-breeders outside the study area, 66.1% for pre-breeders inside the study area, 86.4% for adults breeding inside the study area, and 99.7% for non-breeding adults that were not successful breeders in the previous year. Additionally, the detectability was estimated close to zero for both juveniles and dead individuals, with a mean of 0.019% (95% c.i.: 0.054% - 0.118%), respectively.

The probability of breeding was estimated in the model depending on the previous breeding status, and was assumed to be constant among years. For adults that were failed breeders the previous year, the probability of breeding was estimated at 70.5% (95% c.i.: 68.6% - 72.3%). The probability was considerably lower for previous non-breeders, at 64.1% (95% c.i.: 62.8% - 65.4%).

As for survival, breeding success was also allowed to vary among years in the model. Modelled as the probability that a nest successfully produces a fledgling, breeding success also declined between the period 1994–2004 and 2005–2021 (Figure 4). Prior to 2005, the mean breeding success was estimated at 72.4% (95% c.i.: 65.8% - 78.6%), but at 63.7% (95% c.i.: 53.4% - 73%) after 2005.

Table 1: Mean estimates (and credible interval, c.i.) of the probability of detection among the different individual types in the Antipodean albatross population considered in the demographic model (SA, study area).

Туре	Mean	95% c.i.
Breeding adult in SA	0.864	0.816 - 0.900
Previously successful non-breeding adult in SA	0.052	0.036 - 0.072
Other non-breeding adults in SA	0.997	0.992 - 1.000
Pre-breeder in SA	0.661	0.575 - 0.736
Adult and pre-breeder outside SA	0.180	0.132 - 0.234

Figure 4: Breeding success by year for Antipodean albatross between 1994 and 2021, measured as the proportion of nests producing a fledgling. Line indicates the mean, shading the 95% credible interval.

To take into account bird movements in and out of the study area for the estimation of survival rates, the probability of individuals that were inside the study area leaving the area, and conversely the probability of individuals that were outside the study area returning to it, were estimated for females and males independently, and assumed to be constant among years. These probabilities suggest that females are less faithful to their area than males, as females had a 9% (95% c.i.: 8.1% - 10%) probability of leaving the study area, compared with 4% (95% c.i.: 3.5% - 4.6%) for males. Similarly, females had an estimated probability of 17.7% (95% c.i.: 15.2% - 20.3%) to return to the colony after leaving it, compared with 25.4% (95% c.i.: 21.9% - 29.1%) for males.

The ages at first return and at first breeding were also estimated in the model (Figure 5). The age at first return varied between 3 and 9 years, with an average at 6.26 years. The minimum age at first breeding was 7 years, and by age 13, half of the individuals had bred at least once, although some individuals did not breed at all.

Figure 5: Proportion of individuals that returned to the colony (left) and proportion of individuals that bred at least once as function of age (right). For each age, a histogram of the Markov chain Monte Carlo values is shown as estimated by the model.

3.2 Online simulation tool

Based on the demographic parameters obtained from the model, an online application was developed to simulate the population dynamics of Antipodean albatross under different scenarios (see a screenshot of the online simulation tool in Figure 6). The application can be accessed at https://dragonfly-science.shinyapps.io/ antipodean-albatross-simulations.

The structure of the population in 2021 was used for the initialisation of the simulations, and was obtained from drawing iteratively the latent state of each individual in the study area each year when the state was unknown (examples of the predictions of individual state are shown in Figure 7).

The number of breeding pairs inside the study area from on-site surveys was similar to the estimates derived from the model (Figure 8). Nevertheless, the model estimate was higher overall. This difference was due to the model estimate including the individuals that are not detected during surveys.

The population in 2021 used to initialise the simulations was estimated inside the study area at 90 (95% c.i.: 81 - 100) breeding pairs, and 762 (95% c.i.: 726 - 801) total individuals. Scaling up to the entire island, these estimates represent a total of 3,292 (95% c.i.: 2,964 - 3,659) breeding pairs and 27,893 (95% c.i.: 26,562 - 29,306) total individuals.

On average, the population consisted of 15.7% juvenile, 21.3% pre-breeders, 37.5% non-breeding adults, 17% successful breeding adults, and 8.6% unsuccessful breeding adults.

In the current context, i.e., without specifying any management scenario, simulations predicted a population decline of 4.84% (95% c.i.: 3.65% - 6.07%) with the total annual number of breeding pairs in the study area decreasing from 90 (95% c.i.: 81 - 100) to 11 (95% c.i.: 4 - 21) after 30 years ("Current context" in Figure 9). Scaling up the study area population to the entire island, this estimate corresponded to a decline from 3,292 (95%

Figure 6: Screenshot of the online application tool to run predictions of the Antipodean albatross population in the future under different scenarios.

c.i.: 2,964 – 3,659) breeding pairs to 401 (95% c.i.: 146 – 768), or for the whole population, from 27,893 (95% c.i.: 26,562 – 29,306) birds to 6,412 (95% c.i.: 4,244 – 9,183).

When simulating a hypothetical scenario of mitigating an existing threat causing the death of 500 juveniles, the rate of decline decreased to 3.3% (95% c.i.: 2.1% - 4.6%); when

Figure 7: Examples of drawing the latent state of individuals from their observed state. Red dots represent the latent states that are possible given the observed state of an individual that was detected. The size and colour of segments indicate the probability of transition between two successive states. Numbers indicate the probability of each state in 2021, used to draw the initial population structure for population projections.

the mortalities only affected adults, the rate further decreased to 2.7% (95% c.i.: 1.5% – 4%) (Figure 9).

Figure 8: Comparison of the annual number of breeding pairs when recorded during field surveys (Observed) and when estimated from the model (Estimated). Lines indicate the mean, shading the 95% credible interval for the estimate.

Figure 9: Simulation of the population size (a) and of the number of annual breeding pairs (b) of Antipodean albatross over the next 30 years on Antipodes Island. The simulation is based on the demographic parameters estimated in the model, only keeping the time - varying values between 2008 and 2020. The mean and 95% credible interval are shown.

4. **DISCUSSION**

The aim of this project was to provide an online simulation tool for predicting the outcome of management strategies on the demography of Antipodean albatross. As for any model, the accuracy of the prediction depends on the input field data, the complexity of the factors affecting the demography, and the change over time in the threats to the species.

Although movements in and out of the study area were included in the model, any permanent emigration from the study area was more likely to be considered as local mortality, and may underestimate annual survival rate. The area around the study site has been visited regularly, and sightings recorded there were used in the model to estimate the rate of movements between areas. It is a relatively small area compared with the rest of the island; some individuals may not be seen again once they relocate permanently, making their emigration indistinguishable from death. Nevertheless, the observations of the researchers when moving across the island suggest that permanent emigration by a significant number of individuals is unlikely (G. Elliott, pers. comm.).

The current model specification was designed to provide a basis for the simulations, requiring the balancing of realism and simplicity. For example, a number of parameters were not dependent on years, such as the probability of breeding or the survival rate of pre-breeders, and the model presented here may not be the closest representation of reality. The model results and absolute projections into the future need to be viewed in this context. Nevertheless, model limitations do not detract from the overall trajectory of a declining Antipodean albatross population, and the simulation tool allows comparison of the relative impact of alternative management strategies under different scenarios.

The recent increase in survival rates since 2018 may be a probabilistic coincidence, but could also indicate an alleviation of the threats affecting females predominantly. For example, fisheries may operate in different areas over time, or the areas where individuals forage may also vary, resulting in a change in the overlap between the species and fishery threats. The next few years of field data will inform whether this trend continues.

4.1 Recommendations

Regular updates of the demographic model after each field season would ensure that the best estimates are used for the simulations. In particular, additional years would reduce the sampling effect of drawing each simulated year from a limited set of annual estimates, and would provide a more complete representation of inter-annual variability.

The conversion of the impact of threats from individuals to parameter units in the simulations relies on the proportion of the number of breeding pairs that were inside the study area. This scaler was obtained from surveys between 1994 and 1996, and it is possible that it no longer represents current conditions. For instance, a number of landslides during an extreme weather event in January 2014 (Chilvers & Hiscock 2019) may have changed the spatial distribution of some colonies. An updated and complete population survey of the island would provide a new estimate of this critical parameter.

An island survey would also be an opportunity to record all sightings of birds that were banded inside the study area. This record would allow reviewing the estimates of movements in and out the study area, which may improve the estimate of survival rates.

Further developments to the model may improve the accuracy of the population predictions. For example, no inter-annual variability of the probability of breeding was considered, and may be beneficial to future updates of the model.

5. ACKNOWLEDGMENTS

I am sincerely thankful to Graeme Elliott and Kath Walker for providing the data they have tenaciously collected over decades, and for sharing their experience of the species

and field work.

The assistance of Philipp Neubauer in the development and fitting of the Bayesian model in Stan, and of Katrin Berkenbusch in the editing of this report, were much appreciated.

This work was funded by Department of Conservation (through project BCBC2020-09). I am grateful to Johannes Fischer and Igor Debski for the constructive talks during the project.

Data preparation and statistical analyses were carried out using R (including the libraries data.table and rstan) and Stan, writing scripts using Emacs, containerised using Docker, and this document was produced using LATEX. I am grateful to the many people who contribute to these key open source software projects and make them available.

6. **REFERENCES**

- Agreement on the Conservation of Albatrosses and Petrels (2009). Species assessment: Antipodean albatross *Diomedea antipodensis*. Retrieved from http://www.acap.aq/ en/acap-species/289-antipodean-albatross.
- BirdLife International (2018). Diomedea antipodensis. In The IUCN Red List of Threatened Species 2018: e.T22728318A132656045. IUCN. Retrieved from https://www. iucnredlist.org/species/22728318/132656045
- Bose, S. & Debski, I. (2020). Antipodean albatross spatial distribution and fisheries overlap 2019. Department of Conservation Technical Report. 23 p.
- Chilvers, B. L. & Hiscock, J. A. (2019). Significant decline of endangered antipodes island penguins: Is extreme weather an additional impact? Aquatic Conservation: Marine and Freshwater Ecosystems, 29(4), 546–553. doi:https://doi.org/10.1002/aqc.3034
- Edwards, C. T. T.; Roberts, J. O.; Walker, K., & Elliott, G. (2017). Quantitative modelling of Antipodean wandering albatross. New Zealand Aquatic Environment and Biodiversity Report No. 180. 35 p. Retrieved from https://fs.fish.govt.nz/Page. aspx?pk=113&dk=24396
- Elliott, G. & Walker, K. (2020). Antipodean wandering albatross: Satellite tracking and population study - antipodes island 2020. Report prepared for the Department of Conservation. Retrieved from https://bit.ly/2SceRwt
- Hoffman, M. D. & Gelman, A. (2014). The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1), 1593–1623.
- Løkkeborg, S. (2011). Best practices to mitigate seabird bycatch in longline, trawl and gillnet fisheries - efficiency and practical applicability. *Marine Ecology Progress* Series, 435, 285–303.
- R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.
- Richard, Y. & Abraham, E. R. (2020). Assessment of the risk of commercial fisheries to New Zealand seabirds, 2006–07 to 2016–17. New Zealand Aquatic Environment and Biodiversity Report No. 237. 61 p. Retrieved from https://mpi.govt.nz/ dmsdocument/39407
- Robertson, H. A.; Baird, K.; Dowding, J. E.; Elliott, G. P.; Hitchmough, R. A.; Miskelly,
 C. M.; McArthur, N.; O'Donnell, C. F. J.; Sagar, P. M.; Scofield, R. P., & Taylor,
 G. A. (2017). *Conservation status of New Zealand birds, 2016*. New Zealand Threat Classification Series. Wellington: Department of Conservation.

- Stan Development Team (2020). RStan: the R interface to Stan. R package version 2.19.3. Retrieved from http://mc-stan.org/
- Yackulic, C. B.; Dodrill, M.; Dzul, M.; Sanderlin, J. S., & Reid, J. A. (2020). A need for speed in Bayesian population models: a practical guide to marginalizing and recovering discrete latent states. *Ecological Applications*, 30(5). doi:https://doi.org/ 10.1002/eap.2112

APPENDIX A STAN MODEL CODE

```
functions{
   1
   2
                    3
   4
   5
   6
                          /** TRANSITIONS and SURVIVAL **/
   7 \\ 8
                          // 1: adults breeding inside SA
// 2: adults breeding outside SA
// 3: adults non-breeding inside SA
// 4: adults non-breeding outside SA
// 5: pre-breeders inside SA
// 6: pre-breeders outside SA
// 7: juvs
// 8: deads
   9
10
11
12
13
14
15
16
17
18
                            matrix[nstates, nstates] tmat;
19
                            //* ADULTS PREVIOUSLY BREEDING WITHIN STUDY AREA *//
// re-breeding in SA (SA = study area)
tmat[1, 1] = succ == 2 ?
20 \\ 21
22
23
                                 0 :
                            0 :
(succ == 1 ?
p_breed[1] * s_ad * (1-p_mv_out) :
(1-p_succ) * p_breed[1] * s_ad * (1-p_mv_out));
// re-breeding outside SA
tmat[1, 2] = succ == 2 ?
24
25
26
27
                     // '.'_'
tmat[1, 2] = succ == 2 .
0:
(succ == 1 ?
p.breed[1] * s_ad * p_mv_out :
(1-p_succ) * p_breed[1] * s_ad * p_mv_out);
// non-breeding in SA
tmat[1, 3] = succ == 2 ?
s_ad * (1-p_mv_out) :
(1-p_breed[1]) * s_ad * (1-p_mv_out) :
(1-p_succ) * (1-p_breed[1]) * s_ad * (1-p_mv_out) +
p_succ * s_ad * (1-p_mv_out));
// non-breeding outside SA
tmat[1, 4] = succ == 2 ?
s_ad * p_mv_out :
(succ == 1 ?
(1-p_breed[1]) * s_ad * p_mv_out :
(1-p_succ) * (1-p_breed[1]) * s_ad * p_mv_out +
p_succ * s_ad * p_mv_out :
(succ == 1 ?
(1-p_breed[1]) * s_ad * p_mv_out :
(1-p_succ) * (1-p_breed[1]) * s_ad * p_mv_out +
p_succ * s_ad * p_mv_out);
tmat[1, 5] = 0; // pre-breeders inside SA
tmat[1, 6] = 0; // pre-breeders outside SA
tmat[1, 7] = 0; // juvs
tmat[1, 8] = 1-s_ad; // dead

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
\frac{48}{49}
50 \\ 51
52
                           // re-breeding in SA (SA = study area)
tmat[2, 1] = succ == 2 ?
53
54
55
                                  0
                           0 :
(succ == 1 ?
    p_breed[1] * s_ad * p_mv_in :
(1-p_succ) * p_breed[1] * s_ad * p_mv_in);
// re-breeding outside SA
tmat[2, 2] = succ == 2 ?
56
57
58
59
                        (succ == 1 ?
    p_bread[1] * s_ad * (1-p_mv_in) :
    (1-p_succ) * p_bread[1] * s_ad * (1-p_mv_in));
// non-breading in SA
tmat[2, 3] = succ == 2 ?
    s_ad * p_mv_in :
    (succ == 1 ?
    (1-p_bread[1]) * s_ad * p_mv_in :
    (1-p_bread[1]) * s_ad * p_mv_in + p_succ * s_ad * p_mv_in);
// non-breading outside SA
tmat[2, 4] = succ == 2 ?
    s_ad * (1-p_mv_in) :
    (succ == 1 ?
    (1-p_bread[1]) * s_ad * (1 - p_mv_in);
}
60
61
62
63
64
\begin{array}{c} 65\\ 66\end{array}
67
68
69
70
71
72
73 \\ 74
                           75
76
77
78
79
80
^{81}_{82}
                          //* ADULTS PREVIOUSLY NOT BREEDING WITHIN STUDY AREA *//
tmat[3, 1] = p_breed[2] * s_ad * (1-p_mv_out); // breeding in SA (SA = study area)
tmat[3, 2] = p_breed[2] * s_ad * p_mv_out; // breeding outside SA
tmat[3, 3] = (1-p_breed[2]) * s_ad * (1-p_mv_out); // non-breeding in SA
tmat[3, 4] = (1-p_breed[2]) * s_ad * p_mv_out; // non-breeding outside SA
tmat[3, 5] = 0; // pre-breeders inside SA
tmat[3, 7] = 0; // juvs
83
84
85
86
87
88
89
```

```
tmat[3, 8] = 1-s ad;
                                                                                                                                          // dead
 90
  91
                      //* ADULTS PREVIOUSLY NOT BREEDING OUTSIDE THE STUDY AREA *//
  92
                     //* AUULIS PREVIOUSLY NOT BREEDING OUTSIDE THE ST
tmat[4, 1] = p_breed[2] * s_ad * p_mv_in;
tmat[4, 2] = p_breed[2] * s_ad * (1-p_mv_in);
tmat[4, 3] = (1-p_breed[2]) * s_ad * (1-p_mv_in);
tmat[4, 4] = (1-p_breed[2]) * s_ad * (1-p_mv_in);
tmat[4, 5] = 0;
tmat[4, 6] = 0;
                                                                                                                                         / AREA *//
// breeding in SA (SA = study area)
// breeding outside SA
// non-breeding in SA
// non-breeding outside SA
// pre-breeders inside SA
// pre-breeders outside SA
// diverseders outside SA
  93
  94
  95
  96
  97
 98
                     tmat[4, 7] = 0;
tmat[4, 8] = 1-s_ad;
  99
                                                                                                                                          // juvs
// dead
100
101
                      //* PRE-BREEDERS INSIDE THE STUDY AREA *//
102
                                                                                                                                         // breeding in SA (SA = study area)
// breeding outside SA
// non-breeding in SA
// non-breeding outside SA
// pre-breeders inside SA
// pre-breeders outside SA
// diverseders outside SA
                     tmat[5, 1] = s_prebr * p_bead * (1-p_mv_out);
tmat[5, 2] = s_prebr * p_bead * (1-p_mv_out);
tmat[5, 3] = 0;
tmat[5, 4] = 0;
103
104
105
106
                     cumat(5, 4] = 0;
tmat[5, 5] = s_prebr * (1-p_bead) * (1-p_mv_out);
tmat[5, 6] = s_prebr * (1-p_bead) * p_mv_out;
tmat[5, 7] = 0;
tmat[5, 8] = 1-s_prebr;
107
108

    109 \\
    110

                                                                                                                                          // juvs
// dead
111
                      //* PRE-BREEDERS OUTSIDE THE STUDY AREA *//
112
                    //* PRE-BREDERS OUISIDE THE STODY AREA *//
tmat[6, 1] = s_prebr * p_bead * p_mv_in;
tmat[6, 2] = s_prebr * p_bead * (1-p_mv_in);
tmat[6, 3] = 0;
tmat[6, 4] = 0;
tmat[6, 5] = s_prebr * (1-p_bead) * p_mv_in;
tmat[6, 6] = s_prebr * (1-p_bead) * (1-p_mv_in);
tmat[6, 7] = 0;
tmat[6, 8] = 1-s_prebr;
                                                                                                                                         // breeding in SA (SA = study area)
// breeding outside SA
// non-breeding in SA
// non-breeding outside SA
// pre-breeders inside SA
// pre-breeders outside SA
// dives
113
114
115
116
117
118
                                                                                                                                          // juvs
// dead
119
120
121
122
                      //* JUVENILES *//
                    //* JUVENTLES *//
tmat[7, 1] = 0;
tmat[7, 2] = 0;
tmat[7, 3] = 0;
tmat[7, 4] = 0;
tmat[7, 5] = s_juv * p_rec * (1-p_mv_out);
tmat[7, 6] = s_juv * p_rec * p_mv_out;
tmat[7, 7] = s_juv * (1-p_rec);
tmat[7, 8] = 1-s_juv;
                                                                                                                       // breeding in SA (SA = study area)
// breeding outside SA
// non-breeding in SA
// non-breeding outside SA
// pre-breeders inside SA
123
124
125
126
127
                                                                                                                      11
                                                                                                                        // pre-breeders outside SA
// pre-breeders outside SA
// juvs
// dead
128
129
130
131
                     //* DEADS *//
tmat[8, 1] = 0;
tmat[8, 2] = 0;
tmat[8, 3] = 0;
132
                                                                 // breeding in SA (SA = study area)
// breeding outside SA
// non-breeding in SA
// non-breeding outside SA
// pre-breeders inside SA
// pre-breeders outside SA
// juvs
// dead
133
134
135
                     tmat[8, 4] = 0;
tmat[8, 4] = 0;
tmat[8, 5] = 0;
tmat[8, 6] = 0;
tmat[8, 7] = 0;
136
137
138
139
140
                     tmat[8, 8] = 1;
141
142 \\ 143
                     return tmat;
                }
144
145
146
                147
148
                    /** OBSERVED STATES **/
149
150
151
                     // 1: adults breeding in SA
                     // 2: adults non-breeding in SA
// 3: adults outside SA
152
153
                     // 4: pre-breeders inside SA
// 5: pre-breeders outside SA
// 6: juvs
154
155
156
                     // 7: dead
// 8: not seen
157
158
159
                     matrix[n_obs_states, n_obs_states] pmat;
160
161
                      //* ADULTS BREEDING WITHIN STUDY AREA *
162
                    //* ADULTS BREEDING WITHIN STUDY AREA *//
pmat[1, 1] = no_visit == 1 ? 0 : p_obs[1];
pmat[1, 2] = 0;
pmat[1, 3] = 0;
pmat[1, 4] = 0;
pmat[1, 5] = 0;
pmat[1, 6] = 0;
pmat[1, 7] = 0;
pmat[1, 8] = 1 - pmat[1, 1];
163
                                                                                                                        // ad breeding in SA (SA = study area)
                                                                                                                        // ad non-breeding in SA
// ad outside SA
// pre-breeders inside SA
164
165
166
                                                                                                                        //
//
                                                                                                                              pre-breeders outside SA
167
168
                                                                                                                              juvs
                                                                                                                        // dead
// not seen
169
170
171
                      //* ADULTS BREEDING OUTSIDE STUDY AREA *//
172
                                                                                                                        // ad breeding in SA (SA = study area)
// ad non-breeding in SA
                     pmat[2, 1] = 0;
pmat[2, 2] = 0;
173
174
175 \\ 176
                     pmat[2, 3] = no_visit == 1 ? 0 : p_obs[5];
pmat[2, 4] = 0;
                                                                                                                        // ad outside SA
// pre-breeders inside SA
                     pmat[2, 5] = 0;
pmat[2, 6] = 0;
                                                                                                                        // pre-breeders outside SA
// juvs
177
178
                                                                                                                        // dead
                     pmat[2, 7] = 0;
pmat[2, 8] = 1 - pmat[2, 3];
179
                                                                                                                        // not seen
180
```

```
181
             182
183
184
185
                0 :
                 (succ == 2 ?
186
             187
188
189
190
191
192
193
             pmat[3, 6] = 0;
pmat[3, 7] = 0;
                                                                // juvs
// dead
194
195
             pmat[3, 8] = 1 - pmat[3, 2];
196
                                                                // not seen
197
              //* ADULTS NON-BREEDING OUTSIDE STUDY AREA *//
198
             pmat[4, 2] = 0;
pmat[4, 2] = 0;
pmat[4, 3] = no_visit == 1 ? 0 : p_obs[5];
                                                                           // ad breeding in SA (SA = study area)
199
                                                                           // ad non-breeding in SA
// ad outside SA
200
201
             pmat[4, 4] = 0;
pmat[4, 5] = 0;
                                                                           // pre-breeders inside SA
// pre-breeders outside SA
202
203
             pmat[4, 6] = 0;
pmat[4, 7] = 0;
pmat[4, 8] = 1 - pmat[4, 3];
                                                                           // juvs
// dead
// not seen
204
205
206
207
              //* PRE-BREEDERS INSIDE STUDY AREA *//
208
             pmat[5, 1] = 0;
209
                                                                           // ad breeding in SA (SA = study area)
                                                                           // ad one-breeding in SA (SA -
// ad outside SA
// ad outside SA
// pre-breeders inside SA
// pre-breeders outside SA
// juvs
             pmat[5, 2] = 0;
pmat[5, 3] = 0;
210
211
             pmat[5, 4] = no_visit == 1 ? 0 : p_obs[4];
pmat[5, 5] = 0;
pmat[5, 6] = 0;
212
213
214
                                                                           // dead
// not seen
             pmat[5, 7] = 0;
pmat[5, 8] = 1 - pmat[5, 4];
215
216
217
              //* PRE-BREEDERS OUTSIDE STUDY AREA *//
218
             pmat[6, 1] = 0;
pmat[6, 2] = 0;
pmat[6, 3] = 0;
pmat[6, 4] = 0;
219
                                                                           // ad breeding in SA (SA = study area)
                                                                           // ad non-breeding in SA
// ad outside SA
220
221
                                                                               pre-breeders inside SA
222
             pmat[6, 4] = 0;
pmat[6, 5] = no_visit == 1 ? 0 : p_obs[5];
pmat[6, 6] = 0;
pmat[6, 7] = 0;
pmat[6, 8] = 1 - pmat[6, 5];
                                                                           // pre-breed
// juvs
// dead
// not seen
223
                                                                               pre-breeders outside SA
224
225
226
227
              //* JUVENILES *//
228
             pmat[7, 1] = 0;
pmat[7, 2] = 0;
pmat[7, 2] = 0;
pmat[7, 3] = 0;
pmat[7, 4] = 0;
                                                                                      // ad breeding in SA (SA = study area)
// ad non-breeding in SA
// ad outside SA
// pre-breeders inside SA
229
230
231
232
             pmat[7, 4] = 0;
pmat[7, 5] = 0;
pmat[7, 6] = no_visit == 1 ? 0 : p_detect_juv;
pmat[7, 7] = 0;
pmat[7, 8] = 1 - pmat[7, 6];
                                                                                      // pre-breeders inside SA
// juvs
// dead
// not seen
233
234
235
236
237
              //* DEADS *
238
                                                                                      // ad breeding in SA (SA = study area)
// ad non-breeding in SA
// ad outside SA
             pmat[8, 1] = 0;
pmat[8, 2] = 0;
pmat[8, 3] = 0;
239
240
241
             pmat[8, 4] = 0;
                                                                                       // pre-breeders inside SA
242
             pmat[8, 5] = 0;
pmat[8, 6] = 0;
                                                                                       // pre-breeders outside SA
// juvs
243
244
             pmat[8, 7] = no_visit == 1 ? 0 : p_detect_dead;
pmat[8, 8] = 1 - pmat[8, 7];
                                                                                       // dead
245
246
                                                                                       // not seen
247
248
             return pmat;
          }
249
250
251
          252
253
254
255
256
257
258
             matrix[N_STATES, N_STATES] tmat;
matrix[N_STATES_P, N_STATES_P] pmat;
vector[N_STATES] pz[MAX_T];
259
260
261
262
             real temp[N_STATES];
real lsum;
263
264
             for (j in 1:N_STATES) {
    pz[first_cap, j] = (j == first_state);
265
266
267
             }
             268
269
270
271
```

```
272
273 \\ 274
275
                  for (j in 1:N_STATES) {
    temp[j] = pz[t-1, j] * tmat[j, i] * pmat[i, c_hist[t]];
276
277
278
279
                  pz[t, i] = sum(temp);
               }
280
281
             }
282
283
             lsum = log(sum(pz[last_cap]));
284
285
             return lsum;
286
287
288
          }
289
          290
291
292
203
294
295
296
297
             real lsum;
298
299
             lsum = 0.0:
             for (ind in start:end) {
300
301
302
                lsum += log_sum_one_indiv(N_STATES, SEX[ind], AGE[ind], MAX_T, FIRST_CAP[ind], LAST_CAP[ind], C_HIST[ind],
303
                                                   s_ad, s_prebr, s_juv, p_moveout, p_movein,
B_SUCCESS[ind], p_breed,
304
                                                   D_SOCCESS[ING], p_SOCCESS,
p_recruit, p_beadult, p_success,
N_STATES_P, p_obs, p_detect_juv, p_detect_dead, p_female,
NO_VISIT, FIRST_STATE[ind]); //, ind);
305
306
307
308
             }
309
310
             return lsum;
311
312
          }
313
314
       }
315
316
       data {
317
          int<lower=1> N_INDS;
int<lower=1> INDS [N_INDS];
int<lower=1> FIRST_STATE [N_INDS];
318
319
320
321
          int<lower=0, upper=2> SEX [N_INDS];
int<lower=1> N_SEXED;
int<lower=0, upper=1> IS_FEMALE [N_SEXED];
322
323
324 \\ 325
          int<lower=1> N_NESTS;
int<lower=0, upper=1> NEST_SUCCESS [N_NESTS];
int<lower=1> NEST_YEAR [N_NESTS];
326
327
328
329
          int<lower=1> FIRST_CAP [N_INDS];
int<lower=1> LAST_CAP [N_INDS];
330
331
332
          int<lower=1> MAX_T;
int<lower=1> MAX_AGE;
int<lower=1> AGE[N_INDS, MAX_T];
333
334
335
336
          int<lower=1, upper=MAX_AGE> MIN_R_AGE;
int<lower=MIN_R_AGE, upper=MAX_AGE> MAX_R_AGE;
int<lower=MIN_R_AGE, upper=MAX_AGE> MIN_B_AGE;
int<lower=MIN_B_AGE, upper=MAX_AGE> MIN_B_AGE2;
337
338
339
340
341
          int<lower=0, upper=1> NO_VISIT[MAX_T];
342
343
          int<lower=1> N_STATES;
int<lower=1> N_STATES_P;
int<lower=1> N_PDETECTS;
344
345
346
347
          int<lower=1, upper=N_STATES_P> C_HIST[N_INDS, MAX_T];
348
349
          int<lower=0, upper=2> B_SUCCESS[N_INDS, MAX_T];
350
351 \\ 352
       }
353 \\ 354
       transformed data {
355
356
          int<lower=1> grainsize=1;
       }
357
358
359 \\ 360
       parameters{
361
          real<lower=0, upper=1> p_female;
362
```

```
real<lower=0, upper=1> p_rec [MAX_R_AGE - MIN_R_AGE + 1];
363
364
            real<lower=0, upper=1> p_br [MIN_B_AGE2 - MIN_B_AGE];
real<lower=0, upper=1> p_br_post;
365
366
367
            vector<lower=0, upper=1>[2] p_breed; // 1: previously unsucessful breeders; 2: other non-breeders
368
369
            real<lower=0> sigma_re_bsucc;
real bsucc_lg_re [MAX_T];
real bsucc_lg_mean;
370
371
372
373
            real<lower=0, upper=1> s_prebr;
real<lower=0, upper=1> s_juv;
374
375
376
             /* Random effect on recruitment */
377
            real<lower=0> sigma_re_rec;
real rec_lg_re [MAX_R_AGE - MIN_R_AGE + 1];
real rec_lg_mean;
378
379
380
381
            /* Random effect on becoming adult */
real<lower=0> sigma_re_bead;
real bead_lg_re [MIN_B_AGE2 - MIN_B_AGE];
real bead_lg_mean;
382
383
384
385
386
           /* Random effect on adult survival */
real<lower=0> sigma_re_ad_s;
real surv_ad_lg_re [2, MAX_T-1];
real surv_ad_lg_mean [2];
387
388
389
390
391
           /* Random effect on detectability */
real<lower=0> sigma_re_p;
real p_detect_lg_re [MAX_T-1];
real p_detect_lg_mean [N_PDETECTS];
real<lower=0, upper=1> p_detect_juv;
real<lower=0, upper=1> p_detect_dead;
392
393
394
395
396
397
398
            real<lower=0, upper=1> p_leave[2];
real<lower=0, upper=1> p_back[2];
399
400
401
402
        }
403
404
405
         transformed parameters {
406
            vector<lower=0, upper=1>[MAX_AGE] p_recruit;
vector<lower=0, upper=1>[MAX_AGE] p_beadult;
407
408
409
            real<lower=0, upper=1> s_adult [2, MAX_T-1];
real<lower=0, upper=1> s_ad[3, MAX_T-1];
410
411
412
            real<lower=0, upper=1> p_detect [N_PDETECTS, MAX_T-1]; // 1: breeding ad (inside sa); 2: non-breeding ad previously
successful (inside sa); 3: other non-breeders (inside sa); 4: prebr inside SA; 5: ad or prebr outside SA
413
414
415
            real<lower=0, upper=1> p_success [MAX_T];
416 \\ 417
            real<lower=0, upper=1> p_moveout [3];
418
            real<lower=0, upper=1> p_movein [3];
419
            real<lower=0, upper=1> p_obs [MAX_T-1, N_PDETECTS];
420
421
            /* Juvs becoming pre-breeders (recruitment to the colony) */
422
            for (a in 1:(MIN_R_AGE-1)) {
423
424
               p_recruit[a] = 0;
425
            for (a in MIN_R_AGE:MAX_R_AGE) {
    p_recruit[a] = inv_logit(rec_lg_mean + rec_lg_re[a - MIN_R_AGE + 1] * sigma_re_rec);
426
427
428
            for (a in (MAX_R_AGE+1):MAX_AGE) {
    p_recruit[a] = 1;
429
430
            }
431
432
            /* Pre-Breeders becoming adults (start breeding) */
for (a in 1:(MIN_B_AGE-1)) {
    p_beadult[a] = 0;
433
434
435
436
            for (a in MIN_B_AGE:(MIN_B_AGE2-1)) {
    p_beadult[a] = inv_logit(bead_lg_mean + bead_lg_re[a - MIN_B_AGE + 1] * sigma_re_bead);
437
438
439
            }
for (a in MIN_B_AGE2:MAX_AGE) {
    p_beadult[a] = p_br_post;
}
440
441
442
443
            for (t in 1:(MAX_T-1)) {
   for (s in 1:N_PDETECTS) {
      p_detect[s, t] = inv_logit(p_detect_lg_mean[s] + p_detect_lg_re[t] * sigma_re_p);
   }

444
445
446
447
448
               for (sex in 1:2) {
449
                     s_adult[sex, t] = inv_logit(surv_ad_lg_mean[sex] + surv_ad_lg_re[sex, t] * sigma_re_ad_s);
450
               }
451
            }
452
```

```
for (t in 1:MAX_T) {
    p_success[t] = inv_logit(bsucc_lg_mean + bsucc_lg_re[t] * sigma_re_bsucc);
}
453
454 \\ 455
456
           for (sex in 0:2) {
    p_moveout[sex+1] = sex != 0 ? p_leave[sex] : p_female * p_leave[1] + (1-p_female) * p_leave[2];
    p_movein[sex+1] = sex != 0 ? p_back[sex] : p_female * p_back[1] + (1-p_female) * p_back[2];
    for (t in 1:(MAX_T-1)) {
        s_ad[sex+1, t] = sex != 0 ? s_adult[sex, t] : p_female * s_adult[1, t] + (1-p_female) * s_adult[2, t];
    }
}
457
458
459
460
461
462
              }
           }
463
464
            for (s in 1:N_PDETECTS) {
465
              for (t in 1:(MAX_T-1)) {
   for (sex in 0:2) {
466
                 ... (sex in 0:2) {
    p_obs[t, s] = p_detect[s, t];
}
467
468
469
470
              }
471
           }
472 \\ 473
474 \\ 475
        }
\begin{array}{c} 476 \\ 477 \end{array}
        model {
478
479
           matrix[N_STATES, N_STATES] tmat;
matrix[N_STATES_P, N_STATES_P] pmat;
480
481
            real temp[N_STATES];
482
483
484
           p_female
IS_FEMALE
                                             ~ beta(1, 1);
~ bernoulli(p_female);
485
486
            /* Return to colony */
n rec ~ beta(1, 1);
487
488
            p rec
489
            /* Becoming an adult (breeding for the first time) */
p_br ~ beta(1, 1);
p_br_post ~ beta(1, 1);
490
491
           p_br_post
492
493
            /* Probability of adult to breed (1: failed breeders; 2: non-breeders) */
494
495
            p_breed
                                            ~ beta(1, 1);
496
497
            /* Survival */
            s juv
                                            ~ beta(1, 1);
~ beta(1, 1);
498
499
            s_prebr
500
            /* Recruitment to colony */
sigma_re_rec ~ cau
501
                                   ~ cauchy(0, 2);
~ normal(0, 1);
~ normal(0, 2);
502
           rec_lg_re
rec_lg_mean
503
504
505
            /* Becoming adult */
506
507
508
            sigma_re_bead
bead_lg_re
                                           ~ cauchy(0, 2);
~ normal(0, 1);
                                            ~ normal(0, 2);
509
            bead_lg_mean
510
            /* P(successful breeding) */
for (n in 1:N_NESTS) {
NEST_SUCCESS[n] ~ bernoulli(p_success[NEST_YEAR[n]]);
511
            for
512
513
514
           sigma_re_bsucc
bsucc_lg_re
bsucc_lg_mean
515 \\ 516
                                            ~ cauchy(0, 2);
~ normal(0, 1);
517 \\ 518
                                            ~ normal(0, 2);
           519
520
521
522
            /* Survival *
523
524
            for (sex in 1:2) {
              surv_ad_lg_mean[sex]
for (t in 1:(MAX_T-1)) {
    surv_ad_lg_re[sex, t]
                                                         ~ normal(0, 2);
525
526
                                                         ~ normal(0, 1); // Time effect varies by sex
527
              }
528
529
530
            sigma_re_ad_s
                                                         ~ cauchy(0, 2);
531
            /* Detectability */
for (s in 1:N_PDETECTS) {
532
533
534
              p_detect_lg_mean[s]
                                                         ~ normal(0, 2);
535
           p_detect_juv
p_detect_dead
536
537
                                                         ~ beta(1, 1);
~ beta(1, 1);
538
539
            // Same time effect for all classes and sexes (reflects changes in surveys)
540 \\ 541
            for (t in 1:(MAX_T-1)) {
    p_detect_lg_re[t]
                                                         ~ normal(0, 1);
            ì
542
            sigma_re_p
543
                                                         \sim cauchy(0, 2);
```

544	
545	/* Likelihood */
546	<pre>target += reduce_sum(calc_log_sum_multi, INDS, grainsize, N_STATES, SEX, AGE, MAX_T,</pre>
547	FIRST_CAP, LAST_CAP, C_HIST,
548	s_ad, s_prebr, s_juv, p_moveout, p_movein,
549	B_SUCCESS, p_breed,
550	p_recruit, p_beadult, p_success,
551	N_STATES_P, p_obs, p_detect_juv, p_detect_dead, p_female,
552	NO_VISIT, FIRST_STATE);
553	
554	}

APPENDIX B MODEL ESTIMATES

Table B-1: Annual survival rate of adults by year and sex, and of pre-breeders and juveniles. Shown are the mean, 95% credible interval (c.i.), and the MCMC trace of the parameter.

Year			Females			Males
	Mean	95% c.i.	Trace	Mean	95% c.i.	Trace
1994	0.961	0.924 - 0.987		0.959	0.919 - 0.986	where the second second
1995	0.970	0.944 - 0.989		0.963	0.933 - 0.986	
1996	0.951	0.917 - 0.977	n finelige for dispersion	0.936	0.901 - 0.966	district in the second second
1997	0.950	0.916 - 0.975	NA PROPERTY AND A PROPERTY AND	0.950	0.916 - 0.978	whighter and a particular
1998	0.924	0.884 - 0.959	en generale i se de conservation de la	0.936	0.900 - 0.965	(indianala)
1999	0.923	0.881 - 0.959	wide water and the second	0.917	0.879 - 0.949	en se
2000	0.941	0.901 - 0.972	an a	0.941	0.908 - 0.968	an reaction and the second
2001	0.935	0.898 - 0.965	a falt particul de la	0.951	0.924 - 0.975	www.commence.
2002	0.951	0.925 - 0.973	neg ngangka dikina ngalipakan kana	0.949	0.921 - 0.973	Kanan Katalahan Katal
2003	0.975	0.954 - 0.990	norman between a state of the second se	0.965	0.942 - 0.983	langan tertering tert
2004	0.941	0.906 - 0.971	inninks prinskapet all regensiep	0.936	0.907 - 0.960	erentision/kyronesienengopien
2005	0.898	0.806 - 0.969	anin anina sa anina sa sa an	0.941	0.889 - 0.980	Manager and the second second
2006	0.878	0.789 - 0.963	iet vyhet providel set dependet s	0.933	0.883 - 0.978	e et disse disse have been been
2007	0.883	0.822 - 0.936	New Property and the second second	0.897	0.853 - 0.935	ken parapatan kana kan
2008	0.845	0.776 - 0.911	un mis part friend which a similar	0.920	0.879 - 0.954	pipel and many dimensional
2009	0.894	0.832 - 0.947	in a state of the	0.914	0.874 - 0.949	laanst interfering to provide
2010	0.906	0.840 - 0.960	energi	0.926	0.889 - 0.958	n fan de skriver de skriver fan de s
2011	0.841	0.770 - 0.906	ipenintenspiratistatist	0.937	0.901 - 0.969	ter fan die die kerken die
2012	0.829	0.760 - 0.891	internetinen er en sekter i den s	0.911	0.872 - 0.943	n an
2013	0.821	0.752 - 0.883	abdit a the provident of t	0.936	0.902 - 0.963	and the second secon
2014	0.929	0.876 - 0.970	Manistrykensekanpatrikasia	0.950	0.918 - 0.977	new to we introduce the second
2015	0.848	0.781 - 0.909	(ministrative) in particular for	0.914	0.873 - 0.949	na na mana na m
2016	0.871	0.803 - 0.930	nin her som	0.913	0.871 - 0.949	terini tanak pani telepangan p
2017	0.937	0.884 - 0.977	teres a subscription of the subscription of the	0.924	0.879 - 0.959	inntelected and the second
2018	0.901	0.832 - 0.956	and a photosophic star any photos	0.916	0.871 - 0.952	enertingenetische gezonerenze
2019	0.908	0.839 - 0.963	which produced in the second death	0.938	0.894 - 0.972	hailed any third and a second
2020	0.929	0.861 - 0.976	Handrighten at 1987 and 1989	0.971	0.943 - 0.991	nderset of the subjection of

Age class	Mean	95% c.i.	Trace
Pre-breeders	0.922	0.913 - 0.931	sadin Watabayong
Juveniles	0.879	0.869 - 0.888	<i>Antonin in the states of the </i>

Parameter	Year	Mean	95% c.i.	Trace
P(successful breeding)	1994	0.74	0.67 - 0.81	ana da de la companya da companya da comp
	1995	0.74	0.67 - 0.79	kontesta kan kan kan kan kan kan kan kan kan ka
	1996	0.75	0.68 - 0.81	han burken and her production
	1997	0.77	0.71 - 0.83	the and the second second second second
	1998	0.73	0.66 - 0.79	endering operations in the second second
	1999	0.64	0.56 - 0.71	nte natur seinebusetettisettisettisettisetti
	2000	0.75	0.67 - 0.81	na na mana na m
	2001	0.75	0.69 - 0.81	National and a second second
	2002	0.67	0.60 - 0.74	the spin of the second seco
	2003	0.72	0.66 - 0.77	u herren og som
	2004	0.71	0.65 - 0.77	and the state of the
	2005	0.69	0.53 - 0.83	
	2006	0.67	0.48 - 0.81	Parlamenta and Andrea Angle of the
	2007	0.60	0.52 - 0.67	<i>Virtuisennen oleksinten inter</i>
	2008	0.67	0.60 - 0.73	na kana jalan karkara kara
	2009	0.56	0.47 - 0.65	inden av gernd gerspelaningen g
	2010	0.67	0.58 - 0.74	diaamaanka tahuju perintenta
	2011	0.57	0.48 - 0.66	(nenderschaften verscheiten)
	2012	0.58	0.49 - 0.67	hearing her internet with the state of the
	2013	0.61	0.51 - 0.69	here and the second
	2014	0.70	0.62 - 0.77	presidente de la construction de la
	2015	0.57	0.47 - 0.66	nepalantakintaka consilantakan
	2016	0.66	0.57 - 0.74	hai an is an
	2017	0.75	0.65 - 0.83	ning the second seco
	2018	0.65	0.57 - 0.73	
	2019	0.61	0.53 - 0.69	halaala karala karang palanakara
	2020	0.62	0.52 - 0.71	and a standard and a standard and a standard and a standard a standard a standard a standard a standard a stand
	2021	0.67	0.48 - 0.81	Nan-ann-a-jorana tarahasi arasar

Table B-2: Probabilities of successful breeding by year. Shown are the mean, 95% credible interval (c.i.), and the MCMC trace of the parameter.

Antipodean albatross simulations – June 2021

Parameter	Age	Mean	95% c.i.	Trace
P(return to colony)	3	0.03	0.02 - 0.04	
	4	0.11	0.09 - 0.14	n a chailte chailte ann a' tartach ann ailte an an Mar ann ann an Ann an Ann an Ann an Ann an Ann an Ann
	5	0.10	0.07 - 0.14	n ben alle alle i bladder van de la de Nacional e verse en la de la
	6	0.29	0.24 - 0.34	er se men et des dans ser beseites et bestillens, som et selfstare Typen i se paktiver av en ser ser ser et ser te ser paktiver av et ser
	7	0.33	0.25 - 0.42	na di sena dala degi da dela di Saka dengan da sa sena da da da se Sena sena di se
	8	0.69	0.56 - 0.83	Angenetic dalla da se se della desensión del alterna Angenetica della companya della d
P(breed for first time)	7	0.02	0.01 - 0.04	
	8	0.06	0.04 - 0.09	historiarilar o interactivities
	9	0.07	0.05 - 0.10	understation and the television of the station of the state
	10	0.06	0.04 - 0.09	salaanaa hadaa ahaa ahaana
	11	0.10	0.07 - 0.14	et an general de la constant de la c
	12	0.13	0.09 - 0.18	ha h
	13	0.12	0.08 - 0.17	edalla attila sucele i sula inimetri di parturpi
	14	0.13	0.09 - 0.18	hanhend har in second hand hard hard
	15	0.07	0.04 - 0.12	cine with mineral the president of the cash
	16	0.13	0.08 - 0.19	n ja viela katolonia katoloha katoloha k
	17	0.10	0.05 - 0.16	ulabuladuluhadulahan ayan ayan ayan ayan ayan ayan ayan
	18	0.09	0.04 - 0.15	Kidenki acharphirid an isrliadhrai
	19	0.12	0.06 - 0.20	and a second and a second
	20	0.05	0.02 - 0.10	disestand descent and the destinants

Table B-3: Probabilities of returning to the colony and to breed for the first time, as function of age. Shown are the mean, 95% credible interval (c.i.), and the MCMC trace of the parameter.

Table B-4: Probabilities of adults breeding, that an individual is female, that a bird inside the study area move outside it, and probability that a bird outside the study area returns inside. Shown are the mean, 95% credible interval (c.i.), and the MCMC trace of the parameter.

Parameter	Category	Mean	95% c.i.	Trace
P(breeding)	Previously unsuccessful breeders	0.70	0.69 - 0.72	panelogal Science and an internet
	Other non-breeders	0.64	0.63 - 0.65	Melandijumdi kanterna pinakadan
P(female)		0.51	0.49 - 0.53	milipicospilations/mane
P(leave the study area)	Female	0.09	0.08 - 0.10	Kinterlanderkerkerkerine
	Male	0.04	0.04 - 0.05	wijimalikin provinsi sitana (print)
P(return to the study area)	Female	0.18	0.15 - 0.20	ha fa dhudanna dha anna
	Male	0.25	0.22 - 0.29	to and the part of the second second

Table B-5: Detection probabilities: annual averages, year effect, and interannual variability, as well as the time-invariant detection probabilities of juveniles and dead birds. Shown are the mean, 95% credible interval (c.i.), and the MCMC trace of the parameter.

Parameter		Category	Mean	95% c.i.	Trace
P(detection) - overall	Breeding ac	lult (inside SA)	0.864	0.816 - 0.900	ha hanna an ann an an an an an an an an an a
	Non-breeding ac	lult (inside SA)	0.052	0.036 - 0.072	Section and the film of the
	Other non-breed	lers (inside SA)	0.997	0.992 - 1.000	and the second second second
	Pre-breed	lers (inside SA)	0.661	0.575 - 0.736	Superint States
	Adults a	nd pre-breeders outside SA		0.132 - 0.234	a finanti (1977) in a finanti f
Year effect (logit scale)		1995	-1.388	-2.2140.679	(the most spectra spectra spectra
		1996	1.014	0.471 - 1.605	(Mineral Contractor (Contractor)
		1997	1.529	0.915 - 2.168	Mantala Mark Solar Sta
		1998	0.711	0.189 - 1.294	(Magalaka polencja inizia)
		1999	0.596	0.058 - 1.152	Service and a service of the service
		2000	0.238	-0.282 - 0.766	Manual management of the second
		2001	0.475	-0.028 - 1.007	Windowskie (na spilling fils
		2002	1.052	0.494 - 1.657	genomeniaen genoefte
		2003	1.656	1.044 - 2.305	(Monetices internet)
		2004	1.475	0.901 - 2.078	phinese works (about the
		2005	1.139	0.612 - 1.692	Winderstein Carlor
		2006	0.017	-1.792 - 1.849	Versendaat Alahii dhaamidha
		2007	-1.887	-2.6541.229	particular second
		2008	-0.491	-0.9730.039	and the second
		2009	-0.492	-0.9820.034	States and the states of the
		2010	-0.394	-0.859 - 0.050	and a second state of the
		2011	-1.019	-1.5930.507	pay and and the particular
		2012	-0.464	-0.955 - 0.027	and a second
		2013	0.004	-0.457 - 0.462	ja manimpering an ambanda in
		2014	0.329	-0.156 - 0.816	and a second second second
		2015	-0.383	-0.885 - 0.124	
		2016	-0.395	-0.931 - 0.100	and the second se
		2017	-0.079	-0.585 - 0.424	and the second
		2018	0.229	-0.302 - 0.726	(Property and party of the
		2019	-0.021	-0.527 - 0.484	(Minutesian publicity)
		2020	-1.763	-2.5061.113	tan analasi ka
		2021	0.018	-0.536 - 0.565	id warming provided at
Inter-annual variability			0.858	0.638 - 1.169	ind had in a day of the for the in
Paramet	ter	Mean	95% c.i	i. Tra	ce
P(detect	tion) - Juveniles	0.0002 0.00	000 - 0.000	7	1 bla
				 International Activity of the International Activity	

P(detection) - Dead birds 0.0008 0.0005 - 0.0012