
QueryingBayesianmodel output
with PostgreSQL

WellingtonPostgreSQLUsersGroup

Finlay Thompson

17September 2015

Bayesianmodelling

Bayesian analysis involves converting data and conceptualmodels
into probability distributions.

We interpret probabilities in the broad sense that:

• a probabilityp is a number between0 and1
• wherep = 1 corresponds to TRUE
• and p = 0 corresponds to FALSE
• probabilitiesmeasure our confidence in a statement

Note that traditional 20th century statistics understands
probabilities as the ratios coming from repeated experiments
(think coin tosses).

P(θ|D) = P(θ)P(D|θ)
P(D)

D represents the data, and is typically records
in a database.

θ represents the parameters of some kind of
model.

P(D|θ) is the likelihood distribution.
Probability ofmeasuringD given θ.

P(θ|D) is the posterior distribution.
It represents the result of fitting the dataD to
themodel θ.

2.
5%

M
ed

ia
n

97
.5

%

1000

2000

3000

4000

S
am

pl
e

nu
m

be
r

0.1 0.2 0.3 0.4 0.5 0.6

0
1
2
3
4
5

P
ro

ba
bi

lit
y

de
ns

ity

WeuseMonteCarloMarkov chain (MCMC)methods that are
slow, and produce lots of output.

MCMCmethods are accurate.

The posterior output is in the formof samples from the posterior.
In practice thismeans 4000 values per parameter.

Typicallymodels have hundreds of parameters.

Another advantage ofMCMCmethods isflexibility.

We use the parameter samples to calculate samples for every
desired output.

For example, we can produce4000 samples for each of approx
1.5million fishing events.

This output is big and expensive. Sowemoved it into PostgreSQL.

Storing and querying
distributions

The estimates are stored in the formof arrays of integers.

They represent uncertainquantities, with each value in the array a
realisation from the (unknown)posterior distribution.

The order of the arrays are significant, preserving the correlation
structure of the estimates.

CREATE TABLE estimate (
model_id INTEGER REFERENCES model(id),
effort_id INTEGER NOT NULL,
observed INTEGER, -- null if effort not observed
estimate INTEGER[] NOT NULL

);

This results in storing a large quantity of data.

Currently around12GB

Need to aggregate the data, so integer array sums!

The standard function for aggregating integer arrays is a bit slow.

It checks the lengths of the arrays, and checks the types of
arguments, checks checks checks.

I took the library function and ripped the checking out!

Open source for thewin!

#include "postgres.h"
#include "fmgr.h"
#include "utils/array.h"

#ifdef PG_MODULE_MAGIC
PG_MODULE_MAGIC;
#endif

Datum int_array_sum(PG_FUNCTION_ARGS);

PG_FUNCTION_INFO_V1(int_array_sum);
Datum
int_array_sum(PG_FUNCTION_ARGS) {

ArrayType * state = PG_GETARG_ARRAYTYPE_P(0);
ArrayType * new = PG_GETARG_ARRAYTYPE_P(1);

int numargs = ARR_DIMS(state)[0];
int * state_ptr = (int *) ARR_DATA_PTR(state);
int * new_ptr = (int *) ARR_DATA_PTR(new);

int i;
for (i = 0; i < numargs; i++)

state_ptr[i] += new_ptr[i];

PG_RETURN_ARRAYTYPE_P(state);
}

SET search_path = public;

CREATE OR REPLACE FUNCTION int_array_sum(int[], int[])
RETURNS int[]
AS '$libdir/intarraysum', 'int_array_sum'
LANGUAGE C IMMUTABLE STRICT;

DROP AGGREGATE IF EXISTS sum(int[]);
CREATE AGGREGATE sum (int[]) (

SFUNC = int_array_sum,
STYPE = int[]

);

Result is queries that are in the order of 1000 times faster.

The result ismuchmore flexibility in reporting, and happy clients.

Reporting is possible inmany different
slices:

• Fishing year
• target species of fishers
• reporting areas
• type of vessel

Each of these estimates has an
accurate estimate of uncertainty, with
published confidence intervals.

For a publicly visible example, see
https://data.dragonfly.co.nz/psc/.

https://data.dragonfly.co.nz/psc/

