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EXECUTIVESUMMARY

This is a companion paper to the 2019 stock assessment for oceanicwhitetip shark (Carcharhinus
longimanus) (Tremblay-Boyer et al. 2019) detailing the historical catch reconstructions and
CPUE standardization approaches used to create the data inputs to the assessment. We
repeat here the methods from the main assessment report, provide a discussion of key results
and present detailed model diagnostics on the observer data-based catch reconstructions and
CPUE standardization. Other inputs to the assessment were described in Tremblay-Boyer et
al. (2019).

Historical catches were reconstructed based on observer catch rates as logbook-reported
catches of oceanic whitetip shark were considered unreliable over the assessment period
of 1995–2016. We developed a prediction-model from observer catch rates to apply to
known longline and purse-seine effort across the Western and Central Pacific Ocean. Catches
aggregated across fleets were predicted to peak in 2001 and decline therea er. The catches
for the longline bycatch fleet are predicted to be the highest of all fleets, with catches for the
other fleets negligible in comparison. This allocation probably reflects in part the reliability of
catch rates recorded by the observer programmes assigned to each fleet, as well as the effort
information used to extrapolate catches. The catches predicted were generally higher than
those estimated from the same dataset by previous authors but predictions were also made
here for CCMs that are typically excluded from these analyses due to a poor characterization
of effort. The catch predictions otherwise showed good agreement for key years with an
alternative time series that was developed based on global fin trade statistics.

A single standardized index was developed for this assessment based on the longline bycatch
fleet following discussions at the 2019 Pre-Assessment Workshop (PAW) (Pilling & Brouwer
2019). This fleet was chosen as the underlying data were deemed the most reliable of those
available, and also covered the greatest extent within the assessment region. The standardized
year effects resulting from the CPUE model were highly variable at the start of the time series
and started steadily declining from 1999 onwards. Influential covariates in themodel included
sea surface temperature, hooks-between-float as a proxy for set depth, species targeting cluster
and observer programme.

The analyses presented here included years from the earlier period of observer programmes
in the WCPO. Observer reporting for sharks for this period is known to be unreliable as well
as highly variable given the sparse coverage. Any results for this early time period must
be interpreted carefully. In addition, we found evidence of observer programmes having an
impact on recorded catch rates independent from vessel flag, such that observer training, as
would be expected, is a likely influence on the catch rates recorded for sharks across time and
programmes. As this is a variable that is challenging to quantify and so cannot be standardized
for, the results presented here should be interpreted in light of this caveat.
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1. INTRODUCTION

This is a companion paper to the 2019 stock assessment for oceanicwhitetip shark (Carcharhinus
longimanus) (Tremblay-Boyer et al. 2019) detailing the historical catch reconstructions and
CPUE standardization approaches used to create the data inputs.

Historical catches for sharks in the Western and Central Pacific Ocean were poorly recorded
until 2010, when CMM2010-07 became active, mandating the reporting of catches of key
shark species, including oceanic whitetip shark. Nevertheless, reported shark catch was
likely underestimated even a er CMM2010-07 came into effect. As logbook-reported catches
of oceanic whitetip shark were considered unreliable for the present assessment period, we
applied two strategies to reconstruct catches. In the first instance, we created a prediction-
model from observer catch rates to apply this model to known longline and purse-seine effort
across theWestern and Central Pacific Ocean. This approach is similar to that used for the 2012
assessment (Rice 2012) but we implemented it in differentmodelling framework. In the second
instance, we applied the trade-based approach from Clarke (2018) to predict global catches of
oceanic whitetip shark based on fin trade statistics. The la er were apportioned to theWestern
and Central Pacific Ocean using a set of alternative scaling methods. We describe and discuss
the approach relying on observer catch ratesmodels here and compare them to other estimates,
including those for the trade-based approach (described in Tremblay-Boyer et al. 2019).

The previous assessment for this species (Rice & Harley 2012) included standardised indices
for each of the four fishing fleets included in the stock assessment model, but only the index
for the longline bycatch fleet was used in the reference case or the structural uncertainty grid.
While the coverage rates of observed longline effort were considerably lower than for purse
seine, the reliability of catch numbers estimated by longline sets is considered much higher
as observers report every hook with a positive catch event. At the SPC 2019 Pre-Assessment
Workshop (PAW) (Pilling & Brouwer 2019) it was agreed to focus on developing standardised
CPUE indices for the longline bycatch fleet, as the underlying data were deemed the most
reliable of those available, and also covered the greatest extent within the assessment region.

We provide here a discussion of key results and present model diagnostics on the observer
data-based catch reconstructions and CPUE standardization used as input for the oceanic
whitetip shark assessment. The methods outlined here were repeated in Tremblay-Boyer et
al. (2019) for context. We also refer the reader to the main assessment report for a survey of
current knowledge of the biology of the species, the processing of the catch-at-length data, as
well as the discard mortality models that were applied to the catch reconstructions described
here.
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2. METHODS

2.1 Description of datasets

Datasets from the database of the Pacific Community (SPC) included catch, effort and observer
data.

• L_BEST: SPC’s best estimates of longline catch and effort (in hooks) for fleets in the
WCPFCConvention Area (WCPFC-CA), available at the 5◦×month× year× flag× fleet
resolution for key species of tuna and billfish, and sharks in some years. A version of this
database (L_BEST.HBF) was available with an additional strata for hooks-between-floats
(HBF), but effort coverage is uneven over fleets and years.

• S_BEST: SPC’s best estimates of purse-seine catch and effort (sets and days) for fleets in
the WCPFC-CA, available at the 1◦× set type × month × year × flag × fleet resolution
for key species of tuna and billfish, and sharks in some years.

• Observer programmes for longline and purse-seine fleets: The full observer dataset
for longline and purse-seine fleets available to SPC was used for the analysis, including
data from the SPC’s Regional Observer Programme and national observer programmes.
Records collected by longline observers that are relevant to this assessment are key gear
and a ributes (including date and time, location, HBF) and, for each observed hook with
a positive catch event, the species, the fate of the catch (e.g., discarded or retained), the
condition, the length and the sex of the individual. The quality and coverage for most
variables changes over time and between programmes. For observed purse-seine sets,
observers estimate the number of sharks caught of a given species from the brail net and,
when possible, measure their length.

Data preparation

Extracts from SPC’s databases were obtained in April 2019. All datasets were filtered to retain
records within the Western and Central Pacific Ocean area only (Figure 1), over the period
of the stock assessment from 1995 to 2016. For the longline observer datasets, number of
hooks observed, when missing, was estimated from the product of hooks-between-floats and
the number of baskets observed. Sets were classified as shallow when the number of HBFs
was lower or equal to 10, following Peatman et al. (2018b). Oceanography covariates (sea
surface temperature, chlorophyll-a, bathymetry and distance from the coast) were extracted
at the lowest resolution possible and aggregated to match the resolution of each dataset.
Longline sets occurring in sea surface temperatues below 16◦C were removed as they were
considered to be outside of oceanic whitetip shark habitat. When relevant, extreme values
of oceanography covariates were bounded or filtered out (> 99.5th quantile). Records from
implausible locations (e.g., on land) were omi ed. Longline records without HBF information
and purse-seine records without set-association information were also omi ed.
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2.2 Catch reconstruction

2.2.1 Prediction of catch rates fromobserved sets

Previous approaches to reconstruct catches for this species have also been based on observer
catch data (see Lawson 2011, Rice 2012, Peatman et al. 2018b). The basis for these methods is
similar: amodel of catch-per-unit-effort is built based on observed sets and relevant covariates,
and the model is then used to predict catches based on a reliable measure of total effort by fleet
across the assessment region. The previous approaches differ in the modelling framework
used to build the catch rate model, the covariates considered and the treatment of uncertainty.
Lawson (2011) and Rice (2012) both used Generalised Linear Models (GLMs), assuming delta-
log-normal error distributions (i.e., two-stage or hurdlemodel), but Rice (2012) filtered the data
more extensively (e.g., only sets at SST ≥25◦C were retained) and permi ed extra variability
around the year effects. Uncertainty around model predictions of catches was not explicitly
considered. Peatman et al. (2018b) used Generalised Estimating Equations (GEEs) to model
catch rates, also with a delta-log-normal model structure. The GEE framework allows for
the correlation between observed sets in the same observer trips to be accounted for. Catch
predictions and uncertainty were estimated with a Monte Carlo simulation approach drawing
samples from modelled catch distributions.

Here, we usedMarkov chainMonte Carlo (MCMC)methods tomodel catch rates in number of
individuals for the observer longline and purse-seine datasets, assuming a negative binomial
error distribution. Negative binomial error distributions are well suited at representing catch
rates, as they can naturally account for high proportions of zero in the response variable
without the requirement of a parallel model (such as required when assuming delta-log-
normal error distribution). Negative binomial error distributions can also predict infrequent
but high catch events. An advantage of the MCMC approach to fi ing GLMs is that the
uncertainty for any estimated parameter or derived quantity can be easily estimated by
drawing from the posterior samples of the convergedMCMC chains. Because of this, the scale
of alternative catch scenarios can be informed by model-derived uncertainty instead of user-
defined multipliers.

We used the R package “brms“ (Bürkner 2017) to implement our approach. This package
provides an efficient interface for fi ing GLMs in the Stan language for Bayesian statistics
(Carpenter et al. 2015). In addition, the brms package allows the user to customise probability
distributions to improve their suitability for representing some features of the response
variables and, therefore, improve the quality of the fit. Although the GLMs were fi ed within
a Bayesian framework, we did not use informative priors for any of the models. Finally, all
models included a random effect for the vessel flag (Table 1), allowing the prediction of a
distribution for flag effects, which can then be used to predict catches for countries without
any observer coverage.

There was a high degree of overdispersion in the response variable, with most fishing sets
reporting no captures (≥ 90% and ≥ 99% zero sets in the longline and purse-seine datasets,
respectively). The impact of varying effort by fishing record on the probability of a positive
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capture event was accounted for by parameterising the negative binomial distribution by the
number of “trials”, defined by the number of fishing hooks or sets used in the fishing set group.
In addition, a new parameter ν was added to the parameterisation of the negative binomial
distribution to allow more flexibility in how the overdispersion behaves as mean catch rates
increase.

In the model, catches, ci, in a longline or purse-seine set group, i, were thus modelled as
samples from a negative-binomial distribution:

ci ∼ NegativeBinomial(mean = µini, shape = θni), (1)

where ni is the number of hooks or sets. The shape parameter, θ, allows for extra
dispersion in the number of captures relative to a Poisson distribution. The negative binomial
distribution has the property that the mean of n samples from a negative binomial distribution
(NegativeBinomial(µ, θ)) is itself negative binomially distributed, with mean µn and shape θn.
For this reason, while ci is the number of catches per group, µi needs to be interpreted as the
mean catch rate per longline hook or purse-seine set. The custom distribution facility of brms
was used to code the negative binomial distribution for aggregated data. The mean capture
rate within each group was then estimated as the exponential of the linear predictor, which
was the sum of fixed and random effects.

A novel configuration of the negative binomial distributionwas trialled inmodel fi ing. Under
the usual approach to fit a negative binomial GLM, overdispersion compared to mean catch
rates µ is determined by the estimate of a single parameter θ assumed for all observations:

ψ = µ+
µ2

θ
. (2)

This aspect can be challengingwhen combinations of covariate levels have considerably higher
catch rates than others, as high µ combined with low θ can result in error distributions
predicting implausibly high values (i.e., very long tails) at times. Although estimating
covariate effects on θ as part of themodel is possible, the results can be difficult to interpret as µ
and θ are o en correlated. For this reason, any covariate effect a ributed to θmight otherwise
be confounded with a covariate effect on µ. We modified instead the definition of θ, so that it
includes a new parameter, ν, scaling the extent of overdispersion as a function of µ:

θ → µνθ, (3)

so that overdispersion to the negative binomial distribution becomes:

ψ = µ+
µ2

µνθ
. (4)
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This configuration allows for the overdispersion parameter to change as a function of µ: as
ν approaches 2, it cancels out µ2 in the numerator, so that the negative binomial distribution
effectively becomes a Poisson distribution; as ν approaches 0, the additional µn term goes to 1
and the distribution behaves in the usual way. Therefore, adding this new term in the model
allowed for additional flexibility in the realised error distribution between observations with
the estimation of a single additional parameter.

Prior to fi ing, all observed sets were first aggregated to a spatial resolution of 5◦to match the
resolution of the L_BEST datasets (S_BEST has a 1◦-resolution, but a 5◦-resolution was chosen
for both datasets for consistency in predictions), and observer programme, flag, year, month
and set depth (for longline, shallow or deep) or set type (for purse seine). Because of the low
observer coverage for some fleets, year and locations, and the aggregation at the 5◦-scale, a
minimum number of records were removed for the catch reconstruction component of the
analysis. For the longline fleet, aggregated records with less than 50 hooks observed in total
were removed. Each of the remaining aggregated recordswas considered a “fishing set group”
and catch rates of oceanic whitetip shark were calculated over all sets in the event to use as the
response variable in the GLM. The number of hundred hooks of the sets of the fishing event
was treated as the number of “trials” in the negative binomial distribution.

Candidate model covariates were selected to retain operational features of sets likely to impact
catch rates and environmental variables that might be representative of oceanic whitetip shark
habitat and, therefore, local abundance (Table 1). Wewere limited in the choice of covariates by
their availability in the L_BEST and S_BEST datasets, as model predictions from these datasets
require all model covariates to be available. All models were also trialled with and without
the addition of ν to the negative binomial distribution.

Models were fi ed with four separate chains and 2000 iterations, including a 1000 iterations
burn-in period that was discarded from posterior samples. Best model selection was
performed on the basis of model diagnostics (including chain convergence) and leave-one-
out cross-validation (LOO; Vehtari et al. 2016). The LOO Information Criterion (LOOIC) is a
Bayesian equivalent to the Aikake Information Criterion (AIC) metric that balances additional
complexity in model structure against the improvement in model performance. Models using
the same dataset and nested model structures can be directly compared, with lower LOOIC
values indicating models that maximize fit and minimize complexity.

Three independent catch rate models were optimised for the catch reconstruction based on the
fleet.

Longline bycatch fleet

The bycatch model for the longline bycatch fleet was fi ed separately from the target model
based on different assumptions underlying the response variable. Records belonging to vessel
with flags from Papua New Guinea and Solomon Islands were removed from the analysis. In
previous research by Rice (2012), sets with evidence of shark targetingwere also removed from
the analysis (e.g., the use of wire traces, shark lines or the specification by the observer that the
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set was targeting shark). Owing to the poor coverage and reliability of these covariates over
fleet and years, we were more conservative in retaining data, and did not filter sets based on
these variables.

The best model for the longline bycatch fleet was:
OCS.obs | trial(sets) = Year + s(SST, k=3) + HBF.cat + cluster + (1Flag) + (1yy:Flag),
including the ν coefficient to scale overdispersion as a function of average catch rates.

Alternative models included observer programme instead of flag, different configurations
for the oceanography covariates and the flag-year interaction, and also the modelling of the
overdispersion.

Longline target fleet

Li le is known about the longline target fleet, so that it was not included in recent catch
reconstructions (e.g., Peatman et al. 2018b). An estimation of oceanic whitetip captures
assumed that 5% of effort in the L_BEST database was targeting sharks, but apart from this
aspect, predictions of catches for the targeting fleet were from the same model as that used for
the bycatch longline fleet by Rice (2012).

In the current assessment, we created a model of catch rates for the target longline fishery.
Given the scarcity of observer records for the countries with this fishery, a subset of
representative flags from Pacific Island countries and territories was retained, in addition
to Papua New Guinea and Solomon Islands sets (American Samoa, Kiribati, Cook Islands,
Fĳi, Federated States of Micronesia, Marshall Islands, Samoa and Tuvalu). Recent records
from Papua New Guinea and Solomon Islands with observer programmes from distant-water
nations were removed, as they were considered to be unlikely to be representative of domestic
fisheries (but noting that there is some evidence of shark targeting by distant-water nations
too). Observer records from Papua New Guinea for 1996, 2000 and 2003 were removed as the
total catches of oceanic whitetip shark in these years were very low, indicating that observed
catches might not have been recorded. There is evidence that the shark target fisheries in the
Bismarck Sea region have stopped (White et al. 2018); however, based on the uncertainty of
the timespan of target fisheries, we assumed that target fisheries were ongoing for the catch
reconstruction.

The best model for the longline target fleet was:

OCS.obs | trial(sets) = yy + s(SST, k=3) + hbf.cat + cluster + (1:Flag),
including the ν coefficient to scale overdispersion as a function of average catch rates.

This model did not include a flag-year interaction by design, so that the overall temporal trend
in catches would be informed by the catch observed in other Pacific country fleets, but the scale
determined by the vessel flag. This approach was used to compensate for the lack of reliable
records for the target fisheries for some years.
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Purse-seine fleet

A single model of observed catch rates was built for the purse-seine fleet, including associated
and unassociated sets, but with set type as a covariate to allow for reconstructed catches to be
predicted for each fleet separately.

The best model for the purse-seine fleet was:
OCS.obs | trials(sets) yy + s(dist2coast, k=3) + (1|Flag) + (1|yy:Flag) + SetType.

This model had a random effect for flag and a random-effect interaction for year and flag, and
fixed effect for set type and the distance of sets to the nearest coast. The model including ν did
not result in a considerable improvement to the fit according to the LOOICmetric, presumably
because there was less variation between flags fishing the same area in purse-seine than for
longline catch rates.

Alternative models considered observer programme instead of flag, different configurations
for the oceanography covariates and the flag-year interaction, and also the modelling of the
overdispersion.

2.2.2 Extrapolation of observed catch rates toWCPO-wide effort

Catch rates predicted from the observer models were projected at the scale of the Western and
Central Pacific Ocean based on estimates of effort from the L_BEST and S_BEST datasets.

For L_BEST, species-targeting clusters were predicted from species proportion for each record
(as described in Table 1). Hooks-between-float information was missing for numerous records
in L_BEST, especially in earlier years. HBFs are a proxy for the depth of the longline set, and
a key factor for predicting and extrapolating catches of oceanic whitetip shark, as this species
primarily occupies surface waters.

CCMs recently started reporting longline catch and effort statistics disaggregated by HBF;
however, coverage for many countries remains lacking over most or part of the time period
of this assessment.

In the previous catch reconstruction by Peatman et al. (2018b), ratio estimators were used to
classify L_BEST records that were missing HBF information. Here, we used a Random Forest
model instead (Liaw&Wiener 2002), as it allows the inclusion of covariates to predict the likely
depth of sets (instead of assuming that unclassified sets for a country are directly representative
of classified sets). The Random Forest model also provides outputs for the probability of a
record having a given classification, which can be used to propagate uncertainty about this
step into catch estimates as needed.

We used the dataset of HBF-disaggregated L_BEST to train a Random Forest model to
predict whether a record should be assigned to a shallow- (<10 HBF) or deep-effort category
(≥10 HBF), assuming a binomial error distribution:
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• We used the Random Forest algorithm provided in the R package “randomForest” (Liaw
&Wiener 2002).

• Covariates used to build the tree were: year, month, targeting cluster, 5◦-longitude cell,
5◦-latitude cell, and catches for albacore, yellowfin, bigeye and bluefin tuna, swordfish
and other billfish (in numbers). We did not use shark catches, even though these data are
available in L_BEST and likely provide information about set depth since sets that target
sharks tend to be shallow. These data were not included as low shark catches in the early
part of the time series are misrepresented owing to the lack of reporting.

• The L_BEST.HBF dataset was split evenly between a training and a testing dataset. The
training dataset was used to fit the Random Forest model and model performance was
assessed by predicting HBF classification for the testing dataset.

• The Random Forest model was tuned by first running the model with a high number of
trees (500), and verifying the Area-Under-the Curve score to asses the number of trees
required to reach a plateau. Five covariates were randomly considered at each node for
spli ing. The optimal tree depth was assessed to be 200.

The Random Forest model with optimised parameters was used to assign shallow- or
deep-effort depth to L_BEST records lacking HBF information, based on the probabilities
estimated by the binomial error model. Where partial HBF information for a stratum was
available, predictions were only made for the effort lacking HBF classification. An uncertainty
distribution of the final predictions of HBF classification for L_BEST by member countries
was estimated by drawing 1000 draws from a Bernoulli distribution for each L_BEST record,
assuming the probability of success is the probability estimated by the Random Forest model
of the record being classified as deep. Predictions of the proportion of deep sets over time by
fleet is shown in Figure 14, including the fit to the training dataset and 95% credible intervals
based on sampling of the error distributions.

Once all effort in L_BEST was assigned to a shallow- or deep-set category, we were able to
make predictions of L_BEST-wide catch for the assessment region, based on the catch models
developed for the longline bycatch and target fleets (Figures 15 and 16). Predictions for the
target longline fleet were derived on effort assigned to Papua New Guinea and Solomon
Islands only.

The S_BEST dataset already contained all the required covariates so we were able to proceed
with the historical catch predictions for the associated and unassociated purse-seine fleets
without further processing of covariates. For all fleets, predictions of catches over time by fleet
and year were aggregated for each model over each posterior draw, and summary statistics
extracted. The median prediction was used as a baseline catch scenario, and the 90th quantile
of the predictions as a high catch scenario.
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2.3 CPUE standardisation

A similar approach to fi ing the CPUE models was used to that for the catch reconstruction
model, including the use of a negative binomial error distribution with an additional ν
parameter (Section 2.2.1). In practice, the year effects estimated from the catch reconstruction
models can be considered to be standardised CPUE rates. Nevertheless, a constraint to
this approach of fi ing the catch reconstruction models was that total catch rates would
be predicted from the L_BEST and S_BEST datasets, which meant that (1) sets had to be
aggregated at a lower spatial resolution of 5 degrees (for the longline dataset), and (2) only
covariates available in L_BEST and S_BEST could be considered. In addition, as we were
predicting catches across all flags fishing in the Western and Central Pacific Ocean, we had
to retain as many flags as possible in the analysis to inform the value of the flag effect in the
random effect distribution. Otherwise, the flag effect for a country fishing in the Western and
Central Pacific Ocean but excluded from the model fit would be randomly drawn from that
distribution. For this reason, we retained as many different flags as possible in the model
dataset. These constraints were not present for the CPUE analysis as the key result was the
estimated year effects, independent from flags.

As a result, we filtered the observer dataset to retain only observer programmes that had
consistent observer coverage over time across the spatial distribution of oceanicwhitetip shark.
These observer programmes were: American Samoa, Fĳi, Federated States of Micronesia,
Hawaii, Kiribati, Marshall Islands, New Caledonia and French Polynesia. Sets were filtered to
retain only those occurring in SST ≥16◦C; sets with catch rates higher than the 99.5th quantile
of positive catch rates were excluded as they were considered to be active shark targeting. The
remaining sets were aggregated over flag, programme code, HBF category (shallow or deep),
year, month, and 1◦cell.

A range of model structures and combinations of covariates were trialled with the objective of
improving model diagnostics and minimising the LOOIC metric. Covariates are described in
Table 1.

The best model was:
OCS.obs | trial(sets) = Year + s(SST, k=3) + (1|Program) + s(HBF, k=4) + cluster + (1|Year:Program),
including the ν coefficient to scale overdispersion as a function of average catch rates.

This model was similar to the catch reconstruction model for this fleet, but included hooks-
between-floats as a continuous instead of categorical variable, and an effect on observer
programme instead of flag. These changes were based on comparisons between alternative
models using the LOOIC metric.

The first year of the CPUE time series (1995) was the model’s intercept. Standardised year-
effects for 1996 to 2016 were scaled according to the intercept. The MCMC draws were mean-
standardised and back-transformed from the log-link, and summary statistics for each year
(median, 2.5th and 97.5th) extracted to form the standardised index of abundance.
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3. RESULTS

3.1 Species targeting clusters

The approach used to derive the species targeting cluster is described in Table 1. We identified
5 species targeting clusters reflecting targeting for either specific species of tuna or species
assemblages (Figure 2). Three of the clusters were mainly composed of a single species of tuna
(albacore tuna, bigeye tuna, yellowfin tuna). The other two clusters were mixed assemblage
of swordfish and marlins (blue marlin, black marlin and striped marlin), and tuna (all three
main species). Note that we could have used a higher number of clusters and improve the
classification diagnostics for the k-means algorithm but we elected to retain broad cluster
delineations, sincewe expected the targeting cluster to be somewhat confoundedwith gear and
environment covariates used in the catch reconstruction and CPUE standardization models.

3.2 Models of catch rates basedonobserver data

3.2.1 Longline bycatchfleet

The selected model for observer catch rates for the longline bycatch fleet included a year
effect, a non-continuous linear effect for SST, a categorical effect for set depth (shallow or
deep), a categorical effect for the species targeting effect, and random effects for flags and the
interaction between flag and year. The negative binomial distribution was parameterized with
the addition of the ν parameter. We used flag instead of observer programme as a covariate in
order to be able to use the L_BEST database to extrapolate catch from model predictions, and
L_BEST only contains effort by flag.

This model had the best diagnostics compared to alternatives, and also the second lowest
LOOIC (Table 2). Another model including an effect of chlorophyll-a in addition to that of SST
had a slightly be er LOOIC but the chlorophyll-a effect was very weak and thus estimated
with li le precision, which would have led to unstability in the model predictions. We thus
decided to retain SST as the sole oceanography covariate. The covariates that resulted in the
most improvement in LOOIC were the ν parameter, the non-linear effect for SST, the set depth
category and the year × flag interaction. Effects of bathymetry and distance from the coast
were not significantly different from 0. Note that some model structures did not converge to
stable estimates so we did not consider them further.

The model predicted in overall decline in catch rates independent of other covariates, with
catch rates in 2016 0.18 times what they were in 1995. There was a strong positive effect of
SST on catch rates that plateaud at about 27◦C (Figure 3). Catch rates for shallow sets were
predicted to be 3.5 times that for deep sets, and species target clusters with higher proportions
of swordfish or marlins in their catch had the effect positive effect on catch rates, followed by
target clusters with high proportions of bigeye tuna and albacore tuna.

Key model diagnostics comparing the overall distribution of the observed vs. predicted
response variable are shown in Figure 4 and 5. The overall fit across all covariateswas good but
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some trends appear when predictions are disaggregated by flag and year. Summary statistics
for the proportion of zero catch, the mean and median catch by fishing event when catch >
0 and the 90th quantile for positive catches by fishing event when catch > 0 are shown in
Figure A-24 to A-32. The former two diagnostics allow to see howwell the model captures the
mean ormedian catch rate for the data, whereas the la er shows how the overdispersion in the
data is modelled. In general, the model performs be er at predicting the mean or the median
than the overdispersion. The proportion of zeroes was fi ed well across most flag and year
combinations (Figure A-24 to A-26). The mean number of indivuals caught for fishing events
where catch > 0 was generally well fi ed except for the early period where both the predicted
mean and median were slightly higher than the observed (with observed values still occuring
within the interquartile bounds for the predictions, except for Taiwanwhere the expected value
was greater) (Figure A-27 to A-29). The 90th quantile for the number of indivuals caught for
fishing events where catch > 0 was over-estimated by the model, but when this metric was
disaggregated between years and flags the pa ern was most apparent for the US in the earlier
part of the time series (Figure A-30 to A-32). MCMC traces for key parameters did not show
any convergence issues (Figure A-33).

3.2.2 Longline target fleet

The selected model for observer catch rates for the longline target fleet included a year effect,
a non-continuous linear effect for SST, a categorical effect for set depth (shallow or deep), a
categorical effect for the species targeting effect, and a random effect for flags. The negative
binomial distribution was parameterized with the addition of the ν parameter. We specifically
did not consider an interaction between year and flag as observer coverage was minimal for
many years for the two flags assigned to the target fleet (Papua New Guinea and Solomon
Islands), and we wanted to use the overall year effect estimated with the inclusion of the fleets
of other CCMs in the same region to result in a more robust standardized CPUE for this fleet.

This model had the lowest LOOIC amongst the alterate structures tested (Table 3) but the
impact of the addition of a SST covariate onmodel performancewas not as important as for the
bycatch fleet model as the dataset for the longline target fleet did not show as much contrast
in this variable. Similarly, the effect of including chlorophyll-a, bathymetry or distance to
coast was negligible. Otherwise, the two covariates that had the highest impact on model
performance were set category (shallow vs. deep) and the addition of the ν parameter to the
negative binomial distribution.

The model predicted variable catch rates throughout the time-series, and especially at the start
which might have be due to observers not consistently recording shark catches at the start of
the time series. Therewas a consistent decline in the estimated year effects from2009. Set depth
had a very strong effect on catch rates, with shallow sets predicted to have catch rates 10 times
that of deep sets when other variables are accounted for. The effect of the species targeting
cluster was only significant for the billfish targeting cluster showing a 1.6 times increase in
catch rates compared to the intercept (the albacore targeting cluster). SST was estimated to
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have a positive effect on catch rates (Figure 6) but was not estimated with much precision,
especially for values of SST < 25◦C.

Key model diagnostics comparing the overall distribution of the observed vs. predicted
response variable are shown in Figure 7 and 8. The overall fit across all covariateswas good but
some trends appear when predictions are disaggregated by flag and year. Summary statistics
for the proportion of zero catch, the mean and median catch by fishing event when catch >
0 and the 90th quantile for positive catches by fishing event when catch > 0 are shown in
Figure A-34 to A-42. The proportion of zeroes was over-estimated for some flags but the fit
was good for Papua New Guinea and Solomon Islands which had most of the fishing events
for this model (Figure A-34 to A-36). Predicted values were less variable between years than
observed since they were constrained by the random effect on the year × flag interaction (e.g.
see Federated States of Micronesia). The mean number of indivuals caught by fishing events
where catch > 0 was well fi ed when aggregating over years and flags but over-estimated
for some flags when disaggregating by flag and year. The fit for Papua New Guinea and
Solomon Islandswas generally good but predictions for the earlier time periodwere uncertain.
The 90th quantile for the number of indivuals caught by fishing events where catch > 0 was
relatively well estimated with no clear trend acroos flags or year, except for Federated States
of Micronesia where this value was over-estimated for all years (Figure A-40 to A-42). MCMC
traces for key parameters did not show any convergence issues (Figure A-43).

3.2.3 Purse seinefleets

The selected model for observer catch rates for the longline target fleet included a year effect,
a non-continuous linear effect for the distance to the neareast coast, a categorical effect for set
depth (shallow or deep), a categorical effect for the species targeting effect, and random effects
for flags and the interaction between flags and years.

The selected model had a low LOOIC amongst the alternatives considered (Table 4). The
covariate that had the most impact on model performance was the addition of the year × flag
interaction. Lower LOOICs could have been achieved by including oceanography covariates
like bathymetry and chlorophyll-a, but these were generally not well estimated by the model:
either the effect was very small or the uncertainty bounds around the estimated spline would
have resulted in unreliable predictions. We also did not consider SST as a covariate since there
was minimal contrast in this variable 99% of fishing events occurred between SST of 27.5◦C
and 31◦C. Early exploration showed that the addition of the ν parameter made li le difference
and it was not included when considering candidate model structures.

The model predicted very low catch rates in 1995 the intercept year (the lowest of the time-
series), annual catch rates were then high up to 2002, and then declined from that point
onwards. The set type used for the intercept was the anchored FAD. Unassociated sets had
significantly lower catch rates in comparison, and dri ing FADs had the highest effect on catch
rates, with an increase of approximately 3 fold compared to the anchored FAD. The effect of
set distance to coast was weak and estimated with low precision for distances beyond 400km,
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but showed that in general, sets closer to coastlines were expected to have slightly higher catch
rates (Figure 9).

Key model diagnostics comparing the overall distribution of the observed vs. predicted
response variable are shown in Figure 10 and 11. The overall fit across all covariates was good.
When predictions were disaggregated between years, flags and flags × year (Figure A-44 to
A-52) there was a clear pa ern where the proportion of zero catch events was over-estimated
by the model in the earlier time-period, which came primarily from the fit to US-flagged trips
(Figure A-46). Otherwise, the model under-estimated the 90th quantile for some flags, e.g.
Solomon Islands, and over-estimated this value for some years, e.g. 1996 and 1999 (Figure A-
52). MCMC traces for key parameters did not show any convergence issues (Figure A-53).

3.3 Classification of deep vs. shallow set forWCPO longline effort

A random forest model was used to classify longline effort from the L_BEST dataset into
shallow and deep categories to use as a covariate in the extrapolation of the longline catch
rates model. The model was based on a subset of L_BEST for which hooks-between-floats
information was provided (L_BEST.HBF). Figure 12 shows the proportion of classified effort
by CCM over time that was present in L_BEST.HBF vs. L_BEST.HBF.

A number of key variables were used in the random forest model to capture spatial and
temporal trends by flag aswell as covariates that could be indicative of gear configuration such
as the catch by species or the species targeting cluster. Of the provided covariates, targeting
cluster and longitude (5◦) were the most useful in improving classification accuracy, followed
by latitude (5◦) and year (Figure 13). We did not include flag as a covariate so that we could
make predictions for the model for flags that were not present in L_BEST.HBF.

Figure 13 shows the predicted proportion of ‘deep’ effort by flag and year from the model,
as well as the resulting uncertainty. Predicted trends tended to reflect those observed for
most flags that had provided some HBF classified effort except for flags where the observed
proportion varied abruptly between years (e.g. China, Papua New Guinea, Taiwan). As
expected, uncertainty bounds were greater for CCMs and time periods where the proportion
of observed classified effort was smaller compared to the total effort reported in L_BEST.

3.4 Historical catch reconstructions

Estimated historical catches for the longline bycatch fleet, the longline target fleet and the
purse seine fleet split between associated and unassociated sets is shown in Figure 15 to
17. The catches by the longline bycatch fleet are estimated to be much higher than those
for the longline target fleet and the purse seine fleets. According to the longline bycatch
reconstruction (Figure 15), catches increase steadily from 1995 onwards, peak in 2001 (median:
563352 individuals) and declined steadily since. Catches are highly variable from year to year
in the earlier time period. There are three alternative catch reconstructions these predictions
can be compared to for part or all of the time span of the analysis. The predictions from
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Rice (2012) and Peatman et al. (2018b) were based on the same observer dataset as the one
we used. Predicted catches from Rice (2012) are slightly higher at the very start of the time
series and lower therea er (below the 10quantile for the predictions). There is a closer match
between the predictions of Peatman et al. (2018b) and ours. We included additional CCMs in
our predictions for which longline effort is poorly known but assumed to be quite high, which
could account for the difference in our estimates.

We also used an alternative approach to catch reconstructions based on estimates of the global
fin trade (see Tremblay-Boyer et al. 2019). While this time series predicts catches for all fleets
combined,most catches are predicted to occur in the longline bycatch fleet in our analysis sowe
compare them directly. The match with the catch reconstruction from trade-based estimated
was close at the start of the time series but diverged from 2002 onwards. The match between
the predictions was very close in 2000, which was also the year considered the most reliable
for a trade-based catch reconstruction of oceanic whitetip sharks in the WCPO.

Reconstructed catches for the longline target fleetwere overall estimated to be quite low (<5000
individuals for most years) (Figure 16). The predicted catches were much lower than those
estimated by Rice (2012), but noting they used a different measure of effort for this fleet. There
was no clear trend in catches except for a general increase from 1995 to 2000 and a decrease and
stabilization therea er. The highest predicted value was in 2010 (median: 9011 individuals)
which strongly departed from values in neighbouring years. This high prediction did not
come from a predicted high year effect for this year, but from a peak in the 2010 L_BEST effort
reported for the fleets used to define shark targeting effort.

Reconstructed catches for the purse fleets were estimated to be higher than those for the
longline target fleet, but still much lower than those for the longline bycatch fleet (Figure 17).
The associated fleet was predicted to have higher catches than the unassociated fleet, with a
steady decline in predicted catches from the pre-2000 period. The catches were predicted to
be higher than those estimated by Rice (2012) especially in the earlier part of the time series.
The catches were more similar to those estimated by Peatman et al. (2018a) (but still higher
especially in 2003).

Predictions of annual catches by fleet are enumerated in Table B-6 to Table B-8 for reference. We
also included predictions for the trade-based approach that was detailed in Tremblay-Boyer et
al. (2019) (Table B-9).

3.5 CPUE standardization for the longline bycatchfleet

The CPUE standardization model was based on a subset of longline observer programmes
having more consistent coverage over space and time (but still noting that longline observer
coverage rates were quite low apart except for the US-based programmes). The selected
model for CPUE standardization for the longline by-catch fleet included a year effect, a
non-continuous linear effect for SST, a non-linear effect for set depth (shallow or deep), a
categorical effect for the species targeting effect, and random effects for observer programme
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and the interaction between observer programme and year. The negative binomial distribution
was parameterized with the addition of the ν parameter. Note that, unlike for the catch
reconstruction models, because we did not have to predict from the L_BEST dataset we were
able to use observer programme instead of flag as a covariate. We were also able to model
set depth as a continuous variable insted of a categorical shallow/deep effect. Both of these
changes resulted in an improvement in model performance (see below).

The selectedCPUEmodel had the lowest LOOICof themodel structures tested (Table 5). Based
on the results from the related model for the catch reconstruction we only considered SST as
an oceanography covariate. Using a continuous effect for HBF instead of category resulted
in a slight improvement in model performance. Using an observer programme as a covariate
instead of country flag considerably lowered the value for the LOOIC. Note that we did not
use both flag and observer programme in the same model since they are confounded. Other
covariates that had a strong positive impact on model performance were the species targeting
cluster, the random interaction between year and observer programme, and the addition of ν
to the parameterization of the negative binomial distribution.

The mean-standardised CPUE index resulting from the best model is shown in Figure 18. The
year effects estimated from the model were highly variable at the start of the time series and
started steadily declining from 1999 onwards. The lowest year effect estimated was for 2012
which predicted catch rates about 0.15 those of 1995 once other covariates were accounted for.
The effect estimated for 2016 slightly higher at about 0.21 the 1995 catch rates. SST had a strong
positive effects on catch rates especially up to 27◦C (Figure 21). Catch rates declined steadily
with increasing hooks-between-floats up to HBF∼25. The billfish targeting cluster and the
mixed tuna targeting cluster (albacore, bigeye and yellowfin tuna in even proportions) had a
positive impact on catch rates compared to the intercept targeting cluster (bigeye tuna cluster).

The stepwise plot showing the change in standardized CPUE as each covariate was added
to the model is shown in Figure 19. The biggest change was the addition of the targeting
cluster which lowered the relative value of the index for the earlier time period and raised
it slightly for the la er time period. However adding observer programme and the year–
observer programme interaction somewhat reverted these changes, but resulted in a highly
variable early CPUE. This indicates that the values for the targeting cluster and the observer
programme covariates are correlated for at least some levels, as would be expected (since fleets
tend to focus on targeting a given species). None of the covariates included removed the slight
increase in CPUE present in the la er part of the time series. The results from the stepwise
plot are also reflected in the influence plot showing the relative impact of the two categorical
covariates, targeting cluster and observer programme, on the nominal CPUE (Figure 20). The
observer programme covariate had a high negative influence on the nominal CPUE at the start
of the time series while the cluster covariate had a moderate positive influence for that same
time period.

Key model diagnostics comparing the overall distribution of the observed vs. predicted
response variable were satisfactory (Figure 22 and 23). There was no noticeable trend in
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the observed vs. predicted proportion of zeroes by fishing event when predictions were
disaggregated between year, observer programme and year× observer programme (Figure A-
54 to Figure A-56). Similarly, there was no noticeable trend in the fit for the number of
individuals sharks caught for positive catch events or the 90th quantile of individuals caught
for positive catch events (Figure A-57 to A-62). MCMC traces for key parameters did not show
any convergence issues (Figure A-63).

4. DISCUSSION

This report presented the historical catch reconstructions and CPUE standardization
undertaken to support the 2019 stock assessment for oceanic whitetip shark in the WCPO
(Tremblay-Boyer et al. 2019). The catches for the longline bycatch fleet are predicted to be
the highest of all fleets. Catches for the other fleets are negligible in comparison. While we
do expect most catches to occur in the longline bycatch fleet for this species, this allocation
probably also reflects the reliability of catch rates recorded by the observer programs assigned
to each fleet, as well as the effort information used to expolate catches. For the longline target
fleet, there was sparse observer coverage and also years where oceanic whitetip shark catches
appeared not to have been recorded. In addition the effort for that fleet is poorly known. The
combination of these factors implies that catches for this fleet were likely under-estimated. In
parallel, shark catches were poorly recorded by purse seine observers earlier in the time series
and are known to be imprecise even in the more recent time period due to the logistics of
sampling and the prioritization of tasks on purse seine sets. It is thus likely that catches by the
longline target and purse seine fleets represent a higher proportion of the total WCPO catch
for oceanic whitetip shark than what we report here.

Two new modelling approaches were used compared to previous versions of this work.
First, all GLMMs models were fi ed within a Bayesian framework via Markov Chain Monte
Carlo algorithms (Bürkner 2017). A clear advantage to this approach was that it makes it
straightforward to characterize the uncertainty around predictions, in contrast to previous
approaches where uncertainty could not be estimated reliably (e.g. Rice 2012) or had to be
estimated with a complicated extra step (Peatman et al. 2018b).

The other model development was to use a random forest model to classify WCPO-wide
longline effort into shallow and deep categories. Set depth was an influential covariate in
all longline models so this additional modelling step improved the quality of the estimated
historical catches. We also estimated the uncertainty of the classification with a Monte Carlo
simulation but this was not used further in the analysis beyond the interpretation of the results.
Future iterations of this work should consider propagating this uncertainty in the historical
catch reconstructions.

Another covariate that was obtained through modelling was the species targeting cluster,
which was also an influential covariate in all longline models. We used a straight-forward
k-means classification approach that had been used in the past for CPUE standardization in
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WCPO tuna assessments (McKechnie et al. 2015). This simple algorithm remains a useful tool
to capture key trends in how catches by species are distributed amongst sets.

A negative binomial distribution was assumed for all catch reconstructions and CPUEmodels.
This error distribution has clear advantages in the modelling of catch rates given it is discrete,
so directly represents the catch event, and can capture both high proportions of zeroes and
rare high catch events. However it can be challenging to get good model fits when applied
to a dataset where the behaviour of catch events varies greatly across covariates, as was the
case here when modelling observer programmes across the WCPO, including variations in
catch rates due to habitat, gear configuration, and observer training. The be er diagnostics for
the CPUE standardization than for the catch reconstructions underscore this, as the observer
programmes had been filtered to retain only those having more reliable coverage. The ν
parameter we added to the negative binomial parameterization improved model fits in most
cases as it allowed themodel to fine-tune the shape of the overdispersion to the training dataset.
For all catch andCPUEmodels, the central tendency tended to bewell captured but the tail end
of catch events was o en over-estimated. This informed our decision to use the 90th quantile
(and not a higher one) to generate the ‘high’ catch scenario.

We modelled early years even though observer reporting for sharks for this period is known
to be unreliable as well as highly variable given the very sparse coverage. We used the
predictions as is1 but would urge care in the interpretation and use of these predictions as they
are likely under-estimates. For future iterations it might be good to decide upon a reliable
start year (e.g. 2003, similar to Peatman et al. 2018b), and either change the time-span of the
assessment accordingly or scale the catches before that year based on a set of scenario rules.
Alternatively, we did not use informative priors in either the catch reconstructions or the CPUE
standardization here, butwe could have specifiedmore precise priors for the early time period.
However this approachwould not be appropriate for the CPUE standardization in the absence
of independent information (e.g. fishery-independent survey) about relative abundance. In
that instance it might be useful to consider whether 1995 is in fact a suitable start year for the
assessment.

Historical catch estimates for the purse seine fleets must also be interpreted carefully. There
was no consistent instructions for sharks to be recorded for the earlier part of the time series.
In parallel, sharks on purse seine sets can be challenging to identify and enumerate during the
brailing and sorting process, even in the recent time period. Observers on purse seine vessels
are responsible for a number of competing tasks and the recording of shark catches might not
be prioritized. It thus seems likely that observer training and directives would strongly impact
catch rates for sharks recorded by observers on purse seine fleets. For instance, the highest flag
effect estimated for the purse seine model was for the US flag, and given key habitat and gear
variables were accounted for in the model, this higher effect was probably due to observer
training and not a real effect of this fleet on catch rates. Similarly, using observer programme
instead of flag as a covariate in the CPUE model greatly improved model fit and performance

1except for purse seine fleets in 1995where the estimated value of almost zero catch deemed especially unreliable
was set to the higher 1996 estimate
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for the longline datasets, whereas onewould a priori think that flag-specific gear configurations
leading to changes in catch rates should be more informative. These examples underscore that
observer training is likely to have a high impact on the recorded catch rates, especially in the
earlier time period. For this reason, observer directives in the recording of shark catches should
be as consistent as possible across programs, and the results presented should be interpreted
here in light of this important caveat.

5. REFERENCES

Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal
of Statistical So ware, 80, 1–28. doi:10.18637/jss.v080.i01

Carpenter, B.; Gelman, A.; Hoffman,M.; Lee, D.; Goodrich, B.; Betancourt, M.; Brubaker, M. A.;
Guo, J.; Li, P., & Riddell, A. (2015). Stan: A probabilistic programming language. Journal
of Statistical So ware. Retrieved May 18, 2016, from http://www.demonish.com/cracker/
1431548798_9226234ebe/stan-resubmit-jss1293.pdf

Clarke, S. (2018). Historical Catch Estimate Reconstruction for the Pacific Ocean based on Shark Fin
Trade Data (1980-2016). WCPFC-SC14-2018/SA-IP-09. Report to the Western and Central
Pacific Fisheries Commission Scientific Commi ee. Fourteenth Regular Session, 8–16
August 2018, Busan, Korea.

Lawson, T. (2011). Estimation of catch rates and catches of key shark species in tuna fisheries of the
western and central pacific ocean using observer data. WCPFC-SC12-2011/EB-IP-02. Report
to the Western and Central Pacific Fisheries Commission Scientific Commi ee. Seventh
Regular Session, 9–17 August, Busan, Korea.

Liaw, A. & Wiener, M. (2002). Classification and regression by randomForest. R News, 2/3, 18–
22.

McKechnie, S.; Tremblay-Boyer, L., & Harley, S. (2015). Longline cpue indices for bigeye tuna based
on the analysis of pacific-wide operational catch and effort data. WCPFC-SC11-2015/SA-WP-02.
Report to the Western and Central Pacific Fisheries Commission Scientific Commi ee.
Eleventh Regular Session, 5–13 August 2015, Pohnpei, Federated States of Micronesia.

Peatman, T.; Allain, V.; Caillot, S.; Park, T.; Williams, P.; Tuiloma, I.; Panizza, A.; Fukofuka, S.,
& Smith, N. (2018a). Summary of purse seine fishery bycatch at a regional scale, 2003–2017.
WCPFC-SC14-2018/ST-IP-04 Rev 1 (24 July 2018). Report to the Western and Central
Pacific Fisheries Commission Scientific Commi ee. Fourteenth Regular Session, 8–16
August 2018, Busan, Korea.

Peatman, T.; Bell, L.; Allain, V.; Caillot, S.;Williams, P.; Tuiloma, I.; Panizza, A.; Tremblay-Boyer,
L.; Fukofuka, S., & Smith, N. (2018b). Summary of longline bycatch at a regional scale, 2003–
2017. WCPFC-SC14-2018/ST-WP-03 Rev 3 (15 April 2019). Report to the Western and
Central Pacific Fisheries Commission Scientific Commi ee. Fourteenth Regular Session,
8–16 August 2018, Busan, Korea.

Pilling, G. & Brouwer, S. (2019). Report from the SPC Pre-Assessment Workshop, Nouméa,
April 2019. WCPFC-SC15/SA-IP-01. Report to the Western and Central Pacific Fisheries

22 Inputs to the oceanic whitetip shark assessment

https://dx.doi.org/10.18637/jss.v080.i01
http://www.demonish.com/cracker/1431548798_9226234ebe/stan-resubmit-jss1293.pdf
http://www.demonish.com/cracker/1431548798_9226234ebe/stan-resubmit-jss1293.pdf


Commission Scientific Commi ee. Fi hteenRegular Session, 12–0August 2019, Pohnpei,
Federated States of Micronesia.

Rice, J. (2012). Alternate catch estimates for silky and oceanic whitetip sharks in Western and Central
Pacific Ocean, WCPFC-SC8/SA-IP-12. Report to the Western and Central Pacific Fisheries
Commission Scientific Commi ee. Eighth Regular Session, 7–15 August 2012, Busan,
Korea.

Rice, J. & Harley, S. (2012). Stock assessment of oceanic whitetip sharks in the western and central
Pacific Ocean. WCPFC-SC8-2012/SA-WP-06 Rev 1. Report to the Western and Central
Pacific Fisheries Commission Scientific Commi ee. Eighth Regular Session, 7–15 August
2012, Busan, Korea.

Tremblay-Boyer, L.; Carvalho, F.; Neubauer, P., & Pilling, G. (2019). Stock assessment for oceanic
whitetip shark in the western and central pacific ocean. WCPFC-SC15/SA-WP-06.

Vehtari, A.; Gelman, A., & Gabry, J. (2016). loo: Efficient leave-one-out cross-validation and WAIC
for Bayesianmodels. R package version 0.1.6. Retrieved fromhttps://github.com/jgabry/loo

White, W.; Gisawa, L.; Baje, L.; Usu, T.; Yaman, L.; Sabub, B.; Appleyard, S.; Green, M.; Vieira,
S.; Chin, A.; Smart, J.; Grant, M., & Simpfendorfer, C. (2018). Sustainable management of the
shark resources of Papua New Guinea: socioeconomic and biological characteristics of the fishery.
FR2018/20, Australia.

23 Inputs to the oceanic whitetip shark assessment

https://github.com/jgabry/loo


6. TABLES

Table 1: Model covariates of operational fishing features likely to influence catch rates of oceanic
whitetip shark and environmental variables that may represent habitat of this species (LBEST and
SBEST are databases of the SPC for longline and purse-seine fisheries, respectively).

Covariate Description

Year Year when the fishing set occurred, treated as categorical .
Flag Country-assignation for the vessel performing the fishing set.
Programme Country observer programme for fisheries observer observing the

fishing sets.
HBF Hooks-between-floats for the longline fishing set.
SetType Set category for the purse-seine fishing set: anchored FADs (fishing

aggregation devices), dri ing FADS, whales, logs or floating objects,
baited and unbaited free schools.

HBF.cat Hooks-between-floats of the fishing set assigned to a categorical
variable: shallow for ≤10 HBF, deep for >10 HBF.

Cluster Predicted targeting strategy for longline fishing set based on k-means
clustering of the proportion in the total catch in number of albacore,
bigeye, yellowfin and bluefin tuna, swordfish and other billfish. Cluster
composition was predicted based on LBEST records and assuming 5
centres, resulting in a categorical variable with values from 1 to 5.
Longline observed set targeting strategywas predicted according to the
LBEST classification.

SST Sea surface temperature aggregated at 5-degree scale for LBEST and 1-
degree scale for SBEST, obtained from NOAA (https://www.esrl.noaa.
gov/psd/data/gridded/data.noaa.oisst.v2.html).

Chl-a Sea surface chlorophyll-a concentration aggregated at 5-degree scale for
LBEST and 1-degree scale for SBEST (https://coastwatch.pfeg.noaa.gov/
erddap/griddap/erdMH1chlamday).

Bathymetry Depth of the sea floor at the location where the fishing set occurred,
aggregated at 5-degree scale for LBEST and 1-degree scale for SBEST
(https://coastwatch.pfeg.noaa.gov/erddap/griddap/srtm15plus).

Dist2Coast Distance of the set to the nearest coastline, aggregated at 5-degree scale
for LBEST and 1-degree scale for SBEST.
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Table 2: Values and effective number of parameters for the leave-one-out information criterion
(LOOIC) for keymodel structures used to estimate oceanicwhitetip shark catch rates fromobserved
trips for the longline bycatch fleet. Models were ordered by LOOIC value.

Model LOOIC K ∆

Year + s(SST, k=3) + s(chla, k = 3) + HBF +
cluster + 1|Flag + 1|Year:Flag; +ν

27920.9 234.2 -11.3

Year + s(SST, k=3) + HBF + cluster + 1|Flag +
1|Year:Flag; + ν

27932.2 232.1 0.0

Year + s(SST, k=3) + HBF + cluster + 1|Flag +
1|Year:Flag

28570.7 236.3 638.5

Year + s(SST, k=3) + s(chla, k = 3) + HBF +
cluster + 1|Flag; +ν

28692.8 77.0 760.6

Year + s(SST, k=3) + HBF + cluster + 1|Flag; +ν 28707.7 73.7 775.5

Year + s(SST, k=3) + cluster + 1|Flag; +ν 29026.5 71.4 1094.3

Year + s(SST, k=3) + HBF + cluster + 1|Flag 29440.6 90.7 1508.4

Year + HBF + cluster + 1|Flag; +ν 30256.7 67.7 2324.5

Table 3: Values and effective number of parameters for the leave-one-out information criterion
(LOOIC) for keymodel structures used to estimate oceanicwhitetip shark catch rates fromobserved
trips for the longline target fleet. Models were ordered by LOOIC value.

Model LOOIC K ∆

Year + s(SST, k=3) + HBF + cluster + 1|Flag; +ν 6368.20 54.00 0.00

Year + HBF + cluster + 1|Flag; +ν 6371.80 51.00 3.60

Year + s(SST, k=3) + HBF + 1|Flag; +ν 6385.10 48.40 16.90

Year + s(SST, k=3) + HBF + cluster + 1|Flag 6524.10 66.50 155.90

Year + s(SST, k=3) + cluster + 1|Flag; +ν 6554.60 50.30 186.40
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Table 4: Values and effective number of parameters for the leave-one-out information criterion
(LOOIC) for keymodel structures used to estimate oceanicwhitetip shark catch rates fromobserved
trips for the purse seine fleet. Models were ordered by LOOIC value.

Model LOOIC K ∆

Year + s(dist2coast,k=3) + SetType + 1|Flag +
1|Year:Flag; +ν

21237.0 236.0 -325.7

Year + s(chla,k=3) + SetType + 1|Flag +
1|Year:Flag

21545.2 267.1 -17.5

Year + s(SST,k=3) + SetType + 1|Flag + 1|Year:Flag 21546.8 270.3 -15.9

Year + s(dist2coast,k=3) + SetType + 1|Flag +
1|Year:Flag

21562.7 265.1 0.0

Year + s(Bathy,k=3) + SetType + 1|Flag +
1|Year:Flag

21564.0 270.5 1.3

Year + SetType + 1|Flag + 1|Year:Flag 21576.9 267.8 14.2

Year + s(chla,k=3) + SetType + 1|Flag 22304.7 134.3 742.0

Year + s(Bathy,k=3) + SetType + 1|Flag 22326.4 136.7 763.7

Year + s(dist2coast,k=3) + SetType + 1|Flag 22334.3 136.9 771.6

Year + SetType + 1|Flag 22342.6 136.3 779.9

26 Inputs to the oceanic whitetip shark assessment



Table 5: Values and effective number of parameters for the leave-one-out information criterion
(LOOIC) for key model structures used to standardize CPUE for oceanic whitetip shark catch rates
from key observed longline fleets. Models were ordered by LOOIC value.

Model LOOIC K ∆

Year + s(SST, k=3) + (1|Program) + s(HBFnum, k=4)
+ cluster + (1|Year:Program); +ν

38686.0 128.9 0.0

Year + s(SST, k=3) + 1|Flag + s(HBFnum, k=4) +
cluster + 1|Year:Flag; +ν

39188.7 158.2 502.7

Year + s(SST, k=3) + (1|Program) + s(HBFnum, k=4)
+ cluster + (1|Year:Program)

39231.8 155.7 545.8

Year + s(SST, k=3) + (1|Program) + s(HBFnum, k=4)
+ cluster;+ν

39593.1 51.7 907.1

Year + s(SST, k=3) + (1|Program) + s(HBFnum, k=4)
+ cluster

40239.8 64.2 1553.8

Year + s(SST, k=3) + 1|Flag + s(HBFnum, k=4) +
cluster

40455.9 74.4 1769.9

Year + s(SST, k=3) + s(HBFnum, k=4) + cluster 41369.2 50.9 2683.2

Year + s(SST, k=3) + HBF + cluster 41403.5 48.0 2717.5
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7. FIGURES

Figure1:WesternandCentralPacificFisheriesCommissionconventionarea(lightgrey), includingthe
stockassessmentarea foroceanicwhitetipshark(darkgrey),boundedbythe30◦Nand30◦Sparallels

.

Figure 2: Average species composition for the 5 species targeting cluster identified from the L_BEST
dataset aggregated over the 1995–2016period.
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Figure 3: Predicted relationship between sea surface temperature (SST) and observed catch rates
for the oceanic whitetip shark for the longline bycatch fleet, independent of other covariates.
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Figure 4: Posterior predictive check plot for the longline bycatch model: cumulative distribution
function of the observations and draws from the model posterior showing whether the expected
distribution of values for the response variablematch between observations and predictions.

Figure 5: Rootogramdiagnostic assessing the fit of a count regressionmodel, applied to the observer
catch ratesmodel for the longline bycatchfleet. The y-axis shows the square-root rescaled expected
and observed counts for ease of comparison. The black line shows the expected counts and the blue
bars shows the observed counts. Observed count bar reaching below the x-axis indicate that the
model under-represents the contribution of this bin in the dataset; observed count bars not reaching
the x-axis indicate that themodel over-represents the contribution of this bin in the dataset.
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Figure 6: Predicted relationship between sea surface temperature (SST) and observed catch rates
for the oceanic whitetip shark for the longline target fleet, independent of other covariates.
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Figure 7: Posterior predictive check plot for the longline target fleet model: cumulative distribution
function of the observations and draws from the model posterior showing whether the expected
distribution of values for the response variablematch between observations and predictions.

Figure 8: Rootogramdiagnostic assessing the fit of a count regressionmodel, applied to the observer
catch rates model for the longline target fleet. The y-axis shows the square-root rescaled expected
and observed counts for ease of comparison. The black line shows the expected counts and the blue
bars shows the observed counts. Observed count bar reaching below the x-axis indicate that the
model under-represents the contribution of this bin in the dataset; observed count bars not reaching
the x-axis indicate that themodel over-represents the contribution of this bin in the dataset.
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Figure 9: Predicted relationship between distance to the coastlines and observed catch rates for the
oceanic whitetip shark in themodel for purse seine fleets, independent of other covariates.
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Figure 10: Posterior predictive check plot for the purse seine fleets model: cumulative distribution
function of the observations and draws from the model posterior showing whether the expected
distribution of values for the response variablematch between observations and predictions.

Figure11: Rootogramdiagnostic assessing thefitof acount regressionmodel, applied to theobserver
catch ratesmodel for thepurse seinefleets. They-axis shows thesquare-root rescaledexpectedand
observed counts for ease of comparison. The black line shows the expected counts and the blue bars
shows the observed counts. Observed count bar reaching below the x-axis indicate that the model
under-represents the contribution of this bin in the dataset; observed count bars not reaching the x-
axis indicate that themodel over-represents the contribution of this bin in the dataset.
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Figure 12: Proportion of LBEST effort provided with HBF information for key longline countries in
LBEST active over the assessment’s region.
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Figure 13: Importance of covariates for classification for the random forest model based on the
mean decrease in the classification accuracy when the variable is excluded, ordered in decreasing
abundance fromtop tobottom. Valueshighlighted in redor greyhadespecially highor low importance,
respectively, in comparison to other covariates (blue).
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Figure 14: Prediction of the proportion of ‘deep’ LBEST effort over time for key longline countries in
LBESTactiveover theassessment’s region. Thered lineshowstheobservedproportionof ‘deep’effort
whenprovidedandtheblue lineshowsthepredictionaccountingforbothobservationsandtherandom
forest prediction for unobserved strata. The light and dark grey bounds show the 0.025th-0.975th

and 0.25th-0.75th uncertainty bounds for the effort classification, also accounting for effort already
providedwithHBF resolution.
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Figure 15: Median predictions of oceanic whitetip shark catch in theWCPO for the longline by-catch
fleet based on a model of longline observed catch rates applied to LBEST effort. The light, dark and
darkergreyboundsshowthe0.025th-0.975th,0.10th-0.90th and0.25th-0.75th uncertaintybounds.
Forcomparisonwithourestimates, theblue line shows themedianpredictionofhistorical catchbased
onglobalfin tradestatistics, the red lineshows thepredictionofhistorical catchpublished in(Peatman
et al. 2018b), and the green line shows the historical catches used for this fleet in the reference case
for the 2012 assessment.

Figure16:Medianpredictions of oceanicwhitetip shark catch in theWCPO for the longline target fleet
based on amodel of longline observed catch rates applied to LBEST effort. The light, dark and darker
grey bounds show the 0.025th-0.975th, 0.10th-0.90th and 0.25th-0.75th uncertainty bounds. For
comparison with our estimates, the green line shows the historical catches used for this fleet in the
reference case for the 2012 assessment.
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Figure 17: Median predictions of oceanic whitetip shark catch in the WCPO for the associated and
unassociated purse-seine fleets based on a model of purse-seine observed catch rates applied to
SBEST effort. The light, dark and darker grey bounds show the 0.025th-0.975th, 0.10th-0.90th

and 0.25th-0.75th uncertainty bounds. For comparison with our estimates, the red line shows the
prediction of historical catch published in (Peatman et al. 2018b) for these fleets and the green line
shows the corresponding historical catches used in the reference case for the 2012 assessment.

Figure 18: Mean-standardized CPUE index used in this assessment of oceanic whitetip shark. The
light and dark grey bounds show the 0.025th-0.975th and 0.25th-0.75th uncertainty bounds around
the year effects. The dashed line at 1 shows the referencemean value.
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Figure 19: Stepwise plot for the CPUE standardization showing the impact on mean-centered
standardized indices of gradually adding model covariates one at a time. New covariates are added
from top to bottom, the updatedCPUE index is shown in black and the index from the previous step is
in blue. The dotted line at 1 shows themean value for the index.
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Figure20: Influenceplot for thetwocategoricalcovariatesused in theCPUEstandardization: observer
programme (top) and targeting cluster (bottom). The influence (top panel) shows the relative
impacton the standardizedCPUEof covariatesover time. Apositive influencemeans that thenominal
CPUE ishigherbecauseof thatcovariateduring that timeperiod, sothatadding it to thestandardization
model results in a lower index overall. The dotted line at 1 shows the baseline influence. The bottom
panel shows the relative number of fishing events for each covariate level across time, with the size of
the circle scaling with n. Levels are placed in ascending order of the value estimated for their effect,
from bottom to top. Points in reds are positive effects compared to the intercept, points in blue are
negative effects compared to the intercept.
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Figure 21: Predicted relationship for the observed catch rates for the oceanic whitetip shark vs. SST
(top) and hooks-between-floats (bottom) in themodel for the CPUE standardization based on the
longline bycatch fleet, independent of other covariates.
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Figure22: Posteriorpredictivecheckplot for theCPUEstandardizationmodel: cumulativedistribution
function of the observations and draws from the model posterior showing whether the expected
distribution of values for the response variablematch between observations and predictions.

Figure 23: Rootogram diagnostic assessing the fit of a count regression model, applied to the CPUE
standardizationmodel. They-axis shows thesquare-root rescaledexpectedandobservedcounts for
ease of comparison. The black line shows the expected counts and the blue bars shows the observed
counts. Observed count bar reaching below the x-axis indicate that themodel under-represents the
contribution of this bin in the dataset; observed count bars not reaching the x-axis indicate that the
model over-represents the contribution of this bin in the dataset.
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APPENDIXA: GLMMsdiagnostics

A.1 Diagnostics fortheobservercatchratesmodel forthe longlinebycatchfleet

Figure A-24: Mean and median proportion of zero observed vs. predicted by fishing event for the
observer catch rate model for the longline bycatch fleet by year. Themedian± 25th quantiles for the
predictions is shown in grey; thewhiskers cover the 2.5-97.5th quantile range.

Figure A-25: Mean and median proportion of zero observed vs. predicted by fishing event for the
observer catch rate model for the longline bycatch fleet by flag. The median± 25th quantiles for the
predictions is shown in grey; thewhiskers cover the 2.5-97.5th quantile range.
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Figure A-26: Mean and median proportion of zero observed vs. predicted by fishing event for the
observer catch ratemodel for the longline bycatch fleet by flag and year. Themedian±25th quantiles
for the predictions is shown in grey; thewhiskers cover the 2.5-97.5th quantile range.
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Figure A-27: Observed vs. predictedmean andmedian number of oceanic whitetip shark caught by
fishing event where catch> 0 by year for the observer catch ratemodel for the longline bycatch fleet.
The median± 25th quantiles for the predictions is shown in grey; the whiskers cover the 2.5-97.5th

quantile range.

Figure A-28: Observed vs. predictedmean andmedian number of oceanic whitetip shark caught by
fishing event where catch> 0 by flag for the observer catch rate model for the longline bycatch fleet.
The median± 25th quantiles for the predictions is shown in grey; the whiskers cover the 2.5-97.5th

quantile range.
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Figure A-29: Observed vs. predictedmean andmedian number of oceanic whitetip shark caught by
fishingeventwherecatch>0byflagandyear for theobservercatch ratemodel for the longlinebycatch
fleet. The median ± 25th quantiles for the predictions is shown in grey; the whiskers cover the 2.5-
97.5th quantile range.
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Figure A-30: Observed vs. predicted mean and median position of the 90th quantile of oceanic
whitetip shark caught by fishing event where catch > 0 by year for the longline bycatch fleet. The
median±25thquantiles for thepredictions isshown ingrey; thewhiskerscover the2.5-97.5thquantile
range.

Figure A-31: Observed vs. predicted mean and median position of the 90th quantile of oceanic
whitetipsharkcaughtbyfishingeventwherecatch>0byflag for the longlinebycatchfleet. Themedian
±25th quantiles for thepredictions is shown in grey; thewhiskers cover the2.5-97.5th quantile range.

48 Inputs to the oceanic whitetip shark assessment



Figure A-32: Observed vs. predicted mean and median position of the 90th quantile of oceanic
whitetip shark caught by fishing event where catch> 0 by flag and year for the longline bycatch fleet.
The median± 25th quantiles for the predictions is shown in grey; the whiskers cover the 2.5-97.5th

quantile range.
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FigureA-33:MarkovChainMonteCarlo(MCMC)traces for keyparametersof theobservercatch rate
model for the longline bycatch fleet. Chains (4) are shown in different colours.
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A.2 Diagnostics for the observer catch ratesmodel for the longline target fleet

Figure A-34: Mean and median proportion of zero observed vs. predicted by fishing event for the
observer catch rate model for the longline target fleet by year. The median ± 25th quantiles for the
predictions is shown in grey; thewhiskers cover the 2.5-97.5th quantile range.

Figure A-35: Mean and median proportion of zero observed vs. predicted by fishing event for the
observer catch rate model for the longline target fleet by flag. The median ± 25th quantiles for the
predictions is shown in grey; thewhiskers cover the 2.5-97.5th quantile range.
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Figure A-36: Mean and median proportion of zero observed vs. predicted by fishing event for the
observer catch rate model for the longline target fleet by flag and year. The median± 25th quantiles
for the predictions is shown in grey; thewhiskers cover the 2.5-97.5th quantile range.

52 Inputs to the oceanic whitetip shark assessment



Figure A-37: Observed vs. predictedmean andmedian number of oceanic whitetip shark caught by
fishing event where catch > 0 by year for the observer catch rate model for the longline target fleet.
The median± 25th quantiles for the predictions is shown in grey; the whiskers cover the 2.5-97.5th

quantile range.

Figure A-38: Observed vs. predictedmean andmedian number of oceanic whitetip shark caught by
fishing eventwhere catch>0byflag for theobserver catch ratemodel for the longline target fleet. The
median±25thquantiles for thepredictions isshown ingrey; thewhiskerscover the2.5-97.5thquantile
range.
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Figure A-39: Observed vs. predictedmean andmedian number of oceanic whitetip shark caught by
fishing event where catch>0 by flag and year for the observer catch ratemodel for the longline target
fleet. The median ± 25th quantiles for the predictions is shown in grey; the whiskers cover the 2.5-
97.5th quantile range.
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Figure A-40: Observed vs. predicted mean and median position of the 90th quantile of oceanic
whitetip shark caught by fishing eventwhere catch>0by year for the longline target fleet. Themedian
±25th quantiles for thepredictions is shown in grey; thewhiskers cover the2.5-97.5th quantile range.

Figure A-41: Observed vs. predicted mean and median position of the 90th quantile of oceanic
whitetip shark caught by fishing event where catch> 0 by flag for the longline target fleet. Themedian
±25th quantiles for thepredictions is shown in grey; thewhiskers cover the2.5-97.5th quantile range.
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Figure A-42: Observed vs. predicted mean and median position of the 90th quantile of oceanic
whitetip shark caught by fishing eventwhere catch>0byflag and year for the longline target fleet. The
median±25thquantiles for thepredictions isshown ingrey; thewhiskerscover the2.5-97.5thquantile
range.
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FigureA-43:MarkovChainMonteCarlo(MCMC)traces for keyparametersof theobservercatch rate
model for the longline target fleet. Chains (4) are shown in different colours.
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A.3 Diagnostics for the observer catch ratesmodel for the purse seinefleet

Figure A-44: Mean and median proportion of zero observed vs. predicted by fishing event for the
observer catch rate model for the purse seine fleet by year. The median ± 25th quantiles for the
predictions is shown in grey; thewhiskers cover the 2.5-97.5th quantile range.

Figure A-45: Mean and median proportion of zero observed vs. predicted by fishing event for the
observer catch rate model for the purse seine fleet by flag. The median ± 25th quantiles for the
predictions is shown in grey; thewhiskers cover the 2.5-97.5th quantile range.
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Figure A-46: Mean and median proportion of zero observed vs. predicted by fishing event for the
observer catch rate model for the purse seine fleet by flag and year. Themedian± 25th quantiles for
the predictions is shown in grey; thewhiskers cover the 2.5-97.5th quantile range.
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Figure A-47: Observed vs. predictedmean andmedian number of oceanic whitetip shark caught by
fishing event where catch> 0 by year for the observer catch ratemodel for the purse seine fleet. The
median±25thquantiles for thepredictions isshown ingrey; thewhiskerscover the2.5-97.5thquantile
range.

Figure A-48: Observed vs. predictedmean andmedian number of oceanic whitetip shark caught by
fishing event where catch> 0 by flag for the observer catch rate model for the purse seine fleet. The
median±25thquantiles for thepredictions isshown ingrey; thewhiskerscover the2.5-97.5thquantile
range.
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Figure A-49: Observed vs. predictedmean andmedian number of oceanic whitetip shark caught by
fishing event where catch > 0 by flag and year for the observer catch rate model for the purse seine
fleet. The median ± 25th quantiles for the predictions is shown in grey; the whiskers cover the 2.5-
97.5th quantile range.
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Figure A-50: Observed vs. predicted mean and median position of the 90th quantile of oceanic
whitetip shark caught by fishing event where catch> 0 by year for the purse seine fleet. The median
±25th quantiles for thepredictions is shown in grey; thewhiskers cover the2.5-97.5th quantile range.

Figure A-51: Observed vs. predicted mean and median position of the 90th quantile of oceanic
whitetip shark caught by fishing event where catch > 0 by flag for the purse seine fleet. The median
±25th quantiles for thepredictions is shown in grey; thewhiskers cover the2.5-97.5th quantile range.
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Figure A-52: Observed vs. predicted mean and median position of the 90th quantile of oceanic
whitetip shark caught by fishing event where catch> 0 by flag and year for the purse seine fleet. The
median±25thquantiles for thepredictions isshown ingrey; thewhiskerscover the2.5-97.5thquantile
range.
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FigureA-53:MarkovChainMonteCarlo(MCMC)traces for keyparametersof theobservercatch rate
model for the purse seine fleet. Chains (4) are shown in different colours.
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A.4 Diagnostics for the standardizedCPUE for the longline bycatchfleet

Figure A-54: Mean and median proportion of zero observed vs. predicted by fishing event for the
observer catch rate model for the longline bycatch fleet by year. Themedian± 25th quantiles for the
predictions is shown in grey; thewhiskers cover the 2.5-97.5th quantile range.

Figure A-55: Mean and median proportion of zero observed vs. predicted by fishing event for the
observer catch ratemodel for the longline bycatch fleet by observer programme. Themedian± 25th

quantiles for the predictions is shown in grey; thewhiskers cover the 2.5-97.5th quantile range.
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Figure A-56: Mean and median proportion of zero observed vs. predicted by fishing event for the
observer catch ratemodel for the longlinebycatchfleetbyobserverprogrammeandyear. Themedian
±25th quantiles for thepredictions is shown in grey; thewhiskers cover the2.5-97.5th quantile range.
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Figure A-57: Observed vs. predictedmean andmedian number of oceanic whitetip shark caught by
fishing event where catch> 0 by year for the observer catch ratemodel for the longline bycatch fleet.
The median± 25th quantiles for the predictions is shown in grey; the whiskers cover the 2.5-97.5th

quantile range.

Figure A-58: Observed vs. predictedmean andmedian number of oceanic whitetip shark caught by
fishingeventwherecatch>0byobserverprogrammefor theobservercatchratemodel for the longline
bycatch fleet. Themedian±25th quantiles for the predictions is shown in grey; thewhiskers cover the
2.5-97.5th quantile range.
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Figure A-59: Observed vs. predicted mean and median number of oceanic whitetip shark caught
by fishing event where catch> 0 by observer programme and year for the observer catch rate model
for the longline bycatch fleet. The median ± 25th quantiles for the predictions is shown in grey; the
whiskers cover the 2.5-97.5th quantile range.
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Figure A-60: Observed vs. predicted mean and median position of the 90th quantile of oceanic
whitetip shark caught by fishing event where catch > 0 by year for the longline bycatch fleet. The
median±25thquantiles for thepredictions isshown ingrey; thewhiskerscover the2.5-97.5thquantile
range.

Figure A-61: Observed vs. predicted mean and median position of the 90th quantile of oceanic
whitetip sharkcaughtbyfishingeventwherecatch>0byobserverprogrammefor the longlinebycatch
fleet. The median ± 25th quantiles for the predictions is shown in grey; the whiskers cover the 2.5-
97.5th quantile range.
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Figure A-62: Observed vs. predicted mean and median position of the 90th quantile of oceanic
whitetipsharkcaughtbyfishingeventwherecatch>0byobserverprogrammeandyear for the longline
bycatch fleet. Themedian±25th quantiles for the predictions is shown in grey; thewhiskers cover the
2.5-97.5th quantile range.
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FigureA-63:MarkovChainMonteCarlo(MCMC)traces for keyparametersof theobservercatch rate
model for the longline bycatch fleet. Chains (4) are shown in different colours.
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APPENDIXB: Estimatedoceanicwhitetip shark catchbyfleet

Table B-6: Predicted catches (in thousand individuals) and uncertainty from key quantiles of the
posterior distribution of predicted catches for the longline bycatch fleet

Year Median 10th 25th 75th 90th

1995 140.0 94.2 111.4 178.4 230.2
1996 152.2 93.2 115.1 217.1 335.5
1997 115.7 76.1 89.6 154.6 204.3
1998 287.9 209.2 241.1 362.1 489.9
1999 384.7 294.5 326.5 472.2 610.1
2000 235.5 134.9 166.7 325.5 501.9
2001 563.4 411.4 467.8 693.0 933.6
2002 282.9 194.4 233.6 369.4 531.7
2003 163.3 94.7 116.9 229.4 362.5
2004 282.4 166.2 211.2 399.1 569.0
2005 135.4 98.7 113.4 172.6 224.1
2006 168.6 121.2 141.2 225.1 294.1
2007 110.7 72.2 86.4 149.0 214.7
2008 124.6 74.7 93.8 182.2 282.1
2009 160.1 103.4 124.9 220.6 328.9
2010 154.6 103.0 124.8 201.8 294.8
2011 223.3 164.9 190.2 282.3 352.2
2012 116.9 87.1 99.0 153.9 221.2
2013 71.8 49.9 57.9 97.3 136.7
2014 66.5 41.5 49.7 99.0 157.8
2015 99.5 61.2 74.8 132.9 208.4
2016 74.4 47.8 57.1 103.7 151.1
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Table B-7: Predicted catches (in thousand individuals) and uncertainty from key quantiles of the
posterior distribution of predicted catches for the longline target fleet

Year Median 10th 25th 75th 90th

1995 0.1 0.1 0.1 0.2 0.3
1996 0.8 0.4 0.6 1.1 1.6
1997 0.4 0.2 0.3 0.5 0.6
1998 2.1 1.3 1.6 2.7 3.4
1999 4.8 3.5 4.1 5.8 7.0
2000 2.0 1.2 1.5 2.6 3.3
2001 2.0 1.4 1.6 2.3 2.8
2002 2.0 1.5 1.8 2.4 2.6
2003 1.2 0.9 1.1 1.5 1.7
2004 0.9 0.7 0.8 1.0 1.2
2005 1.6 1.2 1.4 1.8 2.0
2006 1.0 0.8 0.9 1.2 1.3
2007 1.1 0.8 0.9 1.2 1.4
2008 0.7 0.5 0.6 0.9 1.0
2009 1.9 1.4 1.7 2.3 2.7
2010 9.0 6.5 7.5 10.4 12.4
2011 1.4 1.1 1.2 1.7 1.9
2012 1.1 0.8 1.0 1.3 1.4
2013 0.5 0.4 0.5 0.6 0.7
2014 1.6 1.2 1.4 1.8 2.1
2015 2.0 1.5 1.7 2.2 2.5
2016 0.1 0.1 0.1 0.1 0.1

73 Inputs to the oceanic whitetip shark assessment



Table B-8: Predicted catches (in thousand individuals) and uncertainty from key quantiles of the
posterior distribution of predicted catches for the purse seine fleets

Year Median 10th 25th 75th 90th

Associated sets

1995 0.4 0.1 0.2 0.7 1.3
1996 27.6 16.7 20.5 35.9 52.3
1997 10.3 5.3 7.1 17.2 32.7
1998 14.0 6.5 8.8 23.8 45.3
1999 14.6 7.6 10.0 22.9 42.4
2000 4.5 2.3 3.0 7.8 14.4
2001 7.6 4.0 5.3 12.2 18.1
2002 8.3 5.1 6.4 11.5 15.8
2003 18.2 10.9 13.6 25.8 36.6
2004 6.6 4.1 5.0 9.1 14.7
2005 2.2 1.3 1.7 3.2 4.8
2006 1.5 0.9 1.1 2.2 3.6
2007 1.6 0.9 1.2 2.4 4.0
2008 1.3 0.8 1.0 1.8 2.7
2009 3.1 1.9 2.4 4.5 6.1
2010 1.1 0.8 1.0 1.4 2.0
2011 1.0 0.7 0.9 1.3 1.8
2012 2.0 1.5 1.7 2.3 2.7
2013 0.7 0.5 0.5 0.9 1.4
2014 0.7 0.5 0.6 0.8 1.0
2015 0.8 0.6 0.7 1.1 1.8
2016 0.8 0.5 0.6 1.2 2.5

Unassociated sets

1995 0.1 0.0 0.1 0.2 0.3
1996 7.5 4.3 5.6 10.1 14.4
1997 1.6 0.8 1.1 2.5 4.7
1998 2.4 1.2 1.6 4.1 7.2
1999 0.9 0.4 0.6 1.6 3.5
2000 0.6 0.3 0.4 1.1 2.0
2001 1.4 0.7 1.0 2.5 4.5
2002 0.9 0.5 0.6 1.4 2.4
2003 1.6 0.9 1.2 2.4 3.9
2004 1.0 0.6 0.7 1.3 1.9
2005 0.5 0.3 0.3 0.7 1.0
2006 0.2 0.1 0.2 0.3 0.5
2007 0.3 0.2 0.2 0.5 0.8
2008 0.3 0.2 0.2 0.4 0.5
2009 0.5 0.3 0.4 0.7 1.0
2010 0.6 0.4 0.5 0.7 1.0
2011 0.3 0.2 0.3 0.4 0.6
2012 0.9 0.7 0.8 1.1 1.2
2013 0.3 0.2 0.2 0.4 0.8
2014 0.3 0.2 0.2 0.4 0.5
2015 0.3 0.2 0.3 0.4 0.7
2016 0.4 0.2 0.3 0.6 1.3
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Table B-9: Predicted catches (in thousand individuals) and uncertainty from the 10th and 90th

quantiles for the historical catch reconstruction based on global fin trade statistics, aportioned to the
WCPOusing three differentmethods

Effort Tuna catch Area
Year Median 10th 90th Median 10th 90th Median 10th 90th

1995 123.1 75.1 183.4 198.8 121.2 296.2 144.0 87.8 214.5
1996 119.1 74.4 173.2 210.5 131.5 306.1 154.7 96.6 225.0
1997 128.0 79.9 186.1 229.9 143.6 334.3 166.9 104.2 242.7
1998 133.1 83.1 193.5 266.2 166.2 387.0 178.1 111.2 259.0
1999 174.7 109.1 254.0 285.3 178.2 414.9 199.6 124.7 290.3
2000 226.7 141.6 329.7 342.4 213.8 497.9 232.7 145.3 338.4
2001 315.0 189.8 483.3 409.0 246.4 627.4 285.1 171.8 437.3
2002 318.0 191.6 487.9 427.9 257.8 656.4 288.5 173.8 442.6
2003 346.0 208.5 530.8 438.8 264.4 673.2 308.3 185.8 473.0
2004 313.1 188.6 480.2 394.2 237.5 604.8 272.1 163.9 417.4
2005 280.8 169.2 430.8 375.6 226.3 576.2 260.8 157.1 400.1
2006 266.0 160.3 408.0 347.9 209.6 533.7 236.4 142.5 362.7
2007 367.7 221.4 562.0 512.7 308.7 783.5 315.0 189.6 481.3
2008 399.0 240.2 609.7 471.6 283.9 720.7 300.7 181.0 459.6
2009 412.6 248.4 630.6 465.0 279.9 710.6 302.0 181.8 461.5
2010 430.2 259.0 657.4 489.7 294.8 748.4 312.8 188.3 478.1
2011 477.4 287.4 729.6 501.2 301.8 766.0 335.4 201.9 512.6
2012 486.7 293.0 743.7 513.8 309.3 785.2 341.2 205.4 521.5
2013 430.6 259.2 658.1 508.1 305.9 776.6 336.8 202.8 514.8
2014 459.4 276.6 702.1 503.0 302.8 768.7 326.7 196.7 499.3
2015 482.0 290.2 736.6 471.2 283.7 720.1 317.7 191.3 485.6
2016 497.3 299.4 759.9 485.1 292.1 741.4 327.8 197.3 500.9
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